A Comprehensive Review of Traditional Medicinal Uses, Geographical Distribution, Botanical Characterization, Phytochemistry, and Pharmacology of Aralia continentalis Kitag.
Abstract
:1. Introduction
2. Traditional Medicinal Uses
3. Geographical Distribution
4. Botanical Characterization
5. Phytochemistry
5.1. Diterpenoids
5.2. Steroids and Triterpenoids
5.3. Volatile Components
5.4. Phenolics
No. | Name | Formula | Exact Theoretical M. W. | Source | Characterization Method | Ref. |
---|---|---|---|---|---|---|
95. | Ferulic acid | C10H10O4 | 194.0579 | roots | Chemical reaction, TLC, mp, UV, IR, 1H NMR | [27] |
96. | Caffeic acid | C9H8O4 | 180.0423 | roots | Chemical reaction, TLC, mp, UV, IR, 1H NMR | [27] |
roots | ESI-MS, 1H NMR, 13C NMR | [9] | ||||
97. | Vanillic acid | C8H8O4 | 168.0423 | roots | EI-MS, 1H NMR, 13C NMR | [1] |
98. | 4-Hydroxybenzoic acid | C7H6O3 | 138.0317 | roots | EI-MS, 1H NMR, 13C NMR | [1] |
99. | Protocatechuic acid | C7H6O4 | 154.0266 | roots | EI-MS, 1H NMR, 13C NMR | [1] |
roots | ESI-MS, 1H NMR, 13C NMR | [9] | ||||
100. | 5-O-Feruloyl quinic acid | C17H20O9 | 368.1107 | roots | EI-MS, 1H NMR, 13C NMR | [1] |
101. | Ethyl caffeate | C11H12O4 | 208.0736 | roots | ESI-MS, 1H NMR, 13C NMR | [9] |
102. | Chlorogenic acid | C16H18O9 | 354.0951 | roots | ESI-MS, 1H NMR, 13C NMR | [9] |
103. | Cryptochlorogenic acid methyl ester | C17H20O9 | 368.1107 | roots | ESI-MS, 1H NMR, 13C NMR | [9] |
104. | Chlorogenic acid methyl ester | C17H20O9 | 368.1107 | roots | ESI-MS, 1H NMR, 13C NMR | [9] |
105. | 3-O-Coumaroylquinic acid | C16H18O8 | 338.1002 | roots | ESI-MS, 1H NMR, 13C NMR | [9] |
106. | 4-O-Feruloylquinic acid methyl ester | C18H22O9 | 382.1264 | roots | ESI-MS, 1H NMR, 13C NMR | [9] |
107. | 3-O-Coumaroylquinic acid methyl ester | C17H20O8 | 352.1158 | roots | ESI-MS, 1H NMR, 13C NMR | [9] |
108. | 3-O-Feruloylquinic acid methyl ester | C18H22O9 | 382.1264 | roots | ESI-MS, 1H NMR, 13C NMR | [9] |
109. | 8-O-4/8-O-4-Dehydrotriferulic acid | C30H26O12 | 578.1424 | roots | ESI-MS, 1H NMR, 13C NMR | [9] |
110. | erythro-Carolignan E | C40H42O13 | 730.2625 | roots | ESI-MS, 1H NMR, 13C NMR | [9] |
111. | threo-Carolignan E | C40H42O13 | 730.2625 | roots | ESI-MS, 1H NMR, 13C NMR | [9] |
112. | Quercetin | C15H10O7 | 302.0427 | roots | 1H NMR, 13C NMR | [15] |
roots | mp, UV, IR, MS, 1H NMR | [28] | ||||
roots | UV, IR, 1H NMR, 13C NMR | [29] | ||||
leaves | mp, IR, MS, 1H NMR, 13C NMR | [21] | ||||
roots | UV, IR, 1H NMR, 13C NMR | [29] | ||||
113. | Kaempferol | C15H10O6 | 286.0477 | roots | mp, UV, IR, MS, 1H NMR | [28] |
leaves | mp, IR, MS, 1H NMR, 13C NMR | [21] | ||||
114. | Hyperoside | C21H20O12 | 464.0955 | roots | Chemical reaction, 1H NMR, 13C NMR | [15] |
leaves | mp, IR, MS, 1H NMR, 13C NMR | [21] | ||||
roots | mp, UV, IR, MS, 1H NMR, 13C NMR | [28] | ||||
115. | 6″-O-Acetylastragalin | C23H22O12 | 490.1111 | roots | mp, UV, IR, MS, 1H NMR, 13C NMR | [28] |
leaves | mp, IR, MS, 1H NMR, 13C NMR | [21] | ||||
116. | Astragalin | C21H20O11 | 448.1006 | roots | mp, UV, IR, MS, 1H NMR, 13C NMR | [28] |
leaves | mp, IR, MS, 1H NMR, 13C NMR | [21] | ||||
117. | Trifolin | C21H20O11 | 448.1006 | roots | mp, UV, IR, MS, 1H NMR, 13C NMR | [28] |
leaves | mp, IR, MS, 1H NMR, 13C NMR | [21] | ||||
118. | Aralianic acid | C19H16O7 | 356.0896 | roots | UV, IR, ESI-MS, HRESIMS, 1H NMR, 13C NMR, HMBC, DEPT, HSQC | [9] |
5.5. Vitamins and Trace Elements
5.6. Other Compounds
No. | Name | Formula | Exact Theoretical M. W. | Source | Characterization Method | Ref. |
---|---|---|---|---|---|---|
137. | 4-[Formy-5-(methoxymethyl)-1H-pyrrol-1-yl] butanoic acid | C11H15NO4 | 225.1001 | roots | FAB-MS, HR FAB-MS, 1H NMR, 13C NMR | [1] |
138. | Aralia cerebroside | C40H77NO10 | 731.5547 | roots | mp, EI-MS, 1H NMR, 13C NMR | [1] |
139. | Sucrose | C12H22O11 | 342.1162 | roots | Chemical reaction, 1H NMR, 13C NMR | [15] |
140. | Adenosine | C10H13N5O4 | 267.0968 | leaves | mp, IR, MS, 1H NMR, 13C NMR | [21] |
141. | Cinnamic acid | C9H8O2 | 148.0524 | roots | ESI-MS, 1H NMR, 13C NMR | [9] |
142. | ortho-Phthalic acid bis-(2-ethyldecyl)-ester | C32H54O4 | 502.4022 | roots | Chemical reaction, 1H NMR, 13C NMR | [16] |
143. | HY251 | C17H26O4 | 294.1831 | roots | 1H NMR, 13C NMR, 1H–1H COSY, HMQC, HMBC | [32] |
144. | HY253 | C17H24O4 | 292.1675 | roots | 1H NMR, 13C NMR, 1H–1H COSY, HMQC, HMBC | [33] |
145. | Dehydrofalcarindiol-8-acetate | C19H24O3 | 300.1725 | roots | ESI-MS, 1H NMR, 13C NMR | [9] |
146. | Falcarindiol-8-acetate | C19H26O3 | 302.1882 | roots | ESI-MS, 1H NMR, 13C NMR | [9] |
147. | Dehydrofalcarindiol | C17H22O2 | 258.1620 | roots | ESI-MS, 1H NMR, 13C NMR | [9] |
148. | Falcarindiol | C17H24O2 | 260.1776 | roots | ESI-MS, 1H NMR, 13C NMR | [9] |
149. | gNaCl | — | — | roots | Paper chromatography, IR, HPLC | [123] |
150. | JH2O | — | — | stems | Paper chromatography, IR, HPLC | [123] |
151. | JNaCl | — | — | stems | Paper chromatography, IR, HPLC | [123] |
152. | YNaCl | — | — | leaves | Paper chromatography, IR, HPLC | [123] |
153. | AKSP2 | — | — | roots | IR, HPLC | [124] |
154. | WACP(R)-N-a | — | 172.8 KDa | roots | IR, HPLC, scanning electron microscopy analysis | [125,126] |
155. | WACP(R)-N-b | — | 7.0 KDa | roots | IR, HPLC, scanning electron microscopy analysis | [125,126] |
156. | WACP(R)-N-c | — | <1.2 KDa | roots | IR, HPLC, scanning electron microscopy analysis | [125,126] |
157. | WACP(R)-A-a | — | 171.1 KDa | roots | IR, HPLC, scanning electron microscopy analysis | [125,126] |
158. | WACP(R)-A-b | — | 60.8 KDa | roots | IR, HPLC, scanning electron microscopy analysis | [125,126] |
159. | WACP(R)-A-c | — | 27.3 KDa | roots | IR, HPLC, scanning electron microscopy analysis | [125,126] |
6. Pharmacological Effects
6.1. Anti-Inflammatory and Analgesic Effects
6.2. Antioxidant Activity
6.3. Antimicrobial Activity
6.4. Insecticidal Activity
6.5. Hepatoprotective Activity
6.6. Anti-Diabetic Activity
6.7. Cytotoxicity
6.8. Other Pharmacological Effects
7. Discussion
8. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Jung, H.J.; Jung, H.A.; Kang, S.S.; Lee, J.H.; Cho, Y.S.; Moon, K.H.; Choi, J.S. Inhibitory activity of Aralia continentalis roots on protein tyrosine phosphatase 1B and rat lens aldose reductase. Arch. Pharm. Res. 2012, 35, 1771–1777. [Google Scholar] [CrossRef]
- Moon, K.; Hwang, S.; Lee, H.J.; Jo, E.; Kim, J.N.; Cha, J. Identification of the antibacterial action mechanism of diterpenoids through transcriptome profiling. Front. Microbiol. 2022, 13, 945023. [Google Scholar] [CrossRef]
- Jeong, S.I.; Lee, S.B.; Moon, H.D.; Ra, J.Y.; Lee, K.H.; You, Y.O. Inhibitory effect of continentalic acid from Aralia continentalis on Streptococcus mutans biofilm. Int. J. Oral Sci. 2010, 35, 177–184. [Google Scholar]
- Kim, J.Y.; Oh, S.J.; Jeong, S.I. Antibacterial activity of continentalic acid from Aralia continentalis. J. Korean Med. Ophthalmol. Otorhinolaryngol. Dermatol. 2006, 19, 161–167. [Google Scholar]
- Yu, H.H.; Jeong, S.I.; Jung, S.Y.; Moon, H.D.; Hwang, J.Y.; Jeong, H.S.; You, Y.O. Continentalic acid, isolated from Aralia continentalis, inhibits cariogenic properties. Korean J. Orient. Physiol. Pathol. 2006, 20, 617–622. [Google Scholar]
- Han, W.S. Isolation of the antimicrobial compounds from Aralia cordata Thunb. Extract. Korean J. Med. Crop Sci. 2005, 13, 182–185. [Google Scholar]
- Han, B.H.; Han, Y.N.; Han, K.A.; Park, M.H.; Lee, E.O. Studies on the anti-inflammatory activity of Aralia continentalis (I): Characterization of continentalic acid and its anti-inflammatory activity. Arch. Pharm. Res. 1983, 6, 17–23. [Google Scholar] [CrossRef]
- Lim, H.; Jung, H.A.; Choi, J.S.; Kim, Y.S.; Kang, S.S.; Kim, H.P. Anti-inflammatory activity of the constituents of the roots of Aralia continentalis. Arch. Pharm. Res. 2009, 32, 1237–1243. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.E.; Sim, S.J.; Jeong, W.; Choi, C.W.; Kim, N.; Park, Y.; Kim, M.J.; Lee, D.; Hong, S.S. Diterpenoids and phenolic analogues from the roots of Aralia continentalis. J. Asian Nat. Prod. Res. 2021, 23, 371–378. [Google Scholar] [CrossRef]
- Tanaka, O.; Yasuda, Y.; Yamasaki, K.; Mihashi, S. Comparative study on the constituents of some Aralia species and notice of the original plants of crude drug “Duhuo”. J. Pharm. Soc. Jpn. 1972, 92, 1058–1060. [Google Scholar]
- Wang, G.S.; Shao, C.J.; Xu, J.D. Studies on the chemical constituents of the roots of Aralia continentalis Kitag. China J. Chin. Mater. Med. 1989, 14, 422–424. [Google Scholar]
- Lee, K.J.; Song, K.H.; Choi, W.; Kim, Y.S. A strategy for the separation of diterpenoid isomers from the root of Aralia continentalis by countercurrent chromatography: The distribution ratio as a substitute for the partition coefficient and a three-phase solvent system. J. Chromatogr. A. 2015, 1406, 224–230. [Google Scholar] [CrossRef] [PubMed]
- Lyu, J.H.; Lee, G.S.; Kim, K.H.; Kim, H.W.; Cho, S.I.; Jeong, S.I.; Kim, H.J.; Ju, Y.S.; Kim, H.K.; Sadikot, R.T.; et al. ent-Kaur-16-en-19-oic acid, isolated from the roots of Aralia continentalis, induces activation of Nrf2. J. Ethnopharmacol. 2011, 137, 1442–1449. [Google Scholar] [CrossRef] [PubMed]
- Eo, H.J.; Park, Y.; Hong, S.S.; Park, G.H. Anti-inflammatory effects of 18-nor-ent-pimara-9(11),15-diene-4β-ol isolated from the roots of Aralia continentalis on LPS-induced in RAW264.7 cells. Appl. Biol. Chem. 2020, 63, 74. [Google Scholar] [CrossRef]
- Li, D.J. Anti-Inflammatory Constituents from the Ethyl Acetate Extract of Aralia continentalis Kitagawa. Master’s Thesis, Yanbian University, Yanji, China, 2015. [Google Scholar]
- Zhang, L. Anti-Inflammatory Constituents from the Dichloromethane Extract of Aralia continentalis Kitagawa. Master’s Thesis, Yanbian University, Yanji, China, 2015. [Google Scholar]
- Yu, H.H.; Moon, H.D.; Hwang, J.Y.; Kim, S.Y.; Jeong, S.I.; Jeon, B.H.; You, Y.O. Isolation of anti-cariogenic agent, stigmasterol, from Aralia continentalis. Korean J. Orient. Physiol. Pathol. 2007, 21, 70–75. [Google Scholar]
- Wang, Y.P.; Zhu, Z.Y.; Wang, C.L.; Yang, J.S. Determination of oleanolic acid and total saponins in Aralia L. China J. Chin. Mater. Med. 1998, 23, 518–521. [Google Scholar]
- Zhang, B.; Liu, G.R.; Hou, Y.J.; Fang, K.S.; Huang, Q. Extraction and isolation of β-sitosterol from the roots of Aralia continentalis. Chin. Tradit. Herb. Drugs 1985, 16, 44. [Google Scholar]
- Kim, J.S.; Kang, S.S. Saponins from the aerial parts of Aralia continentalis. Nat. Prod. Sci. 1998, 4, 45–50. [Google Scholar]
- Kim, J.S.; Kang, S.S.; Choi, J.S.; Lee, M.W.; Lee, T.S. Antioxidant components from Aralia continentalis. Korean J. Pharmacogn. 1998, 29, 13–17. [Google Scholar]
- Feng, Y.; Sun, S.H.; Zhao, L.N.; Fan, W.L. Ultrasonic extraction and composition identification of saponins from Aralia continentalis leaves. Food Sci. 2013, 34, 5–9. [Google Scholar]
- Feng, Y.; Pan, X.; Meng, X.J.; Li, T.L.; Liu, X. Separation and structural identification of congmuyanoside C from young sprouts of Aralia continentalis. Food Sci. 2011, 32, 41–44. [Google Scholar]
- Du, F.G.; Jiang, B.W.; Hu, R. Analysis of volatile oil of Aralia continentalis. Bull. Bot. Res. 2001, 21, 110–112. [Google Scholar]
- Zhang, L.Y.; Xu, Q.; Zhan, D.Z.; Zhang, H.; Xia, G.Q.; Zhu, J.Y.; Zang, H. Chemical composition and biological activities of essential oil from roots of Aralia continentalis. Chem. Nat. Compd. 2020, 56, 548–550. [Google Scholar] [CrossRef]
- Kim, S.J. Identification of petroselinic acid (cis-6-octadecenoic acid) in the seed oils of some of the family Umbelliferae by GC-MS, IR, 1H-and 13C-NMR spectroscopic techniques. J. Korean Oil Chem. Soc. 2005, 22, 323–331. [Google Scholar]
- Han, B.H.; Park, M.H.; Han, Y.N.; Manalo, J.B. Studies on the anti-inflammatory activity of Aralia continentalis (II): Isolation of two phenolic acids from the hydrolysate of butanol fraction. Arch. Pharm. Res. 1983, 6, 75–77. [Google Scholar] [CrossRef]
- Kim, J.S.; Kang, S.S.; Lee, M.W.; Kim, O.K. Isolation of flavonoids from the leaves of Aralia continentalis. Korean J. Pharmacogn. 1995, 26, 239–243. [Google Scholar]
- Ju, W.Y.; Li, B.C. Isolation and structural identification of flavonoids from Aralia continentalis Kitagawa. Sci. Technol. Food Ind. 2012, 33, 81–83. [Google Scholar] [CrossRef]
- Han, G.J.; Shin, D.S.; Jang, M.S. A study of the nutritional composition of Aralia continentalis Kitagawa and Aralia continentalis Kitagawa leaf. Korean J. Food Sci. Technol. 2008, 40, 680–685. [Google Scholar]
- Ko, E.Y.; Lee, J.H.; Sivanesan, I.; Choi, M.J.; Keum, Y.S.; Saini, R.K. Carotenoid and tocopherol profiling in 18 Korean traditional green leafy vegetables by LC-SIM-MS. Foods 2023, 12, 1312. [Google Scholar] [CrossRef]
- Oh, H.L.; Lim, H.; Cho, Y.H.; Koh, H.C.; Kim, H.; Lim, Y.; Lee, C.H. HY251, a novel cell cycle inhibitor isolated from Aralia continentalis, induces G1 phase arrest via p53-dependent pathway in HeLa cells. Bioorg. Med. Chem. Lett. 2009, 19, 959–961. [Google Scholar] [CrossRef]
- Oh, H.L.; Lim, H.; Park, Y.; Lim, Y.; Koh, H.C.; Cho, Y.H.; Lee, C.H. HY253, a novel compound isolated from Aralia continentalis, induces apoptosis via cytochrome c-mediated intrinsic pathway in HeLa cells. Bioorg. Med. Chem. Lett. 2009, 19, 797–799. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.G.; Jo, D.J.; Chang, H.J.; Kang, H. Antioxidant and anti-inflammatory activities of ethanol extracts from A. continentalis Kitagawa. J. Naturop. 2015, 4, 1–5. [Google Scholar]
- Zhou, C.C.; Wang, G.Z.; Sun, X.B.; Xu, Q.; Li, T.P. The anti-inflammatory effect of alcohol extract from A. continentalis Kitagwa. Chin. Tradit. Herb. Drugs. 1984, 15, 21–25. [Google Scholar]
- Wang, G.Z.; Zhou, C.C. Pharmacological studies on the alcohol extract of A. continentalis Kitagwa (II): Effects on the central nervous system. Chin. Tradit. Herb. Drugs. 1986, 17, 25–27. [Google Scholar]
- Zhou, C.C.; Wang, G.Z.; Liu, J.X.; Gao, H.B.; Liu, W.; Wang, G.S.; Xu, J.D. Pharmacological studies on A. continentalis Kitagwa (III): Effects of volatile oil from A. continentalis Kitagwa on the central nervous system. Chin. Tradit. Herb. Drugs. 1988, 19, 29–31. [Google Scholar]
- Wang, J.; Wang, N.; Yao, X.; Ishii, R.; Kitanaka, S. Inhibitory activity of Chinese herbal medicines toward histamine release from mast cells and nitric oxide production by macrophage-like cell line, RAW 264.7. J. Nat. Med. 2006, 60, 73–77. [Google Scholar] [CrossRef]
- Seo, D.W.; Cho, Y.I.; Yi, Y.J.; Lee, S.M. Aralia cordata extract activates NF-κB and MAPK signaling pathways and induces pro-inflammatory changes in RAW264.7 macrophages. J. Bacteriol. Virol. 2019, 49, 153–161. [Google Scholar] [CrossRef]
- Cheon, M.S.; Yoon, T.; Yasukawa, K.; Yu, S.Y.; Kim, S.J.; Choi, G.; Moon, B.C.; Lee, A.Y.; Choo, B.K.; Kim, H.K. Effects of A. continentalis and Angelica biserrata on inflammatory response in lipopolysaccharide-induced RAW 264.7 macrophages and phorbol ester-induced ear edema. J. Korean Soc. Appl. Biol. Chem. 2009, 52, 157–162. [Google Scholar] [CrossRef]
- Park, H.J.; Hong, M.S.; Lee, J.S.; Leem, K.H.; Kim, C.J.; Kim, J.W.; Lim, S. Effects of A. continentalis on hyperalgesia with peripheral inflammation. Phytother. Res. 2005, 19, 511–513. [Google Scholar] [CrossRef]
- Yoon, H.S.; Lee, Y.C.; Lee, J.C. Inhibitory effect of a decoction combined with Ostericum koreanum Maxim. and A. continentalis Kitagawa on collagen II-induced arthritis mice. Herb. Formula Sci. 2013, 21, 161–176. [Google Scholar] [CrossRef]
- Oh, T.S.; Bae, E.Y.; Kim, M.H.; Oh, H.M.; Lee, S.W.; Kim, C.H. Inhibition of IL-6-induced STAT3 activation by pimaradienoic acid from Aralia continentalis. Bull. Korean Chem. Soc. 2014, 35, 3661–3664. [Google Scholar] [CrossRef]
- Jeong, H.Y.; Moh, S.H.; Yang, Y.; Yu, T.; Oh, J.; Jeong, D.; Yoon, D.H.; Park, K.M.; Lee, S.; Kim, T.W.; et al. Src and Syk are targeted to an anti-inflammatory ethanol extract of A. continentalis. J. Ethnopharmacol. 2012, 143, 746–753. [Google Scholar] [CrossRef] [PubMed]
- Hong, R.; Sur, B.; Yeom, M.; Lee, B.; Kim, K.S.; Rodriguez, J.P.; Lee, S.; Kang, K.S.; Huh, C.K.; Lee, S.C.; et al. Anti-inflammatory and anti-arthritic effects of the ethanolic extract of A. continentalis Kitag. in IL-1β-stimulated human fibroblast-like synoviocytes and rodent models of polyarthritis and nociception. Phytomedicine 2018, 38, 45–56. [Google Scholar] [CrossRef] [PubMed]
- Lee, G.I.; Ha, J.Y.; Min, K.R.; Nakagawa, H.; Tsurufuji, S.; Chang, I.M.; Kim, Y. Inhibitory effects of Oriental herbal medicines on IL-8 induction in lipopolysaccharide-activated rat macrophages. Planta Med. 1995, 61, 26–30. [Google Scholar] [CrossRef] [PubMed]
- Woo, Y.M.; Kim, O.J.; Jo, E.S.; Kim, S.J.; Lee, Y.H.; Ahn, M.Y.; Lee, S.H.; Ha, J.M.; Kim, A. Anti-inflammatory effects of the combined extracts of Achyranthes japonica Nakai and A. continentalis Kitagawa in vitro and in vivo. Data Brief 2019, 25, 104088. [Google Scholar] [CrossRef] [PubMed]
- Sun, L.; Lu, W.X.; Song, X.L.; Yu, M.; Wen, C. Mechanism of the aralosides against myocardial ischemia reperfusion injury based on the NLRP3 inflammation pathway. China J. Tradit. Chin. Med. Pharm. 2020, 35, 1441–1443. [Google Scholar]
- Huang, X.C.; Li, H.; Nie, J.X.; Li, H.J.; Lu, W.X.; Sun, L. Mechanism of total saponins of A. continentalis against myocardial ischemic reperfusion injury based on PI3K/AKT signaling pathway regulating NLRP3 inflammasome. China J. Tradit. Chin. Med. Pharm. 2022, 37, 6456–6460. [Google Scholar]
- Lee, B.; Hong, R.; Lim, P.; Cho, D.; Yeom, M.; Lee, S.; Kang, K.S.; Lee, S.C.; Shim, I.; Lee, H.; et al. The ethanolic extract of A. continentalis ameliorates cognitive deficits via modifications of BDNF expression and anti-inflammatory effects in a rat model of post-traumatic stress disorder. BMC Complement. Altern. Med. 2019, 19, 11. [Google Scholar] [CrossRef] [PubMed]
- Jung, Y.M.; Lee, D.S.; Kwon, K.S. Anti-inflammatory effects of fusion-fermented A. continentalis radix (fACR) on THP-1 cells. J. Digit. Converg. 2016, 14, 353–361. [Google Scholar] [CrossRef]
- Woo, Y.M.; Kim, O.J.; Jo, E.S.; Jo, M.Y.; Ahn, M.Y.; Lee, S.H.; Ha, J.M.; Kim, A. Enhancement of the anti-inflammatory activities of A. continentalis Kitagawa extracts fermented by Lactobacillus plantarum. J. Life Sci. 2018, 28, 1438–1447. [Google Scholar] [CrossRef]
- Han, B.H.; Woo, E.R.; Park, M.H.; Han, Y.N. Studies on the anti-inflammatory activity of A. continentalis (III): Anti-inflammatory activity of (−)-kaur-16-en-19-oic acid. Arch. Pharm. Res. 1985, 8, 59–65. [Google Scholar] [CrossRef]
- Hong, R.; Kim, K.S.; Choi, G.M.; Yeom, M.; Lee, B.; Lee, S.; Kang, K.S.; Lee, H.S.; Park, H.J.; Hahm, D.H. Continentalic acid rather than kaurenoic acid is responsible for the anti-arthritic activity of manchurian spikenard in vitro and in vivo. Int. J. Mol. Sci. 2019, 20, 5488. [Google Scholar] [CrossRef] [PubMed]
- Mizokami, S.S.; Arakawa, N.S.; Ambrosio, S.R.; Zarpelon, A.C.; Casagrande, R.; Cunha, T.M.; Ferreira, S.H.; Cunha, F.Q.; Verri, W.A., Jr. Kaurenoic acid from Sphagneticola trilobata inhibits inflammatory pain: Effect on cytokine production and activation of the NO-cyclic GMP-protein kinase G-ATP-sensitive potassium channel signaling pathway. J. Nat. Prod. 2012, 75, 896–904. [Google Scholar] [CrossRef] [PubMed]
- Borghi, S.M.; Mizokami, S.S.; Carvalho, T.T.; Rasquel-Oliveira, F.S.; Ferraz, C.R.; Fattori, V.; Hayashida, T.H.; Peron, J.P.S.; Camilios-Neto, D.; Ambrosio, S.R.; et al. The diterpene from Sphagneticola trilobata (L.) Pruski, kaurenoic acid, reduces lipopolysaccharide-induced peritonitis and pain in mice. J. Ethnopharmacol. 2021, 273, 113980. [Google Scholar] [CrossRef] [PubMed]
- Kim, K.H.; Sadikot, R.T.; Joo, M. Therapeutic effect of ent-kaur-16-en-19-oic acid on neutrophilic lung inflammation and sepsis is mediated by Nrf2. Biochem. Biophys. Res. Commun. 2016, 474, 534–540. [Google Scholar] [CrossRef] [PubMed]
- Kim, K.H.; Han, J.W.; Jung, S.K.; Park, B.J.; Han, C.W.; Joo, M. Kaurenoic acid activates TGF-β signaling. Phytomedicine 2017, 32, 8–14. [Google Scholar] [CrossRef] [PubMed]
- Choi, R.J.; Shin, E.M.; Jung, H.A.; Choi, J.S.; Kim, Y.S. Inhibitory effects of kaurenoic acid from A. continentalis on LPS-induced inflammatory response in RAW264.7 macrophages. Phytomedicine 2011, 18, 677–682. [Google Scholar] [CrossRef] [PubMed]
- Shin, M.S.; Han, H.S.; Lee, Y.J. Comparative studies on the anti-oxidation activities of A. continentalis root and Angelica pubescens root. Kor. J. Herbol. 2009, 24, 67–76. [Google Scholar]
- Sim, S.J.; Kim, N. Antioxidant and antibacterial activity of adventitious roots from A. continentalis Kitagawa. Korean J. Pharmacogn. 2017, 48, 51–55. [Google Scholar]
- Kwon, D.Y.; Kim, S.J.; Lee, J.W.; Kim, Y.C. Comparison of hydroxyl radical, peroxyl radical, and peroxynitrite scavenging capacity of extracts and active components from selected medicinal plants. Toxicol. Res. 2010, 26, 321–327. [Google Scholar] [CrossRef]
- Lee, S.; Lee, D.; Baek, J.; Jung, E.B.; Baek, J.Y.; Lee, I.K.; Jang, T.S.; Kang, K.S.; Kim, K.H. In vitro assessment of selected Korean plants for antioxidant and antiacetylcholinesterase activities. Pharm. Biol. 2017, 55, 2205–2210. [Google Scholar] [CrossRef] [PubMed]
- Shin, Y.J.; Hwang, J.M.; Lee, S.C. Antioxidant and xanthine oxidase inhibitory activities of hot water extracts of medicinal herbs. J. Korean Soc. Food Sci. Nutr. 2013, 42, 1712–1716. [Google Scholar] [CrossRef]
- Oh, S.H.; Sok, D.E.; Lee, K.J.; Kim, M.R. Heat processing of edible plants grown in Korea has differential effects on their antioxidant capacity in bovine brain homogenate. Nutraceuticals Food 2002, 7, 378–385. [Google Scholar] [CrossRef]
- Duan, H.M.; Wang, D.D.; Hong, D.; Jiang, Y.F.; Wang, S.Y.; Wu, S.Q.; Wang, X.H. Optimization of enzyme extraction method for total flavonoids from root of A. continentalis Kitagwa and its antioxidant activity. Sci. Technol. Food Ind. 2020, 41, 174–180. [Google Scholar] [CrossRef]
- Feng, Y.; Li, T.L.; Meng, X.J.; Fan, W.L. Purification of saponins from A. continentalis leaves using macroporous adsorption resin and its bioactivity. Food Sci. 2009, 30, 158–161. [Google Scholar]
- Feng, Y.; Wu, M.L.; Li, T.L.; Fan, W.L. Purification of saponin from edible stems of A. continentalis using macroporous adsorption resin. Food Sci. 2010, 31, 73–76. [Google Scholar]
- Park, H.J.; Hong, E.J.; Hong, S.H.; Cho, Y.J. Comparison of anti-oxidative activities of gamma-irradiated A. continentalis extracts for long-term storage of oriental medicine. J. Korean Soc. Food Sci. Nutr. 2017, 46, 46–55. [Google Scholar] [CrossRef]
- Wu, S.Q.; Li, G.P.; Li, B.S.; Duan, H.M. Chitosan-based antioxidant films incorporated with root extract of Aralia continentalis Kitagawa for active food packaging applications. E-Polymers 2022, 22, 125–135. [Google Scholar] [CrossRef]
- Yang, J.; Jang, J.Y.; Lee, J.; Jun, W.J.; Hwang, K.T.; Lee, Y.Y. Effect of Aralia Contientalis extracts in rat primary cultured chondrocytes viability and mRNA expressions related cartilage metabolism under oxidative condition. FASEB J. 2010, 24, lb245. [Google Scholar] [CrossRef]
- Che, Q.F.; Li, F. Study on the anti-oxidative effect of polysaccharide in the roots of A. continentalis Kitag (AKSP). J. Anhui Agric. Sci. 2010, 38, 4047–4048. [Google Scholar] [CrossRef]
- Yang, D.K.; Lee, S.J.; Adam, G.O.; Kim, S.J. A. continentalis Kitagawa extract attenuates the fatigue induced by exhaustive exercise through inhibition of oxidative stress. Antioxidants 2020, 9, 379. [Google Scholar] [CrossRef] [PubMed]
- Yang, S.A.; Im, N.K.; Jhee, K.H.; Lee, I.S. Effects of A. continentalis Kitagawa on antiplatelet and antioxidative activities. J. Life Sci. 2008, 18, 357–362. [Google Scholar] [CrossRef]
- Khan, A.M.; Khan, A.U.; Ali, H.; Islam, S.U.; Seo, E.K.; Khan, S. Continentalic acid exhibited nephroprotective activity against the LPS and E. coli-induced kidney injury through inhibition of the oxidative stress and inflammation. Int. Immunopharmacol. 2020, 80, 106209. [Google Scholar] [CrossRef] [PubMed]
- Choi, H.A.; Cheong, D.E.; Lim, H.D.; Kim, W.H.; Ham, M.H.; Oh, M.H.; Wu, Y.; Shin, H.J.; Kim, G.J. Antimicrobial and anti-biofilm activities of the methanol extracts of medicinal plants against dental pathogens S. mutans and Candida albicans. J. Microbiol. Biotechnol. 2017, 27, 1242–1248. [Google Scholar] [CrossRef] [PubMed]
- Kim, K.W.; Baek, J.K.; Jang, Y.W.; Kum, E.J.; Kwon, Y.S.; Kim, H.J.; Sohn, H.Y. Screening of antibacterial agent against S. mutans from natural and medicinal plants. J. Life Sci. 2005, 15, 715–725. [Google Scholar] [CrossRef]
- Yu, H.H.; Seo, S.J.; Kim, Y.H.; Lee, H.Y.; Gum, G.C.; Na, J.C.; Jeon, B.H.; You, Y.O. Effects of methanol extract of A. continentalis on the growth, acid production, adhesion, and insoluble glucan synthesis of S. mutans. Korean J. Orient. Physiol. Pathol. 2005, 19, 87–91. [Google Scholar]
- Lee, Y.C.; Cho, S.G.; Kim, S.W.; Kim, J.N. Anticariogenic potential of Korean native plant extracts against S. mutans. Planta Med. 2019, 85, 1242–1252. [Google Scholar] [CrossRef] [PubMed]
- Jeong, S.I.; Kim, B.S.; Keum, K.S.; Lee, K.H.; Kang, S.Y.; Park, B.I.; Lee, Y.R.; You, Y.O. Kaurenoic acid from A. continentalis inhibits biofilm formation of S. mutans. Evid. Based Complement. Alternat. Med. 2013, 2013, 160592. [Google Scholar] [CrossRef]
- Lee, D.H.; Seo, B.R.; Kim, H.Y.; Gum, G.C.; Yu, H.H.; You, H.K.; Kang, T.H.; You, Y.O. Inhibitory effect of A. continentalis on the cariogenic properties of S. mutans. J. Ethnopharmacol. 2011, 137, 979–984. [Google Scholar] [CrossRef]
- Jeong, S.I.; Han, W.S.; Yun, Y.H.; Kim, K.J. Continentalic acid from A. continentalis shows activity against methicillin-resistant Staphylococcus aureus. Phytother. Res. 2006, 20, 511–514. [Google Scholar] [CrossRef]
- Oh, T.S.; Park, Y.J.; Kim, C.H.; Cho, Y.K.; Kwon, K.S.; Kim, T.K.; Jang, M.J. Antifungal activity of Araliae Continentalis Radix extract on rice sheath blight. Emir. J. Food Agric. 2016, 28, 818–822. [Google Scholar] [CrossRef]
- Sohn, H.Y.; Kim, Y.S.; Kum, E.J.; Kwon, Y.S.; Son, K.H. Screening of anti-acne activity of natural products against Propionibacterium acnes. Kor. J. Microbiol. Biotechnol. 2006, 34, 265–272. [Google Scholar]
- Kwon, M.K.; Lee, H.E.; Park, J.Y.; Hahn, Y.S. Antimicrobial activities of berry extract of domestic plants on 4 kind of pathogenic microorganism. J. East Asian Soc. Diet. Life 2003, 13, 433–438. [Google Scholar]
- Choi, N.H.; Kwon, H.R.; Son, S.W.; Choi, G.J.; Choi, Y.H.; Jang, K.S.; Lee, S.O.; Choi, J.E.; Ngoc, L.H.; Kim, J.C. Nematicidal activity of malabaricones isolated from Myristica malabarica fruit rinds against Bursaphelenchus xylophilus. Nematology 2008, 10, 801–807. [Google Scholar] [CrossRef]
- Miranda, M.M.; Panis, C.; da Silva, S.S.; Macri, J.A.; Kawakami, N.Y.; Hayashida, T.H.; Madeira, T.B.; Acquaro, V.R., Jr.; Nixdorf, S.L.; Pizzatti, L.; et al. Kaurenoic acid possesses leishmanicidal activity by triggering a NLRP12/IL-1β/cNOS/NO pathway. Mediat. Inflamm. 2015, 2015, 392918. [Google Scholar] [CrossRef]
- Kian, D.; Lancheros, C.A.C.; Assolini, J.P.; Arakawa, N.S.; Veiga-Júnior, V.F.; Nakamura, C.V.; Pinge-Filho, P.; Conchon-Costa, I.; Pavanelli, W.R.; Yamada-Ogatta, S.F.; et al. Trypanocidal activity of copaiba oil and kaurenoic acid does not depend on macrophage killing machinery. Biomed. Pharmacother. 2018, 103, 1294–1301. [Google Scholar] [CrossRef] [PubMed]
- Hwang, Y.P.; Choi, J.H.; Han, E.H.; Kim, H.K.; Kang, S.K.; Chung, Y.C.; Jeong, H.G. Protective mechanisms of A. continentalis extract against tert-butyl hydroperoxide-induced hepatotoxicity: In vivo and in vitro studies. Food Chem. Toxicol. 2008, 46, 3512–3521. [Google Scholar] [CrossRef] [PubMed]
- Hwang, Y.P.; Choi, J.H.; Jeong, H.G. Protective effect of the A. continentalis root extract against carbon tetrachloride-induced hepatotoxicity in mice. Food Chem. Toxicol. 2009, 47, 75–81. [Google Scholar] [CrossRef]
- Kim, Y.G.; Kim, J.H.; Jo, Y.W.; Kwun, M.J.; Han, C.W. Kaurenoic acid, a diterpene derived from A. continentalis, alleviates lipogenesis in hepG2 cells. J. Korean Med. 2015, 36, 74–79. [Google Scholar] [CrossRef]
- Jeong, C.S.; Suh, I.O.; Hyun, J.E.; Lee, E.B. Screening of hepatoprotective activity of medicinal plant extracts on carbon tetrachloride-induced hepatotoxicity in rats. Nat. Prod. Sci. 2003, 9, 87–90. [Google Scholar]
- Choi, G.Y.; Han, G.J.; Ha, S.C. α-Glucosidase inhibitory substances exploration isolated from the herb extract. Korean J. Food Preserv. 2011, 18, 620–625. [Google Scholar] [CrossRef]
- Lee, D.H.; Lee, D.H.; Lee, J.S. Characterization of a new antidementia β-secretase inhibitory peptide from Rubus coreanus. Food Sci. Biotechnol. 2008, 17, 489–494. [Google Scholar]
- Jung, H.A.; Cho, Y.S.; Oh, S.H.; Lee, S.; Min, B.S.; Moon, K.H.; Choi, J.S. Kinetics and molecular docking studies of pimarane-type diterpenes as protein tyrosine phosphatase (PTP1B) inhibitors from A. continentalis roots. Arch. Pharm. Res. 2013, 36, 957–965. [Google Scholar] [CrossRef] [PubMed]
- Rodriguez, J.P.; Cho, S.; Lee, J.; Lee, K.H.; Jin, T.; Kang, K.S.; Hahm, D.H.; Huh, C.K.; Lee, S.C.; Lee, S. Rat lens aldose reductase inhibitory activity of Aralia continentalis. Planta Med. 2016, 82, S1–S381. [Google Scholar] [CrossRef]
- Park, S.B.; Park, G.H.; Song, H.M.; Park, J.H.; Shin, M.S.; Son, H.J.; Um, Y.; Jeong, J.B. Anti-proliferative activity of ethanol extracts of root of Aralia cordata var. continentalis through proteasomal degradation of cyclin D1 in human colorectal cancer cells. Korean J. Med. Crop Sci. 2017, 25, 328–334. [Google Scholar] [CrossRef]
- Kim, H.H.; Park, K.H.; Kim, M.H.; Oh, M.H.; Kim, S.R.; Park, K.J.; Heo, J.H.; Lee, M.W. Antiproliferative effects of native plants on prostate cancer cells. Nat. Prod. Sci. 2013, 19, 192–200. [Google Scholar]
- Lim, H.; Oh, H.L.; Lee, C.H. Effects of A. continentalis root extract on cell proliferation and apoptosis in human promyelocytic leukemia HL-60 cells. J. Microbiol. Biotechnol. 2006, 16, 1399–1404. [Google Scholar]
- Jeon, B.E.; Kwon, C.S.; Lee, J.E.; Moon, K.; Cha, J.; Park, I.; Koh, S.; Yoon, M.; Kim, S.W.; Kim, J.N. Anticancer activity of continentalic acid in B-cell lymphoma. Molecules 2021, 26, 6845. [Google Scholar] [CrossRef]
- Kim, S.Y.; Jeong, S.I.; Kim, S.Z.; Shim, J.S.; Jang, S.I. Effects of continentalic acid from A. continentalis on growth inhibition and apoptosis induction in human leukemia HL-60 cells. Korean J. Orient. Physiol. Pathol. 2009, 23, 1314–1319. [Google Scholar]
- Kwon, T.O.; Jeong, S.I.; Kwon, J.W.; Kim, Y.C.; Jang, S.I. Continentalic acid from A. continentalis induces growth inhibition and apoptosis in HepG2 cells. Arch. Pharm. Res. 2008, 31, 1172–1178. [Google Scholar] [CrossRef]
- Jin, H.H.; Kim, D.M.; Hyun, C.K. Induction of quinone reductase by extracts of traditional medicinal plants. Korean J. Pharmacogn. 2001, 32, 168–174. [Google Scholar]
- Choi, M.S.; Do, D.H.; Choi, D.J. The Effect of mixing beverage with A. continentalis Kitagawa root on blood pressure and blood constituents of the diabetic and hypertensive elderly. Korean J. Food Nutr. 2002, 15, 165–172. [Google Scholar]
- Kosela, S.; Rasad, A.; Achmad, S.A.; Wicaksonon, W.; Baik, S.K.; Han, Y.N.; Han, B.H. Effects of diterpene acids on malondialdehyde generation during thrombin induced aggregation of rat platelets. Arch. Pharm. Res. 1986, 9, 189–191. [Google Scholar] [CrossRef]
- Yoo, G.; Lee, T.H.; Lee, J.H.; Kang, K.B.; Yang, H.; Park, Y.K.; Kim, S.Y.; Kim, S.H. Simultaneous determination of two diterpenoids, continentalic acid and kaurenoic acid, in the water extract of A. continentalis and their wound-healing activity. Pharmacogn. Mag. 2020, 16, 745–749. [Google Scholar] [CrossRef]
- Yoon, M.; Lim, D.W.; Jung, J.; Jung, Y.S.; Lee, C.; Um, M.Y. A. continentalis root enhances non-rapid eye movement sleep by activating GABAA receptors. Nutrients 2023, 15, 5020. [Google Scholar] [CrossRef] [PubMed]
- Ku, S.K.; Leem, M.J.; Ryu, J.M. Single oral dose toxicity test of water extracts of radix Araliae cordatae in ICR mice. J. Appl. Pharmacol. 2007, 15, 127–132. [Google Scholar]
- Weon, J.B.; Ma, J.Y.; Yang, H.J.; Ma, C.J. Quantitative analysis of compounds in fermented Insampaedok-san and their neuroprotective activity in HT22 cells. Nat. Prod. Sci. 2011, 17, 58–63. [Google Scholar]
- Xu, Y.; Liu, J.; Zeng, Y.; Jin, S.; Liu, W.; Li, Z.; Qin, X.; Bai, Y. Traditional uses, phytochemistry, pharmacology, toxicity and quality control of medicinal genus Aralia: A review. J. Ethnopharmacol. 2022, 284, 114671. [Google Scholar] [CrossRef]
- Editorial Committee of Chinese Materia Medica, State Administration of TCM. Chinese Materia Medica (Zhonghua Bencao); Shanghai Scientific & Technical Publishers: Shanghai, China, 1999. [Google Scholar]
- Flora of China Editorial Committee of Chinese Academy of Sciences. The Flora of China; Science Press: Beijing, China, 1978; Volume 54, pp. 170–171. [Google Scholar]
- Il’inskaya, T.N. Preliminary chemical study of Araliaceae. Aptechnoe Delo. 1954, 3, 18–21. [Google Scholar]
- Feng, Y.; Li, T.L.; Fan, W.L.; Zhu, L.J. Preliminary study on the bioactive components of Aralia continentalis Kitagawa. Jiangsu Agric. Sci. 2009, 36, 256–258. [Google Scholar] [CrossRef]
- Clement, J.A.; Clement, E.S. The medicinal chemistry of genus Aralia. Curr. Top. Med. Chem. 2015, 14, 2783–2801. [Google Scholar] [CrossRef] [PubMed]
- Wu, Z.J.; Zhong, A.J.; Shen, P.; Zhu, J.Y.; Li, L.; Xia, G.Q.; Zang, H. Chemical constituents, antioxidant and antibacterial activities of essential oil from the flowering aerial parts of Heracleum moellendorffii Hance. Cogent Food Agric. 2024, 10, 2325198. [Google Scholar] [CrossRef]
- Santos-Buelga, C.; González-Paramás, A.M.; Oludemi, T.; Ayuda-Durán, B.; González-Manzano, S. Plant phenolics as functional food ingredients. Adv. Food Nutr. Res. 2019, 90, 183–257. [Google Scholar] [CrossRef] [PubMed]
- Oh, H.L.; Lee, C.H. HY251, a novel decahydrocyclopenta[a]indene analog, from Aralia continentalis induces apoptosis via down-regulation of AR expression in human prostate cancer LNCaP cells. Bioorg. Med. Chem. Lett. 2011, 21, 1347–1349. [Google Scholar] [CrossRef] [PubMed]
- Suh, H.; Choi, K.W.; Kim, M.S.; Kim, J.H.; Noh, S.Y.; Sung, M.H.; Lee, C.H. HY251, a novel decahydrocyclopenta[a]indene analog, induces apoptosis via tBid-mediated intrinsic pathway in human ovarian cancer PA-1 cells. J. Microbiol. Biotechnol. 2012, 22, 1591–1595. [Google Scholar] [CrossRef] [PubMed]
- Oh, H.L.; Lee, D.K.; Lim, H.; Lee, C.H. HY253, a novel decahydrofluorene analog, from Aralia continentalis, induces cell cycle arrest at the G1 phase and cytochrome c-mediated apoptosis in human lung cancer A549 cells. J. Ethnopharmacol. 2010, 129, 135–139. [Google Scholar] [CrossRef] [PubMed]
- Choi, K.W.; Suh, H.; Jang, S.; Kim, D.; Lee, C.H. HY253, a novel decahydrofluorene analog, induces apoptosis via intrinsic pathway and cell cycle arrest in liver cancer HepG2 cells. J. Microbiol. Biotechnol. 2015, 25, 413–417. [Google Scholar] [CrossRef] [PubMed]
- Tomshich, S.V.; Komandrova, N.A.; Kalmykova, E.N.; Prokof’eva, N.G.; Momontova, V.A.; Gorovoi, P.G.; Ovodov, Y.S. Biologically active polysaccharides from medicinal plants of the Far East. Chem. Nat. Compd. 1997, 33, 146–149. [Google Scholar] [CrossRef]
- Wang, Y.; Chen, A.M.; Li, B.C. Purification and analysis of water soluble polysaccharides from root, stem and leaf of Aralia continentalis. Amino Acids Biotic. Resour. 2007, 29, 15–17. [Google Scholar]
- Liu, Y.J.; Tian, X.Y.; Li, F.; Su, Z. Purification, identification and anti-oxidation activity of polysaccharide AKSP2 of root of Aralia continentalis Kitag. J. Food Sci. Biotechnol. 2008, 27, 35–39. [Google Scholar]
- Ding, X.Q. Purification and Antioxidant Activity In Vitro of the Polysaccharide from the Root of Aralia continentalis Kitagawa. Master’s Thesis, Changchun University, Changchun, China, 2021. [Google Scholar]
- Hu, Y.B.; Hong, H.L.; Liu, L.Y.; Zhou, J.N.; Wang, Y.; Li, Y.M.; Zhai, L.Y.; Shi, Z.H.; Zhao, J.; Liu, D. Analysis of structure and antioxidant activity of polysaccharides from Aralia continentalis. Pharmaceuticals 2022, 15, 1545. [Google Scholar] [CrossRef] [PubMed]
- Veeresham, C.; Rama Rao, A.; Asres, K. Aldose reductase inhibitors of plant origin. Phytother. Res. 2014, 28, 317–333. [Google Scholar] [CrossRef] [PubMed]
- Grewal, A.S.; Thapa, K.; Kanojia, N.; Sharma, N.; Singh, S. Natural compounds as source of aldose reductase (AR) inhibitors for the treatment of diabetic complications: A mini review. Curr. Drug Metab. 2020, 21, 1091–1116. [Google Scholar] [CrossRef] [PubMed]
No. | Name | Formula | Exact Theoretical M. W. | Source | Characterization Method | Ref. |
---|---|---|---|---|---|---|
1. | Continentalic acid | C20H30O2 | 302.2246 | roots | EI-MS, 1H NMR, 13C NMR | [1] |
roots | 1H NMR, 13C NMR | [2] | ||||
roots | ESI-MS, 1H NMR, 13C NMR | [3] | ||||
roots | IR, TLC, ESI-MS, 1H NMR, 13C NMR, 1H-1H COSY, HMBC, HMQC, | [4] | ||||
roots | mp, ESI-MS, 1H NMR, 13C NMR, HMBC, | [5] | ||||
roots | mp, UV, 1H NMR, 13C NMR, | [6] | ||||
roots | mp, UV, IR, MS, 1H NMR, 13C NMR, | [7] | ||||
roots | EI-MS, 1H NMR, 13C NMR | [1] | ||||
roots | 1H NMR, 13C NMR | [8] | ||||
roots | ESI-MS, 1H NMR, 13C NMR | [9] | ||||
2. | Kaurenoic acid | C20H30O2 | 302.2246 | roots | 1H NMR, 13C NMR | [2] |
roots | EI-MS, 1H NMR, 13C NMR | [1] | ||||
roots | Chemical reaction, TLC, mp, IR, GC | [10] | ||||
roots | Chemical reaction, elemental analysis, IR, EI-MS, 1H NMR, 13C NMR, | [11] | ||||
roots | 1H NMR, 13C NMR | [12] | ||||
roots | 1H NMR, 13C NMR | [13] | ||||
3. | Acanthoic acid | C20H30O2 | 302.2246 | roots | 1H NMR, 13C NMR | [2] |
4. | Continentanol | C19H30O | 274.2297 | roots | UV, ESI-MS, 1H NMR, 13C NMR, 2D NMR | [14] |
roots | IR, EI-MS, HRESIMS, 1H NMR, 13C NMR, HMBC, 1H-1H COSY, NOESY, | [9] | ||||
5. | Ent-pimara-8(14),15-diene-19-ol | C20H32O | 288.2453 | roots | EI-MS, 1H NMR, 13C NMR | [1] |
6. | 7-oxo-ent-pimara-8(14),15-diene-19-oic acid | C20H28O3 | 316.2038 | roots | EI-MS, 1H NMR, 13C NMR | [1] |
roots | 1H NMR, 13C NMR | [8] | ||||
7. | 16-Hydroxy-17-isovaleroyloxyent-kauran-19-oic acid | C25H40O5 | 420.2876 | roots | EI-MS, 1H NMR, 13C NMR | [1] |
8. | 17-Hydroxy-ent-kaur-15-en-19-oic acid | C20H30O3 | 318.2195 | roots | EI-MS, 1H NMR, 13C NMR | [1] |
9. | 15,16-Epoxy-17-hydroxy-ent-kauran-19-oic acid | C20H30O4 | 334.2144 | roots | EI-MS, 1H NMR, 13C NMR | [1] |
roots | 1H NMR, 13C NMR | [8] | ||||
10. | 16α,17-Dihydroxy-ent-kauran-19-oic acid | C20H32O4 | 336.2301 | roots | EI-MS, 1H NMR, 13C NMR | [1] |
11. | 8α-Hydroxy-ent-pimara-15-en-19-ol | C20H34O2 | 306.2559 | roots | EI-MS, 1H NMR, 13C NMR | [1] |
12. | 4-epi-Rulopezol | C19H30O | 274.2297 | roots | EI-MS, 1H NMR, 13C NMR | [1] |
13. | 4β-Hydroxy-19-nor-(-)-pimara-8(14),15-diene | C19H30O | 274.2297 | roots | EI-MS, 1H NMR, 13C NMR | [1] |
14. | Ent-kaur-16-en-19-oic acid | C20H30O2 | 302.2246 | roots | Chemical reaction, 1H NMR, 13C NMR | [15] |
roots | 1H NMR, 13C NMR | [8] | ||||
roots | 1H NMR, 13C NMR | [13] | ||||
roots | Chemical reaction, 1H NMR, 13C NMR | [16] | ||||
15. | Ent-pimar-15-en-8β,19-diol | C20H34O2 | 306.2559 | roots | Chemical reaction, 1H NMR, 13C NMR | [15] |
roots | Chemical reaction, 1H NMR, 13C NMR | [16] | ||||
16. | 16α-Hydroxy-ent-kauran-19-oic acid | C20H32O3 | 320.2351 | roots | Chemical reaction, 1H NMR, 13C NMR | [16] |
17. | 13β-Hydroxy-7-oxoabiet-8(14)-en-19,6β-olide | C20H28O4 | 332.1988 | roots | Chemical reaction, 1H NMR, 13C NMR | [16] |
18. | Ent-16β,17-dihydroxy-kauran-19-oic acid | C20H32O4 | 336.2301 | roots | Chemical reaction, 1H NMR, 13C NMR | [16] |
19. | Ent-pimara-8(14),15-dien-19-oic acid | C20H30O2 | 302.2246 | roots | Chemical reaction, TLC, mp, IR, GC | [10] |
20. | 16α-Hydroxy-ent-kauran-19-oic acid | C20H32O3 | 320.2351 | roots | Chemical reaction, elemental analysis, IR, MS, 1H NMR, 13C NMR, | [11] |
21. | 7β-Hydroxy-ent-pimara-8(14),15-diene-19-oic acid | C20H30O3 | 318.2195 | roots | 1H NMR, 13C NMR | [8] |
22. | 16αH,17-Isovaleryloxy-ent-kauran-19-oic acid | C25H40O4 | 404.2927 | roots | ESI-MS, 1H NMR, 13C NMR | [9] |
23. | Melanocane A | C20H32O4 | 336.2301 | roots | ESI-MS, 1H NMR, 13C NMR | [9] |
24. | Ent-17-hydroxy-kaur-15-en-19-oic acid | C20H30O3 | 318.2195 | roots | ESI-MS, 1H NMR, 13C NMR | [9] |
25. | trans-Communol | C20H32O | 288.2453 | roots | ESI-MS, 1H NMR, 13C NMR | [9] |
26. | 18-Nor-ent-pimara-8(14),15-diene-4β-ol | C19H30O | 274.2297 | roots | ESI-MS, 1H NMR, 13C NMR | [9] |
27. | 4-Epiruilopeziol | C19H30O | 274.2297 | roots | ESI-MS, 1H NMR, 13C NMR | [9] |
28. | Ent-continentalic acid | C20H30O2 | 302.2246 | roots | ESI-MS, 1H NMR, 13C NMR | [9] |
roots | 1H NMR, 13C NMR | [12] | ||||
29. | Ent-pimara-8(14),15-diene-19-ol | C20H32O | 288.2453 | roots | ESI-MS, 1H NMR, 13C NMR | [9] |
30. | 3α,16α-dihydroxukaurane-17-O-β-D-glucoside | C26H44O8 | 484.3036 | roots | Chemical reaction, 1H NMR, 13C NMR | [15] |
No. | Name | Formula | Exact Theoretical M. W. | Source | Characterization Method | Ref. |
---|---|---|---|---|---|---|
31. | Stigmasterol | C29H48O | 412.3705 | roots | IR, TLC, ESI-MS, 1H NMR, 13C NMR, 1H-1H COSY, HMBC, HMQC, | [4] |
roots | mp, UV, 1H NMR, 13C NMR, | [6] | ||||
roots | Chemical reaction, mp, 1H NMR, 13C NMR | [15] | ||||
roots | Chemical reaction, 1H NMR, 13C NMR | [16] | ||||
roots | ESI-MS, 1H NMR, 13C NMR | [9] | ||||
roots | mp, 1H NMR, 13C NMR, HMBC, | [17] | ||||
32. | β-Sitosterol | C29H50O | 414.3862 | roots | mp, TLC, IR, | [11] |
roots | ESI-MS, 1H NMR, 13C NMR | [9] | ||||
33. | Oleanolic acid | C30H48O3 | 456.3603 | roots | Chemical reaction, mp, 1H NMR, 13C NMR | [15] |
roots | HPLC | [18] | ||||
roots | mp, IR | [19] | ||||
34. | Ursolic acid | C30H48O3 | 456.3603 | roots | Chemical reaction, 1H NMR, 13C NMR | [15] |
35. | Daucosterol | C35H60O6 | 576.4390 | roots | Chemical reaction, 1H NMR, 13C NMR | [16] |
roots | Chemical reaction, elemental analysis, IR, EI-MS, FD-MS, 13C NMR, | [11] | ||||
36. | Oleanolic acid 28-O-β-D-glucopyranosyl ester | C36H58O8 | 618.4132 | aerial parts | mp, IR, 1H NMR, 13C NMR | [20] |
37. | Hederagenin 28-O-β-D-glucopyranosyl ester | C36H58O9 | 634.4081 | aerial parts | mp, IR, 1H NMR, 13C NMR | [20] |
38. | Chikusetsusaponin IVa | C42H66O14 | 794.4453 | aerial parts | mp, IR, 1H NMR, 13C NMR | [20] |
39. | Udosaponin A | C41H64O13 | 764.4347 | aerial parts | mp, IR, 1H NMR, 13C NMR | [20] |
40. | Salsoloside C | C47H74O18 | 926.4875 | aerial parts | mp, IR, 1H NMR, 13C NMR | [20] |
41. | Salsoloside C methyl ester | C48H76O18 | 940.5032 | leaves | mp, IR, MS, 1H NMR, 13C NMR | [21] |
42. | Udosaponin F | C48H76O20 | 972.4930 | aerial parts | mp, IR, 1H NMR, 13C NMR | [20] |
43. | Udosaponin C | C53H84O23 | 1088.5403 | aerial parts | Chemical reaction, mp, IR, 1H NMR, 13C NMR | [20] |
44. | Congmuyenoside A | C48H78O19 | 958.5137 | leaves | Chemical reaction, 1H NMR, 13C NMR | [22] |
45. | Congmuyanoside C | C42H68O14 | 796.4609 | tender buds | Chemical reaction, 1H NMR, 13C NMR | [23] |
No. | Name | Formula | Exact Theoretical M. W. | Source | Characterization Method | Ref. |
---|---|---|---|---|---|---|
46. | α-Pinene | C10H16 | 136.1252 | roots | GC-MS | [24] |
roots | GC-MS | [25] | ||||
47. | β-Pinene | C10H16 | 136.1252 | roots | GC-MS | [24] |
roots | GC-MS | [25] | ||||
48. | 8-Nonynoic acid | C9H14O2 | 154.0994 | roots | GC-MS | [24] |
49. | 2,5-Dimethyl-3-methylene-1,5-heptadiene | C10H16 | 136.1252 | roots | GC-MS | [24] |
50. | 3,7,11-Trimethyl-1,3,6,10-dodecatetraene | C15H24 | 204.1878 | roots | GC-MS | [24] |
51. | 8-(1-Methylethylidene)bicyclo [5.1.0]octane | C11H18 | 150.1409 | roots | GC-MS | [24] |
52. | 1-Dodecyne | C12H22 | 166.1722 | roots | GC-MS | [24] |
53. | 2,5-Dimethyl-1,5-cyclooctadiene | C10H16 | 136.1252 | roots | GC-MS | [24] |
54. | β-Caryophyllene | C15H24 | 204.1878 | roots | GC-MS | [24] |
55. | a-Gurjunene | C15H24 | 204.1878 | roots | GC-MS | [24] |
56. | Copaene | C15H24 | 204.1878 | roots | GC-MS | [24] |
roots | GC-MS | [25] | ||||
57. | α-Cadinene | C15H24 | 204.1878 | roots | GC-MS | [24] |
58. | 1H-3a,7-Methanoazulene, octahydro-1,4,9,9-tetramethyl- | C15H26 | 206.2035 | roots | GC-MS | [24] |
59. | Spathulene | C15H22 | 202.1722 | roots | GC-MS | [24] |
60. | Linalool | C10H18O | 154.1358 | roots | GC-MS | [24] |
61. | 12,15-Octadecadienoic acid methyl ester | C19H34O2 | 294.2559 | roots | GC-MS | [24] |
62. | Oleic acid | C18H34O2 | 282.2559 | seeds | GC-MS | [26] |
63. | Petroselinic acid | C18H34O2 | 282.2559 | seeds | GC-MS, IR, 1H NMR, 13C NMR, HMQC | [26] |
64. | Linoleic acid | C18H32O2 | 280.2402 | seeds | GC-MS | [26] |
65. | Palmitic acid | C16H32O2 | 256.2402 | seeds | GC-MS | [26] |
66. | 11-Hexacosenoic acid | C26H50O2 | 394.3811 | roots | Chemical reaction, 1H NMR, 13C NMR | [15] |
67. | n-Hexadecanoic acid methyl ester | C17H34O2 | 270.2559 | roots | Chemical reaction, 1H NMR, 13C NMR | [16] |
68. | Sabinene | C10H16 | 136.1252 | roots | GC-MS | [25] |
69. | Naphthalene, 1,2-dihydro-1,1,6-trimethyl- | C13H16 | 172.1252 | roots | GC-MS | [25] |
70. | α-Ylangene | C15H24 | 204.1878 | roots | GC-MS | [25] |
71 | β-Longipinene | C15H24 | 204.1878 | roots | GC-MS | [25] |
72. | 1,2,9,10-Tetradehydroaristolane | C15H22 | 202.1722 | roots | GC-MS | [25] |
73. | (+)-β-Caryophyllene | C15H24 | 204.1878 | roots | GC-MS | [25] |
74. | (+)-α-Amorphene | C15H24 | 204.1878 | roots | GC-MS | [25] |
75. | γ-Himachalene | C15H24 | 204.1878 | roots | GC-MS | [25] |
76. | Germacrene D | C15H24 | 204.1878 | roots | GC-MS | [25] |
77. | β-Guaiene | C15H24 | 204.1878 | roots | GC-MS | [25] |
78. | (-)-Nootkatene | C15H22 | 202.1722 | roots | GC-MS | [25] |
79. | cis-Calamenene | C15H22 | 202.1722 | roots | GC-MS | [25] |
80. | α-Copaen-11-ol | C15H24O | 220.1827 | roots | GC-MS | [25] |
81. | α-Calacorene | C15H20 | 200.1565 | roots | GC-MS | [25] |
82. | β-Vetivenene | C15H22 | 202.1722 | roots | GC-MS | [25] |
83. | α-Agarofuran | C15H24O | 220.1827 | roots | GC-MS | [25] |
84. | (-)-Globulol | C15H26O | 222.1984 | roots | GC-MS | [25] |
85. | Cadalin | C15H18 | 198.1409 | roots | GC-MS | [25] |
86. | T-Cadinol | C15H26O | 222.1984 | roots | GC-MS | [25] |
87. | α-Acorenol | C15H26O | 222.1984 | roots | GC-MS | [25] |
88. | β-Eudesmol | C15H26O | 222.1984 | roots | GC-MS | [25] |
89. | 8a-Isopropyl-3-methyl-1,2,4,5,8,8a-hexahydroazulene-6-carbaldehyde | C15H22O | 218.1671 | roots | GC-MS | [25] |
90. | 4(15),5,10(14)-Germacratrien-1-ol | C15H24O | 220.1827 | roots | GC-MS | [25] |
91. | 14-Hydroxy-α-muurolene | C15H24O | 220.1827 | roots | GC-MS | [25] |
92. | 3-Desoxyisopetasol | C15H22O | 218.1671 | roots | GC-MS | [25] |
93. | Falcarinol | C17H24O | 244.1827 | roots | GC-MS | [25] |
94. | Methyl 5,7-hexadecadiynoate | C17H26O2 | 262.1933 | roots | GC-MS | [25] |
No. | Name | Formula | Exact Theoretical M. W. | Source | Characterization Method | Ref. |
---|---|---|---|---|---|---|
119. | Calcium | Ca | 39.9626 | roots, leaves | ICP-AES, atomic absorption spectrophotometer | [30] |
120. | Phosphorus | P | 30.9738 | roots, leaves | ICP-AES, atomic absorption spectrophotometer | [30] |
121. | Ferrum | Fe | 55.9349 | roots, leaves | ICP-AES, atomic absorption spectrophotometer | [30] |
122. | Natrium | Na | 22.9898 | roots, leaves | ICP-AES, atomic absorption spectrophotometer | [30] |
123. | Potassium | K | 38.9637 | roots, leaves | ICP-AES, atomic absorption spectrophotometer | [30] |
124. | Magnesium | Mg | 23.9850 | roots, leaves | ICP-AES, atomic absorption spectrophotometer | [30] |
125. | Zinc | Zn | 63.9291 | roots, leaves | ICP-AES, atomic absorption spectrophotometer | [30] |
126. | Retinol | C20H30O | 286.2297 | roots, leaves | HPLC | [30] |
127. | β-Carotene | C40H56 | 536.4382 | roots, leaves | HPLC | [30] |
leaves | LC-SIM-MS | [31] | ||||
128. | Thiamin | C12H17ClN4OS | 300.0812 | roots, leaves | HPLC | [30] |
129. | Riboflavin | C17H20N4O6 | 376.1383 | roots, leaves | HPLC | [30] |
130. | Niacin | C6H5NO2 | 123.0320 | roots, leaves | HPLC | [30] |
roots | EI-MS, 1H NMR, 13C NMR | [1] | ||||
131. | Ascorbic acid | C6H8O6 | 176.0321 | roots, leaves | HPLC | [30] |
132. | Violaxanthin | C40H56O4 | 600.4179 | leaves | LC-SIM-MS | [31] |
133. | Neoxanthin | C40H56O4 | 600.4179 | leaves | LC-SIM-MS | [31] |
134. | Luteoxanthin | C40H56O4 | 600.4179 | leaves | LC-SIM-MS | [31] |
135. | Lutein | C40H56O2 | 568.4280 | leaves | LC-SIM-MS | [31] |
136. | Zeaxanthin | C40H56O2 | 568.4280 | leaves | LC-SIM-MS | [31] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, L.; Piao, H.; Zang, H. A Comprehensive Review of Traditional Medicinal Uses, Geographical Distribution, Botanical Characterization, Phytochemistry, and Pharmacology of Aralia continentalis Kitag. Molecules 2024, 29, 3529. https://doi.org/10.3390/molecules29153529
Zhang L, Piao H, Zang H. A Comprehensive Review of Traditional Medicinal Uses, Geographical Distribution, Botanical Characterization, Phytochemistry, and Pharmacology of Aralia continentalis Kitag. Molecules. 2024; 29(15):3529. https://doi.org/10.3390/molecules29153529
Chicago/Turabian StyleZhang, Luyun, Huri Piao, and Hao Zang. 2024. "A Comprehensive Review of Traditional Medicinal Uses, Geographical Distribution, Botanical Characterization, Phytochemistry, and Pharmacology of Aralia continentalis Kitag." Molecules 29, no. 15: 3529. https://doi.org/10.3390/molecules29153529
APA StyleZhang, L., Piao, H., & Zang, H. (2024). A Comprehensive Review of Traditional Medicinal Uses, Geographical Distribution, Botanical Characterization, Phytochemistry, and Pharmacology of Aralia continentalis Kitag. Molecules, 29(15), 3529. https://doi.org/10.3390/molecules29153529