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Abstract: CdS quantum dots (CdS QDs) are regarded as a promising photocatalyst due to their
remarkable response to visible light and suitable placement of conduction bands and valence bands.
However, the problem of photocorrosion severely restricts their application. Herein, the CdS QDs-
Co9S8 hollow nanotube composite photocatalyst has been successfully prepared by loading Co9S8

nanotubes onto CdS QDs through an electrostatic self-assembly method. The experimental results
show that the introduction of Co9S8 cocatalyst can form a stable structure with CdS QDs, and
can effectively avoid the photocorrosion of CdS QDs. Compared with blank CdS QDs, the CdS
QDs-Co9S8 composite exhibits obviously better photocatalytic hydrogen evolution performance. In
particular, CdS QDs loaded with 30% Co9S8 (CdS QDs-30%Co9S8) demonstrate the best photocatalytic
performance, and the H2 production rate reaches 9642.7 µmol·g−1·h−1, which is 60.3 times that of the
blank CdS QDs. A series of characterizations confirm that the growth of CdS QDs on Co9S8 nanotubes
effectively facilitates the separation and migration of photogenerated carriers, thereby improving
the photocatalytic hydrogen production properties of the composite. We expect that this work will
facilitate the rational design of CdS-based photocatalysts, thereby enabling the development of more
low-cost, high-efficiency and high-stability composites for photocatalysis.

Keywords: CdS; Co9S8; quantum dot; photocatalytic H2 evolution; cocatalyst

1. Introduction

With the increasingly serious environmental pollution and the increasing demand for
energy, the development and utilization of sustainable clean energy to achieve green devel-
opment has become a hot topic [1–4]. In recent years, photocatalytic hydrogen evolution
has attracted much attention due to its advantages of zero carbon emission, high efficiency
and sustainability, and is considered a promising energy conversion method [5–7]. There-
fore, the utilization of photocatalytic technology to produce hydrogen energy represents
a feasible strategy for alleviating environmental pollution and energy crises [8–10]. The
practical application of photocatalytic hydrogen production technology is contingent upon
three key factors: low cost, high efficiency and high stability [11,12]. One of the most
commonly employed modification strategies to improve the photocatalytic H2 evolution
properties of semiconductors is the introduction of precious metals (such as Au, Ag, Pd
and Pt) through doping. Nevertheless, precious metals are limited and expensive. Con-
sequently, the development of cost-effective, environmentally friendly and highly active
photocatalysts represents a significant and pressing challenge [13,14].
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In recent years, metal sulfides have become a research focus in the field of photocat-
alytic hydrogen evolution on account of their exceptional light absorption properties and
unique electronic structure. Among these, CdS has been extensively studied owing to
its appropriate band gap and position of energy bands [15,16]. Moreover, CdS exhibits
diverse morphologies and structures, involving zero-dimensional (0D) quantum dots,
one-dimensional (1D) nanorods, two-dimensional (2D) nanosheets and three-dimensional
(3D) cubes [17]. CdS QDs are considered to be a promising photocatalytic material due to
their small size (<10 nm), high electron mobility and abundant recoverable light [18,19].
However, the issue of easy hole oxidation decomposition (photocorrosion) severely restricts
the application of CdS [20]. Among various strategies to alleviate CdS photocorrosion,
the rational incorporation of a cocatalyst is an effective approach [21]. Co9S8 serves as a
widely used cocatalyst with advantages such as easy availability, abundant active sites and
adjustable chemical composition [22]. In particular, the hollow-structured Co9S8 possesses
a large specific surface area and enhances the absorption of light by multiple reflections,
which is of significant importance in improving photocatalytic properties. Additionally, the
electrostatic self-assembly method is an efficient and environmentally friendly preparation
method for nanoparticles, which is expected to prepare highly active photocatalysts [23].

Herein, the CdS QDs-Co9S8 composite photocatalyst is successfully prepared through
electrostatic self-assembly. Compared to blank CdS QDs, the CdS QDs-Co9S8 composite
demonstrates enhanced photocatalytic H2 production performance. Notably, the optimal CdS
QDs-30%Co9S8 exhibits a photocatalytic hydrogen production rate of 9642.7 µmol·g−1·h−1,
approximately 60.3 times that of blank CdS QDs. Cyclic experiments indicate that the intro-
duction of Co9S8 cocatalyst effectively prevents photocorrosion on the surface of CdS QDs.
Moreover, subsequent characterizations confirm that loading Co9S8 cocatalyst effectively
promotes the separation and migration of photogenerated carriers, thereby improving the
photocatalytic properties of CdS QDs. This work illustrates the significant role of Co9S8 as a
cocatalyst in the field of photocatalytic H2 production, and is expected to provide a useful
reference for the development of effective and stable photocatalysts.

2. Results and Discussion

The synthesis process of the CdS QDs-Co9S8 composite photocatalyst is shown in
Figure 1. Initially, the Co9S8 nanotubes are achieved through a two-step hydrothermal
approach, followed by treatment with APTES to impart a positive charge. Subsequently,
the treated Co9S8 nanotubes are subjected to an electrostatic assembly process with CdS
QDs, resulting in the formation of the CdS QDs-Co9S8 composite photocatalyst. A diagram
of the prepared samples diagram is depicted in Figure S1. As illustrated in Figure S1a,b,
CdS QDs exhibit a yellow powder, while Co9S8 nanotubes display a black powder. Upon
assembly of CdS QDs and Co9S8 nanotubes, the resulting CdS QDs-Co9S8 composite
appears yellowish-green (Figure S1c).

Figure 2a,b display the Zeta potentials of APTES-modified Co9S8 and CdS QDs suspen-
sion dispersed in deionized water, respectively. It can be observed that the Zeta potentials of
APTES-modified Co9S8 and CdS QDs are 13.8 mV and −30 mV, respectively, which means
that APTES-modified Co9S8 is positively charged, while CdS QDs is negatively charged.
This result provides a good basis for the assembly of the CdS QDs-Co9S8 composite [24].
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Morphological and microstructural analyses of CdS QDs, Co9S8 and CdS QDs-
30%Co9S8 were conducted using scanning electron microscopy (SEM) and transmission 
electron microscope (TEM). As shown in Figure 3a, the TEM image reveals that the 
diameter of CdS QDs is roughly 4 nm, consistent with previous literature [25]. 
Furthermore, as displayed in Figure 3b, the high-resolution TEM (HRTEM) image exhibits 
a lattice spacing of 0.35 nm corresponding to the (111) crystal face of CdS QDs, indicating 
its successful preparation [25]. Meanwhile, the TEM and HRTEM images of Co9S8 (Figure 
S2) demonstrate the successful synthesis of Co9S8 nanotubes. As depicted in Figure S2b, 
the 0.23 nm of lattice spacing corresponds to the (420) crystal face of Co9S8. Figure 3c 
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Figure 2. Zeta potential of (a) APTES-modified Co9S8 and (b) CdS QDs suspension dispersed in
deionized water.

Morphological and microstructural analyses of CdS QDs, Co9S8 and CdS QDs-30%Co9S8
were conducted using scanning electron microscopy (SEM) and transmission electron mi-
croscope (TEM). As shown in Figure 3a, the TEM image reveals that the diameter of CdS
QDs is roughly 4 nm, consistent with previous literature [25]. Furthermore, as displayed in
Figure 3b, the high-resolution TEM (HRTEM) image exhibits a lattice spacing of 0.35 nm
corresponding to the (111) crystal face of CdS QDs, indicating its successful preparation [25].
Meanwhile, the TEM and HRTEM images of Co9S8 (Figure S2) demonstrate the successful
synthesis of Co9S8 nanotubes. As depicted in Figure S2b, the 0.23 nm of lattice spacing
corresponds to the (420) crystal face of Co9S8. Figure 3c illustrates a hollow nanotube struc-
ture with a diameter of approximately 200 nm for Co9S8. As exhibited in Figure 3d, CdS
QDs-30%Co9S8 inherits the hollow nanotube structure of Co9S8. It is worth noting that the
hollow structure exposes a large specific surface area and enhances the absorption of light
by multiple reflections, which is of significant importance in improving the photocatalytic
properties. Furthermore, it can be observed that CdS QDs are evenly decentralized on the
Co9S8 nanotubes. As presented in Figure 3e, the EDS spectra illustrate the presence of
Co, Cd and S elements in the CdS QDs-30%Co9S8 composite. Moreover, the composition
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of all the composite photocatalysts is quantitatively analyzed using inductively coupled
plasma emission spectrometry (ICP-OES). As indicated in Table S1, as the Co9S8 load
increases, the proportion of the Co element rises, while the proportion of the Cd element
decreases, consistent with the anticipated results. In addition, the element mapping results
of CdS QDs-30%Co9S8 indicate that CdS QDs are uniformly distributed on the surface of
Co9S8 nanotubes (Figure 3f). These results demonstrate the successful synthesis of the CdS
QDs-30%Co9S8 composite.
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The crystal structure and phase composition of the prepared samples were investigated
by X-ray diffraction (XRD). Figure 4a illustrates the XRD patterns of CdS QDs, Co9S8 and
CdS QDs-30%Co9S8. It can be observed that the XRD peak of CdS exhibits a relatively
strong intensity, indicating its robust crystal phase. In contrast, the XRD peak of Co9S8
displays a relatively weak intensity, suggesting its inferior crystal phase. For Co9S8, the
diffraction peaks at 2θ = 29.9◦, 31.4◦, 37.4◦, 39.5◦, 47.5◦, 52.3◦ and 54.6◦ correspond to the
crystal planes (311), (222), (400), (331), (511), (400) and (531) of Co9S8, respectively (JCPDS:
65-1765) [26]. As for CdS QDs, the characteristic peaks at 26.2◦, 43.6◦ and 51.7◦ can be
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related to the crystal faces (111), (220) and (311) of CdS (JCPDS: 75-1546), respectively [27].
In addition, the XRD diffraction curve of CdS QDs-30%Co9S8 is highly similar to that of
CdS QDs, except that a weak peak at 39.5◦ belongs to the (331) crystal plane of Co9S8,
demonstrating the successful assembly of the CdS QDs-Co9S8 composite. Furthermore, the
(111) crystal face of CdS QDs exhibits a strong characteristic diffraction peak, resulting in a
peak of Co9S8 at 29.9◦ masked by CdS QDs. The optical properties of a series of samples
are determined by UV–vis diffuse reflectance spectroscopy (DRS). Figure 4b exhibits the
light absorption curves of CdS QDs, Co9S8 and the CdS QDs-30%Co9S8 composite. The
blank CdS presents a distinct absorption edge at near 570 nm. Moreover, Co9S8 illustrates
strong absorption across the entire spectral range, suggesting excellent light collection
ability from ultraviolet to visible light regions. Notably, the CdS QDs-30%Co9S8 composite
displays superior light harvesting capability compared to CdS alone, which indicates the
enhanced light absorption achieved through the introduction of the Co9S8 cocatalyst in the
composite photocatalyst.
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X-ray photoelectron spectroscopy (XPS) analysis (Figure 5) of the CdS QDs-30%Co9S8
composite is performed in order to further determine the chemical state and elemental
composition of the prepared sample. As the survey spectra shown in Figure 5a, Co, Cd
and S elements are present in the CdS QDs-30%Co9S8 composite, which further confirms
the successful assembly of CdS QDs and Co9S8 cocatalyst. In the XPS spectra of Cd 3d
(Figure 5b), the two characteristic peaks at 410.2 eV and 403.4 eV belong to Cd 3d3/2 and
Cd 3d5/2, respectively, which demonstrates Cd exists in the form of +2 valence in the
binary composite photocatalyst CdS QDs-30%Co9S8 [21]. As illustrated in Figure 5c, the
distinct peaks at the binding energies of 160.1 eV and 161.9 eV belong to S 2p3/2 and S
2p1/2, respectively, confirming the existence of S2− [28]. In addition, the XPS spectra of Co
2p displayed in Figure 5d can be divided into two spin-orbital dual peaks and two satellite
peaks (identified as “Sat.”). The first dual peaks at 780.3 eV and 776.6 eV and the second
dual peaks at 796.8 eV and 794.5 eV can be attributed to Co 2p3/2 and Co 2p1/2, respectively,
demonstrating the existence of Co2+ and Co3+ [29]. The XPS results confirm that the
prepared composite contains CdS and Co9S8, which indicates the successful preparation of
this hybrid.
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In order to compare the photocatalytic performance of pure CdS QDs and CdS QDs-
Co9S8 composites illuminated by visible light, a photocatalytic hydrogen evolution experi-
ment is conducted using TEOA as a sacrificial agent. As displayed in Figure 6a, on account
of the serious recombination of photogenerated carriers, the blank CdS QDs exhibit low pho-
tocatalytic activity, which demonstrates a hydrogen production rate of 159.8 µmol·g−1·h−1.
When CdS QDs are combined with 5%, 10%, 30% and 50% Co9S8 nanotubes, the different
proportions of the CdS QDs-Co9S8 composites show enhanced photocatalytic activity. As
the loading capacity of Co9S8 is increased, the photocatalytic H2 production rate of the
CdS QDs-Co9S8 composites exhibits a corresponding increase. In particular, the optimal
CdS QDs-30%Co9S8 composite photocatalyst demonstrated a hydrogen production rate
of 9642.7 µmol·g−1·h−1, which is 60.3 times that of pure CdS QDs. Nevertheless, when
the Co9S8 cocatalyst content continually increased, the hydrogen production rate of the
CdS QDs-Co9S8 composite decreased. This phenomenon may be attributed to the high
proportion of cocatalysts, which results in the masking of the CdS QDs’ active sites during
hydrogen evolution. As demonstrated in Table 1, the photocatalytic H2 evolution rate of
the CdS QDs-30%Co9S8 composite is superior to that of similar photocatalysts documented
in the literature. Furthermore, the photocatalytic stability of the CdS QDs-30%Co9S8 com-
posite photocatalyst is evaluated by cyclic experiment. As illustrated in Figure 6b, the
CdS QDs-30%Co9S8 composite photocatalyst demonstrates a stable photocatalytic activity
following five cycles. These findings demonstrate that the CdS QDs-Co9S8 composite is an
efficacious and stable photocatalyst. In addition, Figure 6c,d demonstrate that there is no
obvious change in the SEM image and XRD pattern of the CdS QDs-30%Co9S8 composites
following cycling, which further shows that the composites have excellent stability.
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Figure 6. (a) Photocatalytic hydrogen production rates of blank CdS QDs and CdS QDs-Co9S8
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Table 1. Contrast of the H2 production performance of the CdS-based photocatalysts.

Photocatalysts Light Sources Sacrificial Agents H2 (µmol·g−1·h−1) Reference

CdS QDs-30% Co9S8
300 W Xe lamp
(λ ≥ 420 nm) TEOA 9642.7 this work

CdS/TiO2@Ti3C2
300 W Xe lamp
(λ ≥ 420 nm) TEOA 3115.0 [30]

CdS QDs/Ni2P/B-TiO2 300 W Xe arc lamp Na2S/Na2SO3 3303.9 [31]

CdS/Au/KTaO3
Xe lamp

(λ ≥ 420 nm) Na2S/Na2SO3 2892.0 [32]

CdS QDs/CeO2
300 W Xe lamp
(λ ≥ 300 nm) Na2S/Na2SO3 101.1 [33]

Ni@NiO/CdS 500 W Xe lamp TEOA 4380.0 [34]

CuS/CdS 300 W Xe lamp
(λ ≥ 420 nm) lactic acid (10 vol%) 5617.0 [35]

UiO-66-NH2@CdS 300 W Xe lamp
(λ ≥ 420 nm) Na2S/Na2SO3 2028.5 [36]

ZnO-Cu-CdS 300 W Xe lamp
(λ ≥ 420 nm) glycerol 4655.0 [37]

Ag2S-CdS 300 W Xe lamp
(λ ≥ 420 nm) lactic acids (2 vol%) 777.3 [38]
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The separation efficiency of photogenerated carriers can be evaluated through the
photoluminescence (PL) measurement. As displayed in Figure 7a, the CdS QDs-30%Co9S8
composite photocatalyst exhibits lower PL intensity than blank CdS QDs, indicating that
the introduction of the Co9S8 cocatalyst has an effective inhibition effect on the photogen-
erated electron–hole pair recombination, which can enhance the photocatalytic hydrogen
evolution performance [39–41]. Figure 7b shows the instantaneous photocurrent response
of blank CdS QDs and CdS QDs-30%Co9S8 [42]. As demonstrated in Figure 7b, the pho-
tocurrent response of CdS QDs-30%Co9S8 composite is significantly higher than that of
blank CdS QDs, which indicates the improved photogenerated carrier separation efficiency
of the CdS QDs-30%Co9S8 composite [43–45]. Additionally, the charge migration behavior
at the catalyst–electrolyte interface is investigated through electrochemical impedance
spectroscopy (EIS). Generally, a smaller radius of curvature results in lower resistance for
the catalyst during the charge transfer process. As we can see from the EIS Nyquist diagram
(Figure 7c), the CdS QDs-30%Co9S8 composite exhibits a smaller curvature radius than that
of the CdS QDs, which demonstrates that the CdS QDs-30%Co9S8 composite represents a
faster-photogenerated carrier transfer rate and a lower charge transfer resistance [46–49].
As displayed in Figure 7d,e, both CdS QDs and Co9S8 exhibit type IV isotherms in their
N2 adsorption–desorption isotherms, indicating the mesoporous nature of these materials.
The pore size distribution of CdS QDs, Co9S8 and CdS QDs-30%Co9S8 is illustrated in
Figure S3 and Table S2, further confirming their mesoporous characteristics. Furthermore,
the BET surface areas of CdS QDs and Co9S8 are 1.50 m2/g and 8.23 m2/g, respectively,
while that of CdS QDs-30%Co9S8 is 116.76 m2/g (Figure 7f). The larger BET surface area
of the hybrid photocatalyst compared to that of Co9S8 and CdS QDs suggests that the
structure of quantum dots on hollow nanotubes can expand the catalyst’s surface area,
thereby enhancing the photocatalytic properties of the composite catalysts. Moreover, the
N2 adsorption isotherm and corresponding BET-specific surface areas of all other ratios
of the composites have been investigated to identify discernible trends. As depicted in
Figure S4, all composites exhibit higher BET-specific surface area than blank CdS and Co9S8,
and their BET-specific surface area roughly decreases with increasing Co9S8 load. This
phenomenon may be attributed to the high loading amount of Co9S8, resulting in nanotube
stacking and consequently reducing the composite’s BET-specific surface area.

The band structure information of CdS and Co9S8 can be acquired through UV–vis
absorption spectra (Figure 4b) and Mott–Schottky plots (Figure 8). The band gap energy (Eg)
of the synthesized samples is determined through the Tauc equation: (αhν)2 = A(hν − Eg),
where α, ν, h and A are the absorption coefficient, frequency of light, Planck’s constant
and proportionality constant, respectively. As depicted in Figure 8a,b, CdS QDs and
Co9S8 exhibit Eg of 2.36 eV and 1.87 eV, respectively. The Mott–Schottky (M-S) method is
employed to ascertain the semiconductor type and band potential. Figure 8c,d illustrates
that both CdS and Co9S8 display a positive slope, indicating their n-type semiconductor
nature [50]. From the M-S diagram, it is evident that the flat band potential (Vfb) for CdS
QDs is −0.47 V, while that of Co9S8 is −0.29 V (vs. Ag/AgCl). Since the conduction
potential (ECB) of n-type semiconductors is approximately −0.2 V negative than Vfb, it
can be calculated that the ECB of CdS and Co9S8 are −0.67 V and −0.49 V (vs. Ag/AgCl),
respectively [51]. According to the conversion relationship, we determine that the ECB of
CdS is −0.47 V, while that of Co9S8 is −0.29 V (vs. NHE). Based on the Eg of CdS and
Co9S8, their valence band potential (EVB) can be calculated as 1.89 V and 1.58 V using the
formula EVB = ECB + Eg.

Based on the aforementioned characterizations, a potential mechanism for visible-
light-driven photocatalytic hydrogen evolution by CdS QDs-Co9S8 has been put forward.
The band positions and band gaps of CdS and Co9S8 have been determined through Mott–
Schottky analysis and UV–vis DRS transformation plots. Since Co9S8 (−0.29 V) exhibits a
lower conduction band potential (ECB) than CdS (−0.47 V), it suggests that the photogener-
ated electrons from CdS will be transferred to the CB of Co9S8. As exhibited in Figure 9, the
irradiation of visible light results in the excited electrons in the valence band (VB) of CdS
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QDs jumping to the CB, accompanied by the generation of photogenerated holes in the VB.
Due to the tight interfacial contact between CdS QDs and Co9S8, photogenerated electrons
are transferred from the CB of CdS QDs to the CB of Co9S8 instead of being trapped by
holes. Subsequently, the electrons that have accumulated on Co9S8 combine with H+ to
form H2. Meanwhile, the remaining photogenerated holes in the VB of CdS rapidly oxidize
the sacrificial agent triethanolamine, forming a complete reaction cycle. Furthermore, the
nanotube structure of Co9S8 provides a multitude of active sites for photocatalytic hydro-
gen production reactions, and combined with the multiple reflections of light in the hollow
structure of Co9S8, the photocatalytic H2 evolution performance of the CdS QDs-Co9S8
composite is significantly enhanced.
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3. Experimental Section
3.1. Materials

Anhydrous chromium chloride (CdCl2), sodium hydroxide (NaOH), cobalt chloride
hexahydrate (CoCl2·6H2O), 3-aminopropyl triethoxysilane (APTES) and 3-mercaptopropionic
acid (C3H6O2S, MPA) were supplied by Shanghai Macklin Biochemical Co., Ltd. (Shanghai,
China). Triethanolamine (C6H15NO3, TEOA) and anhydrous ethanol (C2H6O) were purchased
from Xilong Scientific Co., Ltd. (Shantou, China). Sodium sulfide 9-hydrate (Na2S·9H2O) was
supplied by Shanghai Aladdin Biochemical Technology Co., Ltd. (Shanghai, China). Urea
(CH4N2O) was purchased from Sinopharm Chemical Reagent Co., Ltd. (Shanghai, China).

3.2. Preparation of CdS QDs

In a typical experiment, 1.7 mmol MPA (3-mercaptopropionic acid) and 1 mmol
CdCl2 were dissolved in 20 mL of deionized water. The pH was then modulated to
about 10 through the addition of sodium hydroxide solution. The resulting solution was
then diverted into a three-necked flask, which was sealed and the air outlet preserved.
Subsequently, 5 mL of Na2S solution (0.2 mol/L) was added to the above solution in an
atmosphere of argon gas and magnetically stirred. The solution was then heated to 373 K,
after which the yellow solution was agitated for 0.5 h. Once the solution had cooled, 50 mL
of ethanol was added to precipitate it. The resulting yellowish product was obtained after
extraction, filtration, washing and drying.

3.3. Preparation of Co9S8 Nanotubes

The preparation process of Co9S8 nanotubes referred to the two-step hydrothermal
method in previous work [52,53]. Firstly, Co(CO3)0.35Cl0.20(OH)1.10 nanorods were synthe-
sized as a precursor for Co9S8 nanotubes. This was achieved by dissolving CoCl2·6H2O
(5 mmol) and CH4N2O (5 mmol) in 40 mL deionized water and ultrasounding the solution
for 30 min. Subsequently, the solution was diverted into a 50 mL Teflon autoclave and
reacted in a 393 K oven for 10 h. The precipitate was then gathered through centrifuga-
tion and washed multiple times with anhydrous ethanol and deionized water. The pink
precursor was obtained following drying at 333 K for several hours. Subsequently, the
synthesized Co(CO3)0.35Cl0.20(OH)1.10 precursors (110 mg) were mixed to 40 mL of Na2S
solution (5 mg/mL) in the Teflon liner and stirred for an hour. The liner was then diverted
into a stainless-steel autoclave and heated to a temperature of 433 K for a period of 8 h.
During the vulcanization process, the inner material of the rod-like precursor underwent a
reaction and fell off, thereby obtaining the Co9S8 of the hollow nanotube structure. Sub-
sequently, the product was isolated through suction filtration, washed with anhydrous
ethanol and deionized water and dried at 333 K for 12 h, and the dried product (black
powder) was collected for further processing.

3.4. Positive Electrochemical Treatment of Co9S8 Nanotubes

The prepared 100 mg Co9S8 nanotubes were dispersed in 50 mL C2H5OH and ultra-
sonic until the solution was uniform. Then, 2 mL of APTES (3-aminopropyl triethoxysilane)
solution was added to the ultrasonic-treated Co9S8 nanotube ethanol solution and stirred
for 20 min. Subsequently, the product was maintained in a water bath at 333 K for a period
of four hours, centrifuged and washed with anhydrous ethanol and deionized water on
several occasions. The obtained product was then dried in a 333 K oven and collected
for use.

3.5. Electrostatic Assembly of CdS QDs-Co9S8

Typically, 50 mg CdS QDs was dispersed in 50 mL deionized water and ultrasounded
for 5 min. A certain proportion of 5%/10%/30% (2.5 mg/5 mg/15 mg) electropositive
Co9S8 nanotubes were dispersed in deionized water by the same method described above
and ultrasonic. After ultrasound, the Co9S8 nanotube solution was injected into the CdS
QDs solution and stirred for a period of 2.5 h. Subsequently, the mixed solution was
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subjected to centrifugation and multiple washes with deionized water, after which it was
dried in an oven at 333 K to yield the dried yellowish-green product.

3.6. Activity Evaluation of Photocatalytic H2 Evolution

Photocatalytic H2 production was conducted within a 50 mL closed quartz reactor.
Typically, 1 mL of triethanolamine (TEOA) and 5 mL of deionized water were added to a
sealed quartz reactor containing 5 mg of CdS QDs-Co9S8 composite photocatalyst, followed
by ultrasound until the solution was uniform. Subsequently, pure argon gas was implanted
into the quartz reactor for half an hour to remove residuary air. A 300 W xenon lamp
(PLS-SXE300D, Perfectlight, Beijing, China) with an ultraviolet cut-off filter (λ ≥ 420 nm)
was used as the light source. Following a two-hour illumination period, 1 mL of mixed
gas was injected into the gas chromatograph (GC7900, Techcomp, Shanghai, China) to
detect the peak areas of hydrogen and argon, and the hydrogen production rate of the
photocatalyst was then converted according to the hydrogen production coefficient given.
Additionally, the stability of the CdS QDs-Co9S8 composite photocatalyst was evaluated
by conducting tests for 5 cycles under the same conditions after centrifugation, washing
and drying.

4. Conclusions

In summary, Co9S8 hollow nanotubes were prepared through a two-step hydrother-
mal approach as a cocatalyst, and the CdS QDs-Co9S8 composite photocatalysts were
successfully prepared through a straightforward electrostatic self-assembly method. The
electrostatic self-assembly strategy ensures a tight interfacial contact between CdS QDs
and Co9S8 nanotubes. By adjusting the proportion of Co9S8 nanotubes in the composite,
the photocatalytic hydrogen evolution rate of the optimal CdS QDs-30%Co9S8 nanotubes
is 9642.7 µmol·g−1·h−1, approximately 60.3 times that of blank CdS QDs. The cyclic
experiment demonstrates that the introduction of Co9S8 cocatalysts effectively prevents
photocorrosion on the surface of CdS QDs. A series of characterization experiments il-
lustrate that the introduction of Co9S8 hollow nanotubes resulted in a more uniform and
dispersed growth of CdS QDs particles, as well as the promotion of the separation and
migration of photogenerated carriers. As a result, the CdS QDs-Co9S8 composite exhibits
excellent activity and stability in photocatalytic hydrogen production. This work provides
new perspectives for the rational construction of stable, environmentally friendly and
highly active composite photocatalysts to realize efficient photocatalytic H2 evolution.
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