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Abstract: Three new tridentate copper(II) N-heterocyclic carbene (NHC) complexes have been
obtained and characterized with symmetrical C-4 substitutions on their pendent pyridine rings.
Substitutions including methyl (Me), methoxy (OMe), and chloro (Cl) groups, which extend the
library pincer Cu-NHC complexes under investigation, modify the impact of pyridinyl basicity on
NCN pincer complexes. Both ligand precursors and copper(II) complexes are characterized using
a range of techniques, including nuclear magnetic resonance (NMR) spectroscopy for 1H, 13C, 31P,
and 19F nuclei, electrospray ionization mass spectrometry (ESI-MS), X-ray crystallography, cyclic
voltammetry, and UV-Vis spectroscopy. The pyridine substitutions lead to minimal changes to bond
lengths and angles in the X-ray crystal structures of these related complexes; there is a pronounced
impact on the electrochemical behavior of both the ligand precursors and copper complexes in the
solution. The substitution in the pyridinyl units of these complexes show an impact on the catalytic
reactivity of these complexes as applied to a model C–N bond-forming reaction (CEL cross-coupling)
under well-established conditions; however, this observation does not correlate to the expected
change in basicity in these ligands.

Keywords: N-heterocyclic carbene; symmetrical; copper(II)–NHC; pyridine; C–N cross coupling

1. Introduction

Since Arduengo’s groundbreaking work in 1991, stable N-heterocyclic carbenes (NHCs)
have gained prominence, particularly as organometallic ligands [1]. Over the past three
decades, NHCs have emerged as crucial contributors in coordination chemistry and cataly-
sis [2]. Specifically, NHCs serve as versatile σ-donating ligands that rival other commonly
used ligands like water-sensitive phosphines. Metal-NHC complexes have been shown
to catalyze a plethora of chemical reactions including hydrogenation, metathesis, cross-
coupling processes, and hydroformylation [3,4].

It is generally accepted that a carbon donor of the NHC has a significant impact to
the stability and electronic properties of these systems. The earliest examples of NHC
complexes were unstable, monodentate coordination complexes. These early examples
showed limited utility due in part to the free rotation in the NHC carbon—metal coordi-
nation mode, which allowed for an ensemble of conformations in the solution. Chelating
NHC systems with bi- and tridentate binding modes were developed that added additional
coordinating moieties into the ligand architecture affording more stable coordination modes
(Figure 1) [5–7]. These flanking coordinating groups also contribute to the electronic tuning
of the metal center [8,9], while controlling accessibility of the substrate to the catalytic metal
ion [10–12]. Generally, the steric bulk of the NHC ligands manifest through the concept
of percent buried volume and impart electronic effects that notably influence catalytic
reactivity [13].
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coupling reactions, hydrosilylation, and carbonyl compound reduction. In 2010, Nolan et 

al. synthesized three comprehensive series of NHC-containing copper complexes 

[(NHC)CuCl], leading to the discovery of enhanced catalysts for ketone hydrosilylation 

and alkyne-azide 1,3-dipolar cycloaddition, revealing unique NHC ligand coordination 

modes [23]. This research distinctly illustrates the substantial advantages of employing 

precisely defined systems (Figure 1a). Eastham et al. demonstrated the straightforward 

preparation of pyridine-N-functionalized copper(I) carbene complexes and characterized 

the monomeric Cu+ imidazol-2-ylidene complex, featuring a Cu–C bond shorter than a 

typical Cu–C single bond [24]. By utilizing picolyl-N-functionalized carbene ligands with 

improved bite angles and backbone flexibility, they produced dimeric and polymeric ma-

terials (Figure 1b). Emerson and coworkers have developed an effective protocol facilitat-
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ligand originating from the precursor 1,3-bis(pyridine-2-ylmethyl)-1H-benzo[d]imidazole 

(bPymBI·PF6) was synthesized [25–27]. Douthwaite et al. described copper(II) complexes 

utilizing a chiral NHC precursor with an imidazol–phenoxyimine motif, exploring their 

potential in enantioselective catalysis [28]. This study reported the catalytic potential of 
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Figure 1. Cu-NHCs prepared using imidazolium salts with copper [5–7]. Complexes (a–e) in this
figure represent selected copper NHC complexes previously reported in the literature. Complex
(f) highlights this works focus.

In more recent years, there has been a growing emphasis on developing catalytic
systems that employ cost-effective metals such as copper (Cu), cobalt (Co), nickel (Ni), and
iron (Fe) [14–17]. In some cases, the NHC complexes demonstrate stability even in the
presence of air and moisture [18–22].

Cu-NHC species with the composition [Cu(NHC)(X)] (where X = OAc, I, Br, Cl) have
demonstrated exceptional catalytic efficiency in numerous transformations [2]. These
transformations include [3+2] cycloaddition reactions involving azides and alkynes, cross-
coupling reactions, hydrosilylation, and carbonyl compound reduction. In 2010, Nolan et al.
synthesized three comprehensive series of NHC-containing copper complexes [(NHC)CuCl],
leading to the discovery of enhanced catalysts for ketone hydrosilylation and alkyne-azide
1,3-dipolar cycloaddition, revealing unique NHC ligand coordination modes [23]. This
research distinctly illustrates the substantial advantages of employing precisely defined
systems (Figure 1a). Eastham et al. demonstrated the straightforward preparation of
pyridine-N-functionalized copper(I) carbene complexes and characterized the monomeric
Cu+ imidazol-2-ylidene complex, featuring a Cu–C bond shorter than a typical Cu–C single
bond [24]. By utilizing picolyl-N-functionalized carbene ligands with improved bite an-
gles and backbone flexibility, they produced dimeric and polymeric materials (Figure 1b).
Emerson and coworkers have developed an effective protocol facilitating the coupling of
aromatic amines and arylboronic acids through the CEL coupling reaction, employing a
tetradentate copper(II)–NHC complex that donates NCCN (Figure 1c). Furthermore, a
tridentate copper(II)–NHC complex, distinguished by an NCN-type ligand originating
from the precursor 1,3-bis(pyridine-2-ylmethyl)-1H-benzo[d]imidazole (bPymBI·PF6) was
synthesized [25–27]. Douthwaite et al. described copper(II) complexes utilizing a chiral
NHC precursor with an imidazol–phenoxyimine motif, exploring their potential in enan-
tioselective catalysis [28]. This study reported the catalytic potential of their ligand through
a tridentate coordination mode involving NHC–carbon, imine–nitrogen, and phenoxide–
oxygen (CNO), including additional oxygen-coordinating groups like alkoxide and aryl
oxide in the ligand (Figure 1d). In 2023, Tahsini and coworkers reported the synthesis
and characterization of six novel copper(I)−CNC complexes. These complexes feature
trifluoroethyl (TFE), phenyl, and aryl wings that are substituted in the para position with
both electron-donating and electron-withdrawing groups, such as CF3, OCF3, and CH3
(Figure 1e) [20].
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Building on these works, we report the synthesis of a family of a tridentate cop-
per(II) –NHC complex characterized by an NCN-type ligand derived from the precursor
1,3-bis(pyridine-2-ylmethyl)-1H-benzo[d]imidazole ([bPymBI][PF6]) (Figure 1f) with dif-
ferent substituted pyridine moieties. This study examines how incorporating electron-
withdrawing and electron-donating groups into the flanking pyridinyl units affects the
structure and electronic properties of the resulting copper(II)–NHC complexes. Specifically,
we modified and characterized our tridentate [bPymBI][PF6] ligand precursor, generat-
ing three new complexes with para substitutions in the pyridine rings, resulting in the
cationic heteroleptic six-coordinate Cu–NHC complexes, denoted as Cu2+bPymBI-Me,
Cu2+bPymBI-OMe, and Cu2+bPymBI-Cl. Together, this series of coordination compounds
afford insight into the role pyridinyl donor properties/basicity have on the structure and
electronic properties of the copper(II)–NHC complexes.

2. Results and Discussion

The synthesis of tridentate copper-NHC complexes followed a general procedure
involving the generation of three new complexes (Scheme 1). In the first step, a tridentate
NHC precursor ligand was synthesized by reacting 2.0 equivalents of picolyl chloride with
1.0 equivalent of benzimidazole. The resulting solution was heated to reflux in CHCl3 for
48 h, yielding the tridentate NHC-precursor chloride salt in 76–86% yield. Subsequently,
the chloride counterion was exchanged with PF6

− to form compounds [bPymBI-Cl][PF6],
[bPymBI-Me][PF6], and [bPymBI-OMe][PF6]. The precipitates were collected and dried
under vacuum in a vacuum desiccator.
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Scheme 1. Schematic representation for the synthesis of NHC carbenes: (i) generation ligand
generation, and (ii) counter anion exchange to PF6

− salt.

These ligand precursors salts were characterized using FT-IR, HR-MS, and 1H, 13C, 19F,
and 31P NMR when appropriate. The 1JCH NMR couplings of the carbene carbon precursor
have been correlated with the σ-donor strength of the resulting NHC complex [29]. The
1JCH NMR couplings were measured for the [bPymBI][PF6], [bPymBI-Me][PF6], [bPymBI-
OMe][PF6], and [bPymBI-Cl][PF6] precursor salts and were found to be 222.0, 222.4 and
222.9, and 221.9Hz, respectively. This result shows that all ligand variants should demon-
strate similar (relatively weak) carbene donor properties, allowing for the direct assessment
of the impact of the flanking pyridinyl units. These precursors were also characterized with
fluorescence spectroscopy. The excitation wavelength of 320 nm was chosen based on the
complex’s maximum UV absorption peak, and fluorescence emission was subsequently
collected (Figure 2). The presence of an electron-withdrawing group in [bPymBI-Cl][PF6]
results in a blue shift associated with the fluorescence emission in this series of ligand salts,
leading to an emission profile with several observable transitions centered at 387 nm. In con-
trast, the electron-releasing groups in [bPymBI-Me][PF6] and [bPymBI-OMe][PF6] induce a
red shift, resulting in lower emission energies at 513 nm and 495 nm, respectively [30]. As
expected, [bPymBI][PF6] exhibits an intermediate energy state with an emission peak at
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481 nm. The combination of Cu(OAc)2 with the ligand precursor in equimolar proportions
resulted in quenching the fluorescence signal associated with these complexes.
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Figure 2. Fluorescence emission spectra of 5 mM [bPymBI][PF6] (black), [bPymBI-Me][PF6] (red)
[bPymBI-OMe][PF6] (blue), and [bPymBI-Cl][PF6] (green) complexes in MeOH. Both excitation and
emission slit widths were set to 2 nm with integration time of 0.3 s.

The [NHC][PF6] precursor salts were combined with copper acetate in MeOH and
stirred at 50 ◦C for 2–3 h, leading to the formation of dark blue precipitates corresponding
to complexes Cu2+bPymBI-Cl, Cu2+bPymBI-Me, and Cu2+bPymBI-Ome (Scheme 2), with
yields ranging from 75–90%. The NHC complexes were recrystallized, generating crystals
suitable for X-ray crystallography. The recrystallized complexes were also characterized
with ESI-MS, cyclic voltammetry, and a combination of other spectroscopic techniques,
including UV-Vis and FT-IR spectroscopy, XRD, and TGA.
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Scheme 2. Schematic representation for the synthesis of Cu-NHC complexes.

Single crystals of Cu2+bPymBI-Cl, Cu2+bPymBI-Me, and Cu2+bPymBI-OMe were
grown through solvent evaporation using a blend of acetonitrile, dichloromethane, and
methanol (2:1:1) yielding [CuNHC(solvent)(C2H3O2)][PF6]. These complexes are described
as Cu2+NHC with anions and solvent-derived ligands omitted for clarity, where the generic
NHC can be bPymBI, bPymBI-Me bPymBI-OMe, or bPymBI-Cl. Figure 3 illustrates the
ORTEP representation of these complexes. Detailed crystal structure refinement data are
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available in the Supplementary Information (SI) provided in Tables S1–S3, along with the
selected bond lengths and angles shown in Table 1. Within the crystallographic asymmetric
units, each complex is accompanied by a hexafluorophosphate anion. The hexacoordination
around the copper(II) center involves two nitrogen atoms and one carbon atom from the
tridentate NHC ligand, along with three oxygen atoms from the solvent and acetate units.
Curiously, these complexes exhibit similar bond lengths and angles to those previously
discussed for complex Cu2+bPymBI (refer to Table 1) [26]. Based on the 1JCH NMR cou-
plings reported above, it was expected that the Cu–C bonds would be all similar due to
their common σ-donation strength, but it was unexpected that changing the basicity of the
pyridinyl units also had minimal structural impact to the measured Cu–N bond lengths. A
similar trend was observed in a related study, where substituents in the para position of the
pyridinyl units in a NNN-type pincer ligands, resulted in negligible structural differences.
In this report, the related Cu–N bond lengths in the pyridyl ring were 1.926, 1.939, and
1.949 Å for substituents ranging from a –OH, to –H, to –Cl, respectively [31].
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Figure 3. Crystal structures of copper complex (A) Cu2+bPymBI,30 (B) Cu2+bPymBI-Me (CCDC
number: 2313922), (C) Cu2+bPymBI-Ome (CCDC number: 2313921), and (D) Cu2+bPymBI-Cl (CCDC
number: 2313923), shown with 50% probability thermal ellipsoids. PF6

– ions and H-atoms are
removed for clarity.
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Table 1. Selected bond lengths (Å) for Cu2+bPymBI, Cu2+bPymBI-Me, Cu2+bPymBI-OMe, and
Cu2+bPymBI-Cl.

Bond (Å) Cu2+bPymBI [26] Cu2+bPymBI-Me Cu2+bPymBI-OMe Cu2+bPymBI-Cl

Cu–C 1.935(8) 1.937(4) 1.920(8) 1.937(4)

Cu–N 2.112(7) 2.101(4) 2.058(6) 2.101(4)

Cu–N′ 2.066(7) 2.057(4) 2.086(6) 2.057(4)

Cu–O 1.975(5) 2.308(3) 1.982(5) 2.308(3)

Cu–O′ 2.758 2.308(3) 1.982(5) 2.308(3)

Cu–OW/M 2.287(6) 1.964(3) 2.271(6) 1.964(3)

The equatorial plane of the distorted octahedral coordination mode in these complexes
is occupied by two nitrogen atoms, one carbon atom from the tridentate NHC ligands, and
one oxygen atom from the acetate ion. Meanwhile, the longer axial positions are filled by
other oxygen atoms from methanol or water and acetate, as depicted in Figure 2. This axial
elongation aligns with the Jahn–Teller distortion [30], indicating the labile nature of the axial
ligands. The geometries of complexes Cu2+bPymBI-Cl, Cu2+bPymBI-Me, and Cu2+bPymBI-
OMe are proposed to be tetragonally distorted octahedral. Support for this notion is based on
bond distance analysis where Cu2+bPymBI-Me: Rin = (2.059 + 2.094 + 1.966 + 1.932 Å)/4; Rout
= (2.333 + 1.966 Å)/2, Cu2+bPymBI-OMe: Rin = (1.920 + 2.058 + 2.086 + 2.271 Å)/4; Rout =
(1.982 + 2.271 Å)/2, Cu2+bPymBI-Cl: Rin = (1.964 + 2.101 + 2.051 + 1.937 Å)/4; Rout = (1.964 +
2.308 Å)/2] T values = Rin/Rout = 0.9365, 0.9800, and 0.9425, respectively. The confirmation
of these distortions in the octahedral structures is further supported by the bond angle
of Cu2+bPymBI-Me: ∠N–Cu–N’ = 176.49(5); ∠O–Cu–C = 161.73(6), Cu2+bPymBI-OMe:
∠N–Cu–N’ = 176.4(3); ∠O–Cu–C = 160.6(3), Cu2+bPymBI-Cl: ∠N–Cu–N’ = 176.62(14); and
∠O–Cu–C = 162.75(16), respectively. These values suggest that the equatorial plane is not a
square planar around the copper(II) center. The relatively short bond lengths of Cu–C in the
NHC complexes (Cu2+bPymBI-Me: 1.937(4), Cu2+bPymBI-OMe: 1.920(8), Cu2+bPymBI-Cl:
1.937(4) Å) correspond to σ donation and π back-bonding of the metal carbene, contributing
to the complexes’ stability [29].

The solution UV-Vis spectra were collected for complexes Cu2+bPymBI, Cu2+bPymBI-
Me, Cu2+bPymBI-OMe, and Cu2+bPymBI-Cl in CH3CN (Figure 4). All three complexes
reveal notably higher energy d-d transitions (Cu2+bPymBI-Me: λmax = 582 nm, ε582
172 M−1cm−1; Cu2+bPymBI-OMe: λmax = 576 nm, ε576 199 M−1 cm−1; Cu2+bPymBI-Cl:
λmax = 598 nm, ε598 154 M−1 cm−1) in compared to Cu(OAc)2, highlighting the strong-field
nature of the NHC system, which has been observed previously [32,33]. The λmax asso-
ciated with the d-d transitions in these complexes does shift predictably where electron
withdrawing groups blue shift this band, and where donating groups red shift this feature.
Furthermore, there are several high-energy absorption features likely associated with the
ligand-based π-π* transitions or charge transfer transitions in the range of 260–315 nm.

The voltammograms for Cu2+bPymBI, Cu2+b PymBI-Me, Cu2+bPymBI-OMe and Cu2+b
PymBI-Cl, in a 0.1 M NBu4PF6/CH3CN solution are illustrated in Figure 5. Cu2+bPymBI (de-
picted in Figure 5, black trace), previously documented by Emerson and co-workers [26,27],
and the different Cu2+NHC complexes in aqueous solutions, show similar irreversible
anodic (Eox) and cathodic (Ered) peak patterns to the three new complexes (Figure 5 red,
green, and blue traces). The irreversible reduction peak at −0.785, −0.582 V, −0.701 V,
and −0.452 V vs. Fc+/0, respectively, is present in complexes Cu2+bPymBI, Cu2+bPymBI-
Me, Cu2+bPymBI-OMe, and Cu2+bPymBI-Cl. The anodic peaks were recorded at 0.985 V,
1.034 V, and 0.969 V vs. Fc+/0 for complexes Cu2+bPymBI-Me, Cu2+bPymBI-OMe, and
Cu2+bPymBI-Cl, respectively.
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Figure 5. The cyclic voltammograms of 1 mM complexes Cu2+bPymBI (black = H, red = Me,
green = OMe, and blue = Cl) were measured in 100 mM NBu4PF6/CH3CN. Scan Rate: 100 mV/s,
GCE working electrode, and graphite rod auxiliary electrode.

The low standard redox potential of 0.142 V observed for the neutral Cu2+bPymBI
complex indicates a low energy bar for the observed redox process in cyclic voltamme-
try. Remarkably, with different species, a variation in potential is observed, measuring
0.202 V, 0.167 V, and 0.254 V for Cu2+bPymBI-Me, Cu2+bPymBI-OMe, and Cu2+bPymBI-Cl,
respectively. This implies the sensitivity to the chemical ambiance with the redox behavior,
indicating the influence of substituents on the copper-bPymBI complexes. Additionally,
the blue-shifted fluorescence emission band was observed in the [bPymBI-Cl][PF6] ligand
precursor, and may be attributed to its relatively poor π-donating nature compared to other
ligands [34].

Finally, all four complexes were screened as CEL cross-coupling agents utilizing the
model reaction of imidazole and arylboronic acid under previously reported conditions [27].
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Table 2 shows the influence of electron-donating and withdrawing groups on the yields
of the C–N arylation reaction. While all the complexes displayed activity, low reaction
yields were observed with electron-donating substituents on the pyridine units. This result
indicates that at least one of the key mechanistic steps in the CEL reaction is impacted by the
pyridinyl donor properties of these complex. The classical oxidative addition and reductive
elimination steps associated with the CEL coupling reaction are likely steps that changes in
lability and pyridinyl coordination impact. The magnitude of the change in reactivity was
unexpected when compared to all other characterization data collected where the donating
ability of the NHC dominates the electronics of these complexes. One possibility is that
the basicity of the pyridine units plays a key role in the solution dynamics associated with
these complexes. For example, the hemilability of traditional donor groups can influence
catalysis in metal-NHC complexes [35,36]. In this case, it seems that the more basic pyridine
units could be contributing to stronger or less labile dative bonding interactions with the
metal ions. Although we normally consider two adjacent coordination sites sufficient to
support CEL C–N bond-forming reactions [27], perhaps in this case, there is a marked
catalytic benefit to a more dynamic coordination environment. The air-dependent oxidative
catalyst recycling step is unlikely effected by pyridinyl donation, where the redox potentials
of all complexes were measured to be highly similar.

Table 2. CEL cross-coupling reaction using [Cu(NHC)]2+ catalyst a.
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No [Cu2+(NHC)] Catalyst Yield (3a%) b

1 Cu2+bPymBI 78

2 Cu2+bPymBI-Me 44

3 Cu2+bPymBI-OMe 47

4 Cu2+bPymBI-Cl 65
a Reaction conditions: 1a (0.1 mmol), 2a (0.2 mmol), [Cu(NHC)]2+ (10 mol%), and K2CO3 (0.2 mmol) in 2.0 mL
of methanol at 70 ◦C for 24 h exposed to open air and then closed. b The reaction yields were calculated using
1H-NMR spectroscopy, using mesitylene as an internal standard.

Together, the solution data showcases that there are subtle differences in the electronic
structure and perhaps the lability of the flanking pyridinyl units in this series of copper(II)–
NHC complexes. There are notable effects to the d-d transitions, redox potential, and
reactivity that follow inductive and resonance effect trends, which arise from the subtle
pyridinyl donor properties in the soluble form of this complex. In addition, hyperconju-
gation may play a minor yet observable role in the behavior of alkyl substituents. The
literature examples highlight the predominance of the inductive effect in the substitution
of a chlorine (–Cl) group, which results in a decrease in the basicity of the pyridine ring.
Conversely, introducing a methyl (–CH3) group increases the basicity of pyridine. A similar
trend is seen with the methoxy (–OCH3) group, where this strong effect outweighs the
inductive effect, leading to enhanced basicity [37]. These observations are directly opposed
to the solid phase, crystallographic data that suggest minimal differences in the copper(II)
coordination environment. In these copper(II)–NHC complexes, where crystal packing
forces that minimize differences to the coordination environment must dominate other
more subtle interactions induced by the pyridinyl coordination.
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3. Conclusions

In an effort to design NHC complexes to study the impact of electronic and resonance
effects of flanking pyridinyl units on polydentate copper(II)–NHC systems, three new
Cu-tridentate NHC complexes were synthesized and characterized. These complexes
incorporate 2,3-dihydro-1H-benzo[d]imidazole-linked (NHC) ligands with 4-substituted
pyridin-2-ylmethyl arms. X-ray crystallographic analysis of this series of mononuclear
structures for Cu2+ NHC complexes displayed a common six-coordinated bonding mode
between the copper centers and their NHC ligands. Minimal structural differences were
observed in the coordination geometry in this series of copper(II)–NHC complexes based on
X-ray crystallographic analysis, where both bond lengths and bond angles in all complexes
are congruent. In the solution, the copper(II)–NHC complexes demonstrate the predictable
strong σ-donation of the carbene unit which shifts the physical properties of the copper(II)
center significantly from those of traditional copper(II) systems. However, this series of
complexes also showcase the physical properties are impacted by the donor properties
of the flanking pyridinyl units, which afford subtle but predicable perpetuation of the
electronic structure and physical properties of the copper(II) center. The solution reactivity
of these complexes toward Chan–Evans–Lam C-N cross-coupling reactions also showcases
significant difference in reaction productivity that correlates to the electronic effects present
in the pyridinyl units. In summary, electronic effects on pendant ligands can modulate
the physical properties of Cu–NHC complexes in solutions that are not obvious from
crystallographic analysis. It is unclear how the dynamic, solution structure of copper(II)–
NHC complexes differ from their solid-state structures, but it is clear that these subtle
effects can modulate reactivity of these systems.

4. Experimental Methods

Benzimidazole, picolinic acid, picolinic esters, picolyl chloride (TCI), ammonium
hexafluorophosphate, copper (II) acetate (Alfa Aesar, Haverhill, MA, USA), and potassium
carbonate were used as received. All reagents used for this work were of analytical grade
and were used as received. The solvents used were of HPLC grade and were obtained
from Fisher Scientific (Bridgewater, NJ, USA). All the products and ligand species were
characterized by melting points (m.p), 1H-NMR, 13C-NMR, mass spectra, and infrared
spectra (IR). Melting points were measured on an Electrothermal MEL-TEMP melting point
apparatus; IR were recorded on a BRUKER spectrometer; 1H-NMR and 13C-NMR spectra
were obtained on Agilient-500 MHz; and chemical shifts were reported in parts per million
(ppm, δ), with CHCl3 as a reference. Proton coupling patterns are described as singlet
(s), doublet (d), triplet (t), triplet of doublet (td), doublet of doublet (dd), and multiplet
(m); coupling constants (J) are quoted in Hz. Carbon-13 nuclear magnetic resonance (13C-
NMR) data were acquired at 100 MHz. The water used was initially deionized using a
reverse osmosis system. All of the used-as-purchased chemicals were used without further
purification. All of the salt products were purified using flash column chromatography
using SiliaFlash® P60 (230–400 mesh) silica gels. All of the heating reactions were carried
out using an oil bath equipped with a digital temperature controller.

Procedure for the synthesis of methyl picolinate derivatives
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Picolinic acid derivative 1.0 equivalent (12.7 mmol), oxalyl chloride 3.5 equivalent
(38.1 mmol), and a catalytic amount (5 drops) of DMF were combined with 50 mL of DCM
in a round-bottom flask at 0 ◦C and stirred for 8 h under N2 atmosphere. The solvent was
then removed using rotary evaporation at reduced pressure. The residue was treated with
20 mL of MeOH and stirred at RT for 14 h to achieve conversion of the respective esters.
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Procedure for the synthesis of pyridin-2-ylmethanol derivatives
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The 1.0 equivalent (8.8 mmol) of esters were reduced to alcohols by loading the
5.0 equivalent (43.8 mmol) of CaCl2 in 100 mL MeOH:THF (6:3.5) solvent at 0 ◦C to RT,
followed by the addition of the 3.0 equivalent (26.3 mmol) of NaBH4 in three installments.
The same addition was performed after 24 h, maintaining 0 ◦C to RT for more than 24 h to
obtain the alcohol.
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Pyridin-2-ylmethanol derivative 1 equivalent (6.9 mmol), and thionyl chloride 2.5 equiv-
alent (17.5 mmol), was mixed with 50 mL of DCM in a round bottom flask at 0 ◦C and stirred
for 8 h under N2 atmosphere. The solvent was then removed using rotary evaporation at
reduced pressure. The residue was treated with n-hexane to obtain the precipitate/sticky
liquid.
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with n-hexane to obtain brown solid. The chloride salt of the ligand (1 equivalent, 0.5 
mmol) was dissolved in the minimum amount of water followed by the addition of the 

The mixture of 2.0 equivalent (3.4 mmol) of 2-picolyl chloride derivative, 1.0 equivalent
(1.7 mmol) of benzimidazole, and 5.0 equivalent (8.5 mmol) of potassium carbonate were
mixed with the CHCl3 solvent in a pressure tube and refluxed for 48 h at 120 ◦C. The
compound was filtered, and the filtrate-containing solvent was removed completely under
reduced pressure using rotary vaporization. The residue after rotary vaporization was
again dissolved in DCM and dried over MgSO4 and the saturated complex was treated with
n-hexane to obtain brown solid. The chloride salt of the ligand (1 equivalent, 0.5 mmol) was
dissolved in the minimum amount of water followed by the addition of the 5.0 equivalent
(2.5mmol) of ammonium hexafluorophosphate to obtain the brown-colored complex, and
was dried under vacuum.

1,3-bis((4-chloropyridin-2-yl)methyl)-1H-benzo[d]imidazol-3-ium chloride (1d)
Yield 32% (220 mg), Brown solid, m.p: 140–142 ◦C; Rf: 0.25 (DCM:EA:MeOH; 7:3:0.5); 1H
NMR (500 MHz, DMSO-d6) δ: 10.26 (s, 1H), 8.49 (d, J = 5.0 Hz, 2H), 8.01–7.99 (m, 2H), 7.91
(s, 2H), 7.66–7.64 (m, 2H), 7.57 (t, J = 5.0 Hz, 2H), 6.06 (s, 4H) ppm; 13C NMR (125 MHz,
DMSO-d6) δ: 195.6, 151.5, 144.7, 144.3, 131.7, 127.3, 124.3, 123.4, 114.5, 50.9 ppm. FT-IR
(KBr) ṽ (cm−1) 1580, 1510, 1430, 1375, 1280; HRMS (ESI+), calcd for C19H15Cl3N4 [M–Cl]+

369.0668 found 369.0684.

1,3-bis((4-chloropyridin-2-yl)methyl)-1H-benzo[d]imidazol-3-ium hexafluorophosphate (1e)
Yield 94% (242 mg), Brown solid, m.p: 138–140 ◦C; Rf: 0.67 (DCM:EA:MeOH; 7:3:0.5); 1H
NMR (500 MHz, DMSO-d6) δ: 9.61 (s, 1H), 8.42 (s, 2H), 7.99 (s, 2H), 7.59 (s, 4H), 7.30 (s, 2H),
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5.76 (s, 4H) ppm; 13C NMR (125 MHz, DMSO-d6) δ: 195.5, 151.5, 144.7, 144.4, 131.7, 127.4,
124.3, 123.4, 114.5, 50.9 ppm. 19F NMR (470 MHz, DMSO-d6) δ: −70.13 (d, J = 709.70 Hz)
ppm; 31P NMR (202 MHz, DMSO-d6) δ: -144.19 (septet, J = 710.43 Hz) ppm; FT-IR (KBr)
ṽ (cm−1) 1580, 1510, 1430, 1375, 1280; HRMS (ESI+), calcd for C19H15Cl2F6N4P [M–PF6]+

369.0668 found 369.0684.

1,3-bis((4-methylpyridin-2-yl)methyl)-1H-benzo[d]imidazol-3-ium chloride (2d)
Yield 41% (240 mg), Faded brown solid, m.p: 201–203 ◦C; Rf: 0.08 (DCM:EA:MeOH; 7:3:0.5);
1H NMR (500 MHz, CDCl3) δ: 11.66 (s, 1H), 8.25 (s, 2H), 7.7 (s, 2H), 7.53 (d, J = 5.0 Hz, 4H),
6.97 (s, 2H), 5.91 (s, 4H) 2.25 (s, 6H) ppm; 13C NMR (125 MHz, CDCl3) δ: 152.4, 149.3, 149.1,
143.9, 131.9, 126.7, 124.8, 124.3, 114.2, 52.6, 20.9 ppm. FT-IR (KBr) ṽ (cm−1) 1580, 1510, 1430,
1375, 1280; HRMS (ESI+), calcd for C21H21ClN4 [M–Cl]+ 329.1761 found 329.1751.

1,3-bis((4-methylpyridin-2-yl)methyl)-1H-benzo[d]imidazol-3-ium hexafluorophosphate (2e)
Yield 97% (230 mg), brown solid, m.p: 153–155 ◦C; Rf: 0.46 (DCM:EA:MeOH; 7:3:0.5); 1H
NMR (500 MHz, CDCl3) δ: 9.48 (s, 1H), 8.36 (d, J = 5, 2H), 7.83 (s, 2H), 7.55 (d, J = 5.0 Hz,
2H), 7.44 (s, 2H), 7.08 (d, J = 10, 2H), 5.68 (s, 4H), 2.36 (s, 6H) ppm; 13C NMR (125 MHz,
CDCl3) δ: 151.9, 149.6, 149.5, 142.1, 131.7, 127.3, 125.1, 124.4, 114.1, 52.8, 20.9 ppm. 19F NMR
(470 MHz, DMSO-d6) δ: −70.13 (d, J = 710.28 Hz) ppm; 31P NMR (202 MHz, DMSO-d6)
δ: −144.19 (septet, J = 712.46 Hz) ppm; FT-IR (KBr) ṽ (cm−1) 1580, 1510, 1430, 1375, 1280;
HRMS (ESI+), calcd for C21H21F6N4P [M–PF6]+ 329.1761 found 329.1751.

1,3-bis((4-methoxypyridin-2-yl)methyl)-1H-benzo[d]imidazol-3-ium chloride (3d)
Yield 29% (200 mg), Brown solid, m.p: 169–171 ◦C; Rf: 0.09 (DCM:EA:MeOH; 7:3:0.5);
1H NMR (500 MHz, CDCl3) δ: 11.86 (s, 1H), 8.28 (d, J = 5.0 Hz, 2H), 7.91–7.89 (m, 2H),
7.54–7.52 (m, 4H), 6.75 (t, J = 5.0 Hz, 2H), 5.92 (s, 4H), 3.83 (s, 6H) ppm; 13C NMR (125 MHz,
CDCl3) δ: 166.9, 154.2, 150.6, 144.0, 131.6, 126.9, 114.2, 110.9, 109.4, 55.9, 52.8 ppm. FT-IR
(KBr) ṽ (cm−1) 1580, 1510, 1430, 1375, 1280; HRMS (ESI+), calcd for C21H21ClN4O2 [M–Cl]+

361.1659 found 361.1684.

1,3-bis((4-methoxypyridin-2-yl)methyl)-1H-benzo[d]imidazol-3-ium hexafluorophosphate (3e)
Yield 95% (240 mg), Brown solid, m.p: 168–170 ◦C; Rf: 0.51 (DCM:EA:MeOH; 7:3:0.5); 1H
NMR (500 MHz, DMSO-d6) δ: 10.08 (s, 1H), 8.31 (d, J = 5.0 Hz, 2H), 7.96–7.95 (m, 2H),
7.64–7.62 (m, 2H), 7.30 (d, J = 5.0 Hz, 2H), 6.98–6.97 (m, 2H) 5.90 (s, 4H), 3.87 (s, 6H) ppm;
13C NMR (125 MHz, DMSO-d6) δ: 166.9, 154.9, 151.5, 144.4, 131.7, 127.2, 114.2, 110.0, 109.7,
96.1, 51.4 ppm. 19F NMR (470 MHz, DMSO-d6) δ: −70.14 (d, J = 710.28 Hz) ppm; 31P NMR
(202 MHz, DMSO-d6) δ: −144.20 (septet, J = 711.04Hz) ppm; FT-IR (KBr) ṽ (cm−1) 1580,
1510, 1430, 1375, 1280; HRMS (ESI+), calcd for C21H21F6N4O2P [M–PF6]+ 361.1659 found
361.1684.

1,3-bis(pyridin-2-ylmethyl)-1H-benzo[d]imidazol-3-ium chloride (4d)
Yield 40% (228 mg), Brown solid, m.p: 112–114 ◦C; Rf: 0.51 (DCM:EA:MeOH; 7:3:0.5); 1H
NMR (500 MHz, DMSO-d6) δ: 10.22 (s, 1H), 8.50 (d, J = 5.0 Hz, 2H), 7.97–7.86 (m, 2H),
7.92–7.91 (m, 2H), 7.69 (d, J = 10.0 Hz, 2H), 7.63–7.61 (m,2H), 7.40–7.38 (m,2H), 3.35 (s, 4H),
ppm; 13C NMR (125 MHz, DMSO-d6) δ: 153.5, 150.1, 144.5, 138.1, 131.7, 127.2, 124.2, 123.2,
114.5, 51.4, ppm.

1,3-bis(pyridin-2-ylmethyl)-1H-benzo[d]imidazol-3-ium chloride (4e)
Yield 95% (211 mg), Brown solid, m.p: 168–170 ◦C; Rf: 0.51 (DCM:EA:MeOH; 7:3:0.5); 1H
NMR (500 MHz, DMSO-d6) δ: 10.12 (s, 1H), 8.51 (d, J = 5.0 Hz, 2H), 7.97–7.95 (m, 2H),
7.94–7.91 (m, 2H), 7.67 (d, J = 5.0 Hz, 2H), 7.64–7.63 (m, 2H), 7.41–7.38 (t, J = 10.0 Hz, 2H),
6.00 (s, 4H), ppm; 13C NMR (125 MHz, DMSO-d6) δ: 153.5, 150.1, 144.5, 138.1, 131.7, 127.2,
124.2, 123.2, 114.5, 51.4, ppm. 19F NMR (470 MHz, DMSO-d6) δ: −70.11 (d, J = 710.3 Hz)
ppm; 31P NMR (202 MHz, DMSO-d6) δ: −144.16 (septet, J = 712.5 Hz) ppm.
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