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Abstract: Mesoporous silica SBA-15 has emerged as a promising adsorbent and separation material
due to its unique structural and physicochemical properties. To further enhance its performance,
various surface modification strategies, including metal oxide and noble metal incorporation for
improved catalytic activity and stability, organic functionalization with amino and thiol groups for
enhanced adsorption capacity and selectivity, and inorganic–organic composite modification for
synergistic effects, have been extensively explored. This review provides a comprehensive overview of
the recent advances in the surface modification of SBA-15 for adsorption and separation applications.
The synthesis methods, structural properties, and advantages of SBA-15 are discussed, followed by a
detailed analysis of the different modification strategies and their structure–performance relationships.
The adsorption and separation performance of functionalized SBA-15 materials in the removal
of organic pollutants, heavy metal ions, gases, and biomolecules, as well as in chromatographic
and solid–liquid separation, is critically evaluated. Despite the significant progress, challenges
and opportunities for future research are identified, including the development of low-cost and
sustainable synthesis routes, rational design of SBA-15-based materials with tailored properties, and
integration into practical applications. This review aims to guide future research efforts in developing
advanced SBA-15-based materials for sustainable environmental and industrial applications, with an
emphasis on green and scalable modification strategies.
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1. Introduction

Mesoporous silica materials, such as MCM-41 (Mobil Composition of Matter No. 41),
MCM-48 (Mobil Composition of Matter No. 48), SBA-15 (Santa Barbara Amorphous-15),
SBA-16 (Santa Barbara Amorphous-16), etc., as an important class of nanostructured ma-
terials, have received widespread attention [1]. These materials have found extensive
applications in various fields, including catalysis, drug delivery, membrane separation,
biosensing, and adsorption [2]. Mesoporous silica materials have attracted significant
attention due to their unique properties, such as high surface area, large pore volume,
tunable pore size, and easy surface functionalization [3–5]. These properties make them
promising candidates for various applications, including catalysis, drug delivery, adsorp-
tion, and separation [6,7]. Compared to other porous materials, mesoporous silica offers
several advantages. For example, the pore size of mesoporous silica can be easily tai-
lored to accommodate a wide range of guest molecules, from small gas molecules to large
biomolecules [3,5]. Moreover, the surface of mesoporous silica can be readily modified with
various functional groups, allowing for the fine-tuning of their adsorption and catalytic
properties [3,4,7].
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In recent years, researchers have begun to pay attention to nanoporous materials with
large specific surface areas, such as metal–organic frameworks (MOFs) [8] and mesoporous
silica [9]. MOF materials are favored in the adsorption field due to their ultra-high specific
surface area and designability. The high surface area provides abundant adsorption sites,
while the designability allows for the incorporation of specific functional groups that
can enhance the adsorption selectivity and capacity [10–12]. Zeolites, another class of
nanoporous materials, possess well-defined pore structures and high thermal and chemical
stability [13]. They have been widely used in catalysis, gas separation, and ion exchange
applications [14]. Activated carbon, known for its high porosity and large surface area, has
been extensively employed in water treatment and air purification [15,16]. Mesoporous
carbon materials, such as CMK-3 (Carbon Mesostructured by KAIST-3) and CMK-5 (Carbon
Mesostructured by KAIST-5), have also gained attention due to their uniform pore structure,
high surface area, and good electrical conductivity [17,18]. These properties make them
promising candidates for energy storage and conversion applications [17]. Although the
aforementioned nanoporous materials have their unique advantages and applications,
mesoporous silica stands out due to its distinct features. Compared with MOF materials,
the advantage of mesoporous silica lies in its easy surface modification and good tolerance
under acidic conditions [19,20]. These properties make mesoporous silica a versatile
platform for the development of advanced adsorption and separation materials.

Among many mesoporous silica materials, SBA-15 has received much attention due
to its unique structural features and excellent adsorption performance [19,21]. SBA-15 is
a mesoporous material with two-dimensional hexagonal arrays of cylindrical pores inter-
connected with each other by cavities of sizes much smaller than those of their cylindrical
pores, first synthesized by Zhao et al. in 1998 [22]. Figure 1 presents the TEM (Trans-
mission Electron Microscopy) images of SBA-15, SBA-15@APTES (SBA-15 modified with
3-Aminopropyltriethoxysilane), SBA-15(SV) (SBA-15 modified with Sodium valproate),
and SBA-15@APTES(SV) (SBA-15 modified with both APTES and SV) samples, clearly
showing the highly ordered hexagonal pore structure in all materials [23]. These structural
features make SBA-15 exhibit unique advantages in the field of adsorption and separation.
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In addition to its inherent structural advantages, SBA-15 can be further modified to
enhance its adsorption and catalytic properties. The TEM results shown in Figure 1 suggest
that the surface functionalization of SBA-15 with APTES and the incorporation of SV did
not affect the hexagonal pore structure, consistent with XRD (X-ray Diffraction characteriza-
tions) [23]. The modified SBA-15 materials maintain the well-ordered mesoporous structure,
indicating successful functionalization without destroying the original framework.

However, SBA-15 still has certain limitations in the adsorption of some specific sub-
stances. For example, when using SBA-15 to adsorb heavy metal ions, it mainly relies on
physical adsorption, and the adsorption capacity is low [24]. This is because its surface
lacks sufficient coordination sites, and the affinity between silanol groups and many heavy
metal ions is weak.

Furthermore, SBA-15 also has certain deficiencies in the adsorption of organic pollu-
tants, gas molecules, etc., which affects its actual application effect [20]. Therefore, surface
modification of SBA-15 to introduce specific functional groups and improve adsorption
performance through chemical interactions with adsorbate molecules has become an im-
portant way to expand its application range [24]. It is of great significance to modify the
surface of SBA-15 to improve its adsorption performance and broaden its application fields.

Previous reviews have discussed the challenges and progress in the synthesis, char-
acterization, and applications of modified SBA-15 materials for heterogeneous catalysis
and adsorption. Mozaffar et al. [25] focused on the synthesis, characterization, and ap-
plications of plugged SBA-15 materials for heterogeneous catalysis, including metal and
acid modifications. Yuan et al. [26] reviewed recent advances in SBA-15-based compos-
ites as heterogeneous catalysts for water decontamination, covering the incorporation
of transition metals, metal oxides, and other active components into SBA-15. Moritz
et al. [27] investigated the effect of SBA-15 surface modification on the adsorption of
18β-glycyrrhetinic acid, highlighting recent advancements in organic functionalization of
SBA-15 for adsorption applications.

Building upon these previous works, this article focuses on the latest progress in the
modification of SBA-15 specifically for adsorption applications. Through a comprehensive
review and analysis of relevant literature, this article systematically summarizes the recent
research on SBA-15 modification from three perspectives: inorganic material modification, or-
ganic material modification, and inorganic–organic composite modification. The application
of modified SBA-15 in the field of adsorption and separation is discussed in detail, providing
a deeper understanding of the structure-property relationships and adsorption mechanisms.

Furthermore, this article offers an outlook on the future research directions of SBA-15
modification. The aim is to guide the development of novel SBA-15-based adsorbents with
enhanced performance and expanded application scope. By bridging the gap between
fundamental research and practical applications, this review aims to serve as a valuable ref-
erence for researchers and engineers working on the development of advanced adsorption
materials based on modified SBA-15.

2. Structure and Properties of SBA-15

SBA-15 is a highly ordered mesoporous silica material with a hexagonal array of
uniform mesopores. Its unique structural and physicochemical properties make it an
attractive candidate for various adsorption and separation applications. In this section, we
will discuss the synthesis methods, physicochemical properties, and advantages of SBA-15
in adsorption and separation processes.

2.1. Synthesis Methods of SBA-15

SBA-15 is typically synthesized using a soft-templating approach, which involves
the cooperative self-assembly of amphiphilic triblock copolymers, such as Pluronic P123
(P123), as structure-directing agents (SDAs) and a silica source, like tetraethyl orthosilicate
(TEOS), under acidic conditions [28,29]. The synthesis process can be divided into three
main stages: pre-synthesis, mid-synthesis, and post-synthesis. In the pre-synthesis stage,
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P123 and TEOS are combined in an acidic solution, forming a micellar compound. The
mixture then undergoes hydrothermal treatment during the mid-synthesis stage, leading to
the formation of a hexagonal mesoporous structure with the SDA (P123) incorporated into
the silica framework. Finally, in the post-synthesis stage, the template (P123) is removed
by calcination at high temperatures, yielding the mesoporous SBA-15 product with the
desired hexagonal pore structure (Figure 2).
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Various synthesis parameters, such as the type and concentration of the SDA, pH,
temperature, and aging time, can be tuned to control the pore size, wall thickness, and
morphology of SBA-15 [31]. Additionally, post-synthesis functionalization methods, like
grafting or co-condensation, can be employed to introduce various functional groups onto
the SBA-15 surface, further enhancing its adsorption and separation capabilities [28,32,33].
By carefully controlling the synthesis parameters and employing appropriate post-synthesis
modifications, SBA-15 can be tailored to exhibit optimal structural and functional properties
for specific adsorption and separation applications.

2.2. Structural and Textural Properties of SBA-15

SBA-15 possesses several unique structural and textural properties that make it an
excellent adsorbent and separation material. It exhibits a highly ordered hexagonal meso-
porous structure with uniform pore channels and an interconnected pore network [34,35].
This well-defined pore structure, combined with its high specific surface area (typically
500–1000 m2/g) and large pore volume (0.6–1.2 cm3/g), facilitates efficient diffusion and
transport of adsorbates, leading to enhanced adsorption kinetics and capacity [35,36]. The
thick pore walls (typically 3–6 nm) and high thermal and hydrothermal stability of SBA-15
enable the size-selective adsorption and separation of large molecules in harsh environ-
ments [37,38]. Furthermore, the surface of SBA-15 is rich in silanol groups, which serve
as reactive sites for surface functionalization and modification [39]. By grafting various
functional groups or incorporating active species, the surface chemistry of SBA-15 can be
tailored to achieve enhanced adsorption selectivity, specificity, and capacity [39,40]. The
uniform mesoporous structure also provides abundant sites for adsorption and surface
functionalization [41].

Table 1 summarizes the key structural and textural properties of SBA-15 in comparison
with other representative mesoporous silica materials, such as MCM-41, MCM-48, MCF,
KIT-6, and HMS. SBA-15 stands out with its larger tunable pore size range, thicker pore
walls, and highly ordered hexagonal pore structure, which collectively contribute to its
superior thermal stability, mechanical strength, and adsorption performance.
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Table 1. Comparison of key structural and textural properties of SBA-15 with other mesoporous silica
materials.

Material
Specific
Surface

Area (m2/g)

Pore
Volume
(cm3/g)

Pore Size
(nm) Structure Advantages Ref.

SBA-15 500–1000 0.6–1.2 5–30 Hexagonal Tunable pore size, thick pore walls, high
thermal stability [42,43]

MCM-41 ~1000 High 2–10 Hexagonal Large surface area, uniform pore size [44]
MCM-48 1088–1669 1.206–1.263 2–10 Cubic High surface area, 3D pore structure [44,45]

MCF 700–1000 0.8–1.2 10–50 Cellular Large pore volume, interconnected pores [46]

KIT-6 600–1000 0.8–1.5 5–9 Cubic Bicontinuous cubic structure, high
thermal stability [47]

HMS 500–1200 0.6–1.0 2–10 Hexagonal Easy synthesis, tunable pore size [48]

The larger pore sizes of SBA-15 allow for the adsorption and separation of larger
molecules that might not fit in materials with smaller pores, such as MCM-41, MCM-48,
and HMS. This wide range of tunable pore sizes also provides flexibility in tailoring the
material for specific applications. The thicker pore walls contribute to its enhanced thermal
stability and durability, making it suitable for use in more demanding conditions compared
to materials with thinner walls.

In summary, the key advantages of SBA-15 over other mesoporous silica materials,
as shown in Table 1, include its larger tunable pore size range, thicker pore walls, highly
ordered hexagonal pore structure, and abundant surface silanol groups [42,43]. These
structural and textural properties make SBA-15 a promising material for various adsorption
and separation applications, which will be discussed in detail in the following sections.
Compared to other materials like MCM-41, MCM-48, MCF, KIT-6, and HMS, SBA-15 stands
out with its unique combination of textural features that contribute to its superior thermal
stability, mechanical strength, and adsorption performance

2.3. Advantages of SBA-15 in Adsorption and Separation

The unique structural and physicochemical properties of SBA-15 offer several advan-
tages in adsorption and separation processes:

a. High adsorption capacity and selectivity: Size-selective adsorption and efficient
removal of pollutants

The large surface area and pore volume of SBA-15 provide ample adsorption sites,
while the uniform and tunable pore size allows for size-selective adsorption and separation
of target molecules [40,41]. This is particularly important for the efficient removal of specific
pollutants from complex mixtures.

b. Fast adsorption kinetics: Rapid diffusion and transport of adsorbates

The interconnected pore structure and large pore size of SBA-15 facilitate rapid diffu-
sion and transport of adsorbates, leading to fast adsorption kinetics [49]. This is crucial for
practical applications where high throughput and short residence times are required.

c. Versatile surface chemistry: Tailoring adsorption properties through functionalization

The abundant surface silanol groups on SBA-15 enable a wide range of surface func-
tionalization and modification strategies, allowing for the tailoring of adsorption properties
for specific applications [50,51]. This versatility greatly expands the potential applications
of SBA-15 in diverse adsorption and separation scenarios.

d. Excellent stability and reusability: Long-term use and cost-effectiveness

The thick pore walls and high hydrothermal stability of SBA-15 ensure its structural
integrity during adsorption and regeneration cycles, enabling long-term use and reusabil-
ity [52]. This is essential for the development of cost-effective and sustainable adsorption
and separation processes.
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e. Compatibility with various modification methods: Rational design of multi-functional
adsorbents

SBA-15 can be easily modified with inorganic, organic, and inorganic–organic compos-
ite species, expanding its potential applications in adsorption and separation processes [53].
This compatibility allows for the rational design and synthesis of multi-functional adsor-
bents and separation materials based on SBA-15.

In summary, the exceptional structural and physicochemical properties of SBA-15,
including its high surface area, tunable pore size, thick pore walls, and versatile surface
chemistry, make it a highly promising material for a wide range of adsorption and sepa-
ration applications. These unique features enable SBA-15 to exhibit superior adsorption
capacity, selectivity, kinetics, stability, and multi-functionality, paving the way for the
development of advanced and efficient adsorption and separation processes.

3. Surface Modification Strategies of SBA-15

The surface modification of SBA-15 is a crucial approach to tailor its properties and
expand its applications in various fields. The modification strategies can be broadly
classified into three categories: inorganic modification [54], organic modification [55], and
inorganic–organic composite modification [56].

3.1. Inorganic Modification

The inorganic modification of SBA-15 aims to enhance its structural stability, ad-
sorption capacity, and catalytic performance by introducing inorganic species into the
framework. This category includes metal oxide and non-metal element modification.

3.1.1. Metal Oxide and Non-Metal Element Modification

Metal oxide, metal nanoparticle, and non-metal element modification of SBA-15 can
be achieved through various methods, including direct synthesis [54], post-synthesis graft-
ing [57], doping [58], and impregnation [59]. These modifications aim to enhance the
structural stability, adsorption capacity, and catalytic performance of SBA-15. Table 2
summarizes the research on the modification methods and performance of several repre-
sentative metal oxides and non-metal elements on SBA-15, providing a clear overview of
the diverse applications of these modified materials.

Table 2. Representative metal oxide and non-metal element modified SBA-15: synthesis methods
and performance.

Metal Oxide/
Non-Metal Element Synthesis Methods Reaction/Application Performance Ref.

Al2O3
One-step wet
impregnation 1-butene metathesis to propene Enhanced conversion and

selectivity; stable catalytic activity [60]

ZnO Ultrasonic
impregnation

Photocatalytic degradation of
methylene blue dye High catalytic activity and stability [61]

Fe3O4 Carrier-based synthesis Activation of persulfate for
pollutant removal

Efficient activation; high removal
rate of pollutants [62]

Co3O4 Not specified Fischer–Tropsch synthesis Decreased specific surface area of
SBA-15; co-present as Co3O4

[63]

CeO2 Doping Biodiesel production from
Podocarpus falcatus oil

High biodiesel yield under
optimized conditions [64]

Fe2O3 Wet impregnation Degradation of methylene blue 70.2% efficiency under visible light
irradiation [65]

Phosphorous acid Post-grafting Adsorption of Gd(III) Excellent adsorption capacity and
kinetics; good reusability [66]
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The incorporation of metal oxides and non-metal elements into SBA-15 has led to
significant improvements in catalytic performance and adsorption capacity across a wide
range of applications. The following examples showcase the diversity and potential of
these modified SBA-15 materials.

Yadav et al. [60] used a one-step wet impregnation method to prepare alumina-loaded
SBA-15 molecular sieves. The catalytic activities of these metal oxide-loaded SBA-15 catalysts
were evaluated under the same conditions for the alkylation reaction. The results showed
that all three catalysts exhibited excellent conversion and selectivity to form monoalkylated
products, with the highest conversion achieved within 1 min. Notably, the catalytic activity
remained unchanged after repeated use, indicating good stability and reusability.

Yao et al. [61] prepared a series of SBA-15-supported mesoporous catalysts by ultra-
sonic impregnation for the degradation of polyethylene terephthalate (PET) to produce
bis(2-hydroxyethyl) terephthalate (BHET). The ultrasonic impregnation method ensured
a uniform dispersion of the active species on the SBA-15 support, leading to enhanced
catalytic performance. The experimental results showed that the 5%ZnO/SBA-15 catalyst
exhibited the best stability and maintained high catalytic activity during the recycling
process, demonstrating its potential for practical applications in plastic waste management.

Huang et al. [62] prepared an Fe3O4-wrapped mesoporous molecular sieve catalyst
(Fe3O4@SBA-15) using SBA-15 as a carrier for the activation of persulfate (PS). The syn-
thesis effect diagram of Fe3O4@SBA-15 is shown in Figure 3, illustrating its core–shell-like
nanocomposite structure.
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The mesoporous structure of SBA-15 provided a high surface area and abundant pore
channels for the uniform distribution of Fe3O4 nanoparticles, while the Fe3O4 core enhanced
the magnetic properties and catalytic activity of the composite. Under optimized conditions
(Fe3O4/SBA-15 mass ratio of 3:1, pH 3.0, temperature 25 ◦C, initial PS mass concentration
300 mg/L, and catalyst mass concentration 0.50 g/L), Fe3O4@SBA-15 achieved a remarkable
removal rate of carbamazepine (100%) within 30 min, owing to the efficient activation of PS
and the synergistic effect between Fe3O4 and SBA-15. Moreover, the catalyst maintained
its high activity during six consecutive cycles, demonstrating its excellent stability and
reusability for water treatment applications.

Several other metal oxides have been successfully incorporated into SBA-15 for various
applications. Bepari et al. [67] prepared Co3O4/SBA-15 catalysts using the nicotinic acid
metal salt method, which significantly improved the catalytic activity and selectivity for
the epoxidation of styrene, with further enhancement by Au deposition due to the Au-Co
synergistic effect. Tsai et al. [68] studied the properties of metal oxide-impregnated SBA-15
(Fe, Co, Ni) and their performance in isopropanol decomposition, observing increased pore
wall thickness and decreased pore diameter compared to pure SBA-15. Titiya et al. [69]
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synthesized Fe-γ-CS-SBA-15 by the hydrothermal method for the efficient removal of
methylene blue dye, achieving a 96% removal rate under optimal conditions. Lemoupi
et al. [64] synthesized CeO2@SBA-15 catalyst for the transesterification of palm fatty oil
(PFO) with methyl esters to prepare biodiesel, achieving a maximum yield of 80.2% under
optimized conditions (Figure 4). This study highlights the potential of CeO2@SBA-15 as an
efficient and eco-friendly catalyst for the production of biodiesel from renewable resources,
contributing to the development of sustainable energy solutions.
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In addition to metal oxides, non-metal elements such as phosphorus have also been
explored as modifiers for SBA-15. Wang et al. [70] synthesized SBA-15 using the silicon
element from fly ash as the silicon source and surface-modified it with phosphonoacetic
acid (PAA) to obtain the adsorption material PAA-SBA-15. The results showed that the
presence of Fe(III) had the strongest interference on the adsorption of rare earth ions
by PAA-SBA-15, while the adsorption–desorption cycle experiment demonstrated good
reusability of the adsorbent.

Gao et al. [66] synthesized inorganic hypophosphorous acid modified mesoporous
SBA-15 (P-SBA-15) by a simple and economical post-grafting method and studied its
adsorption behavior for rare earth ion Gd(III). P-SBA-15 exhibited excellent performance
in terms of adsorption capacity and kinetics for Gd(III), reaching adsorption equilibrium
within 2 min. The reusability test showed that this mesoporous adsorbent had good
reusability. The preparation scheme of P-SBA-15 is shown in Figure 5.

These studies demonstrate the significant impact of metal oxide and non-metal element
modification on the performance of SBA-15 in various catalytic and adsorption applications.
By carefully selecting the appropriate modification method and optimizing the synthesis
conditions, researchers can develop highly efficient and stable SBA-15-based materials for a
wide range of industrial and environmental applications. As research in this field continues
to progress, it is expected that new and innovative modifications will be developed, further
expanding the potential applications of SBA-15-based materials. However, challenges such
as cost-effectiveness, scalability, and long-term stability under practical conditions still need
to be addressed to facilitate the widespread implementation of these advanced materials.



Molecules 2024, 29, 3543 9 of 29

Molecules 2024, 29, x FOR PEER REVIEW 9 of 31 
 

 

 
Figure 4. Experimental procedure of synthesis of SBA-15 and CeO2@SBA-15 [64]. 

In addition to metal oxides, non-metal elements such as phosphorus have also been 
explored as modifiers for SBA-15. Wang et al. [70] synthesized SBA-15 using the silicon 
element from fly ash as the silicon source and surface-modified it with phosphonoacetic 
acid (PAA) to obtain the adsorption material PAA-SBA-15. The results showed that the 
presence of Fe(III) had the strongest interference on the adsorption of rare earth ions by 
PAA-SBA-15, while the adsorption–desorption cycle experiment demonstrated good re-
usability of the adsorbent. 

Gao et al. [66] synthesized inorganic hypophosphorous acid modified mesoporous 
SBA-15 (P-SBA-15) by a simple and economical post-grafting method and studied its ad-
sorption behavior for rare earth ion Gd(III). P-SBA-15 exhibited excellent performance in 
terms of adsorption capacity and kinetics for Gd(III), reaching adsorption equilibrium 
within 2 min. The reusability test showed that this mesoporous adsorbent had good reus-
ability. The preparation scheme of P-SBA-15 is shown in Figure 5. 

 
Figure 5. Scheme of preparation of phosphorous acid modified mesoporous SBA-15 (P-SBA-15) [66]. Figure 5. Scheme of preparation of phosphorous acid modified mesoporous SBA-15 (P-SBA-15) [66].

3.1.2. Noble Metal Nanoparticle Modification

The incorporation of noble metal nanoparticles, such as Pd and Pt, into SBA-15 has
been explored to enhance its catalytic performance in various reactions. The synergistic
effect between these nanoparticles and the well-defined porous structure of SBA-15 results
in improved catalytic activity, selectivity, and stability.

For example, Zhang et al. [71] prepared Pd and Pt nanoparticles supported on meso-
porous silica molecular sieve SBA-15 and applied them to the catalytic reduction of bromate.
The activity studies showed that the Pt/SBA-15 catalyst had the highest catalytic activity
among the tested catalysts, and it maintained its activity with only a slight loss of 7.8%
after five repeated trials, indicating its reusability in the catalytic reduction of bromate
in aqueous solutions. Similarly, Kuppusamy et al. [72] prepared a series of Pt-Ni-loaded
Ti-SBA-15 catalysts with different Si/Ti ratios and studied their performance in the dry
reforming of methane. Pt-Ni/Ti-SBA-15 showed higher catalytic activity and stability
compared with other catalysts, demonstrating the beneficial effect of titanium doping on
the catalytic activity, stability, and anti-coking performance of SBA-15.

In another study, Chen et al. [73] synthesized phosphotungstic acid modified short
mesoporous HPW/Zr-SBA-15 by one-step method and used it to catalyze the synthesis
of bisphenol F from formaldehyde and phenol. Under the conditions of reaction time
of 120 min, phenol/formaldehyde molar ratio of 15:1, catalyst/formaldehyde mass ratio
of 1:2, and reaction temperature of 90 ◦C, using 30% HPW/Zr-SBA-15 to catalyze the
synthesis of bisphenol F from phenol and formaldehyde, the yield of bisphenol F was
98.36%, and the yield still reached 87.36% after four times of repeated use of the catalyst,
indicating good reusability. It is a highly efficient catalyst for the synthesis of bisphenol F
from formaldehyde and phenol in the direction of green chemical industry development.

3.2. Organic Modification

In addition to inorganic modification, the organic modification of SBA-15 is another
effective approach to enhance its adsorption capacity, selectivity, and compatibility with tar-
get molecules. The three main approaches for organic modification are the introduction of
organic functional groups, organic small molecule modification, and polymer modification.
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3.2.1. Incorporation of Organic Functional Groups

The introduction of organic functional groups onto the SBA-15 surface can be achieved
through post-synthesis grafting or co-condensation methods. Common organic functional
groups include amino, thiol, carboxyl, and phenyl groups. The incorporation of these
functional groups can enhance the adsorption capacity and selectivity of SBA-15 towards
specific target molecules through various interactions, such as electrostatic interactions,
hydrogen bonding, and π-π stacking.

For example, Chen et al. [74] successfully prepared amino-modified SBA-15 meso-
porous molecular sieve with a pore size of 7.85 nm and a specific surface area of 574.75 m2/g.
Using the amino-modified SBA-15 mesoporous molecular sieve as the carrier for immobi-
lized enzymes, the optimal conditions for the immobilization of lysozyme and lipase were
determined, respectively. The co-immobilized dual enzymes were added to the epoxy resin
to prepare an epoxy composite coating. The test showed that adding the co-immobilized
dual enzymes on amino-modified SBA-15 mesoporous molecular sieve to the epoxy resin
could improve its corrosion resistance.

Similarly, Wang et al. [75] prepared an NH2-functionalized hydroxylated meso-
porous SBA-15 (NH2-H-SBA-15) adsorbent by post-grafting method, in which aminosi-
lane reacted with the silanol groups on the surface of hydroxylated SBA-15. The synthesis
process of NH2-H-SBA-15 is shown in Figure 6. The adsorbent was applied in the field of
uranium adsorption and exhibited good selectivity and competitive adsorption capacity
in both artificial and natural seawater. NH2-H-SBA-15 demonstrated good adsorption
performance over a wide pH range and excellent adsorption reusability, highlighting
the potential of amino-functionalized SBA-15 in the selective removal of uranium from
complex aqueous systems.
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In another study, Safora et al. [76] synthesized a melamine functionalized meso-
porous silica-SBA-15 adsorbent (Melamine-MS-SBA-15). MS-SBA-15 was synthesized by
hydrothermal method and functionalized with SBA-15-Melamine under toluene reflux
conditions for the removal of Cr(VI) from wastewater. The experimental results showed
that after the surface of MS-SBA-15 was functionalized with melamine, both the ad-
sorption efficiency and adsorption capacity were improved. The maximum adsorption
capacity for Cr(VI) was about 50 mg/g. SBA-15 performed well for Cr(VI) removal
after melamine functionalization, which was due to the transformation from physical
adsorption to chemical adsorption.

These studies demonstrate the significant impact of organic functional group modi-
fication on the adsorption performance of SBA-15. By carefully selecting the appropriate
functional groups and optimizing the modification conditions, researchers can develop
highly efficient and selective SBA-15-based adsorbents for a wide range of target pollutants
in various environmental applications.
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3.2.2. Modification with Organic Small Molecules

Organic small molecule modification involves the immobilization of small organic
molecules, such as cyclodextrins [77], calixarenes [78], and crown ethers [79], onto the
SBA-15 surface. These organic molecules possess unique host–guest recognition properties,
which can significantly improve the adsorption selectivity of SBA-15 towards specific
guest molecules. For example, cyclodextrin-modified SBA-15 has been reported to exhibit
enhanced adsorption capacity and selectivity towards organic pollutants, such as phenols
and dyes, through the formation of inclusion complexes [77].

Parambadath et al. [80] investigated the selective adsorption of eight heavy metal ions
by SBA-15 modified with 2-hydroxybenzaldehyde (2-HB) and 4-hydroxybenzaldehyde
(4-HB). As shown in Figure 7, these molecules were immobilized onto amino-functionalized
SBA-15 (NH2-SBA-15) through a Schiff base condensation reaction, yielding 2-HB-SBA-15
and 4-HB-SBA-15. The difference in the position of the hydroxyl group in 2-HB and 4-HB
leads to distinct chelation possibilities with metal ions. Competitive adsorption experiments
were carried out using 2-HB-SBA-15 and 4-HB-SBA-15 from a mixture containing Mn(II),
Co(II), Ni(II), Cu(II), Cr(III), Zn(II), Pb(II), and Cd(II) ions under pH 2–6 conditions. The
results showed that the two materials exhibited different affinities towards metal ions
under various pH conditions. The 2-HB-SBA-15 exhibited 100% selectivity towards Pb(II)
ions at pH 2, while the selectivity turned to Cu(II) at higher pH. In contrast, 4-HB-SBA-15
showed an affinity towards Cr(III) and Pb(II) at pH 2, while a distributed selectivity was
observed with major portions to Cr(III), Pb(II), and Cu(II) at higher pH conditions.
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The difference in molar adsorption selectivities of 2-HB-SBA-15 and 4-HB-SBA-15
clearly indicates the crucial role of the chelation effect in the selective adsorption of metal
ions under identical conditions. This study highlights the advantages and potential of
organic small molecule modification in tuning the selective adsorption performance of
SBA-15 by rational design of the modifying molecules [80]. This work further demonstrates
the potential of organic small molecule modification in improving the selective adsorption
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performance of SBA-15, complementing the previous studies on cyclodextrin, calixarene,
and crown ether modified SBA-15 materials.

3.2.3. Polymer Grafting and In Situ Polymerization

Polymer modification involves the grafting of polymers onto the SBA-15 surface or
the in situ polymerization of monomers within the SBA-15 pores. The incorporation of
polymers can significantly enhance the adsorption capacity, selectivity, and stability of
SBA-15 [81–83].

For instance, Huang et al. [84] used composite molecular sieve SBA-15/Y as the
carrier, polyethyleneimine as the functional monomer, and epichlorohydrin as the
cross-linking agent to successfully synthesize a lanthanum ion-imprinted polymer (La-
IIP/SBA-15/Y) for the recovery and enrichment of lanthanum ions. The composite molec-
ular sieve SBA-15/Y, as a new material, can integrate the properties of two molecular
sieves. The results showed that La-IIP/SBA-15/Y had good selectivity and experimental
elution regeneration performance.

Wang et al. [81] prepared a precursor membrane adsorbent (PAN/AO-SBA-15) using
polyacrylonitrile (PAN) as a binder and amidoxime (AO) functionalized SBA-15 as a
powdered adsorbent by phase transformation method. The PAN/AO-SBA-15 membrane
was further modified to prepare a PAO (Poly amidoxime)/AO-SBA-15 membrane by
the amidoxime method. The experiments showed that PAO/AO-SBA-15 exhibited high
adsorption capacity in pure U(VI) aqueous solution, and the PAO/AO-SBA-15 membrane
showed better selectivity and more competitive adsorption capacity. Figure 8 presents the
comparative studies of adsorption on PAN/AO-SBA-15 and PAO/AO-SBA-15 membranes
with other reported adsorbents in U(VI) water or simulated wastewater.
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area (m2), and m is the mass (g) of the membrane before adsorption.

In another study, Fan et al. [85] modified SBA-15 with APTES to construct an immo-
bilized enzyme microreactor (NH2-SBA-15-α-Glu) based on the electrostatic adsorption
of α-Glu. By modifying SBA-15, α-Glu was dispersed on the surface and inner walls of
the two-dimensional channels of NH2-SBA-15 by electrostatic adsorption to construct the
NH2-SBA-15-α-Glu microreactor. Under optimum conditions, the quantity of immobilized
α-Glu by NH2-SBA-15 was 39.93 µg/mg, which was much higher than unmodified SBA-15
(15.92 µg/mg). In addition, the thermal stability and acid–base resistance of the microre-
actor were also greatly improved, and it could be reused, retaining 76.1% of the enzyme
activity after 7 cycles. The synthesis process is shown in Figure 9.
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3.3. Inorganic–Organic Composite Modification

While inorganic and organic modifications have been widely explored separately,
the combination of both strategies, known as inorganic–organic composite modification,
has emerged as a promising approach to develop multifunctional SBA-15-based materials
with enhanced adsorption [86], catalytic [87], and sensing properties [88]. This section
discusses the preparation methods and synergistic effects of inorganic–organic composite
SBA-15 materials.

3.3.1. Preparation of Inorganic–Organic Composite Materials

Inorganic–organic composite SBA-15 materials can be prepared through various meth-
ods, such as post-synthesis grafting [89], co-condensation [90], and impregnation [91]. The
post-synthesis grafting method involves modifying the surface of SBA-15 with organic
functional groups, which can further coordinate with metal species to form composite
materials with enhanced catalytic or adsorptive properties.

A typical example of post-synthesis grafting is the preparation of thiol-functionalized
SBA-15 and its metal complexes, as shown in Figure 10 [92]. SBA-15 is first modified
with chloropropyl groups by reacting with chloropropyltriethoxysilane (CPTS) under
dry toluene reflux for 24 h, resulting in SBA-15-Cl. Subsequently, SBA-15-Cl reacts with
TCH and KI under reflux for 15 h to form thiol-functionalized SBA-15 (SBA-15-TCH).
The grafted thiol groups can further coordinate with metal species like Cu(OAc)2 in
acetone to form metal-loaded catalysts such as Cu/TCH-pr@SBA-15. These composite
materials combine the advantages of both inorganic and organic components, leading to
enhanced catalytic performance.

Many other inorganic–organic composite SBA-15 materials prepared by post-synthesis
grafting have also shown excellent performance in various applications. For instance,
Pd nanoparticles immobilized on imidazolium-functionalized SBA-15 exhibited a high
yield of 95% for the Suzuki carbon–carbon coupling reaction under mild conditions [93].
Phosphonium-modified SBA-15 efficiently catalyzed the Knoevenagel condensation, achiev-
ing a 92% yield of the desired product with high selectivity [55]. Pyridinium-sulfonic acid
functionalized SBA-15 was developed as a robust solid acid catalyst for esterification,
retaining 88% yield even after five reaction cycles [89].

Apart from post-synthesis grafting, other methods like co-condensation and impreg-
nation have also been employed to prepare inorganic–organic composite SBA-15 materials
with bifunctional properties. The co-condensation method involves the simultaneous con-
densation of organosilanes and TEOS in the presence of a structure-directing agent, leading
to the direct incorporation of organic functional groups into the silica framework. This one-
pot synthesis approach is relatively simple and can achieve high loading of organic groups,
but may result in a less ordered mesoporous structure compared to post-synthesis graft-
ing [93–95]. On the other hand, the impregnation method involves first preparing metal
oxide-modified SBA-15 by techniques like wet impregnation or deposition–precipitation,
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followed by the grafting of organic moieties. This stepwise approach allows for better
control over the composition and structure of the resulting composite materials [92].
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Table 3 lists some representative examples of inorganic–organic composite SBA-15 ma-
terials prepared by different methods and their applications in catalysis. These composite
materials exhibit enhanced performance compared to their individual counterparts, owing
to the synergistic effects between the inorganic and organic components.

Table 3. Preparation method and performance of inorganic–organic composite SBA-15 materials.

Ionic Liquid Catalyst Preparation
Method Reaction Yield Ref.

Pyridinium SBA-15-Py-SO3H - Esterification 88% (after 5 cycles) [89]
Imidazolium Pd/SBA-15-Im - Suzuki coupling 95% [93]

Phosphonium SBA-15-P(C6H13)3Br - Knoevenagel
condensation 92% [96]

Brønsted-Lewis Zr-SBA-15/[mim-ps]
Cl-ZnCl2 Wet impregnation Esterification of acetic acid

with BnOH 93.6% [97]

NMImBr NMImBr-SBA-15 - Propylene oxide and CO2
to propylene carbonate 98.23% [98]

Alkyl-
functionalized
imidazolium

BCL/IL-SBA-15

Modification of
SBA-15 with alkyl-

functionalized
ionic liquids

Hydrolysis of triacetin 2.4 times higher
than BCL/SBA-15 [99]

Propyl-SO3H Propyl-SO3H-SBA-15 Microwave-
mediated synthesis

Synthesis of
multi-substituted

imidazoles
- [100]

In summary, the inorganic–organic composite modification of SBA-15 has emerged
as a versatile and effective strategy to develop multifunctional materials with tailored
properties. By judiciously combining inorganic and organic components through various
methods, these composite SBA-15 materials can exhibit improved catalytic, adsorptive, and
sensing performance. However, the preparation of such materials often involves complex
procedures and may require careful optimization to achieve the desired properties. Future
research efforts should focus on the rational design, synthesis, and characterization of
these composite materials, as well as elucidating the structure–property relationships and
synergistic mechanisms, to fully exploit their potential in various applications.
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3.3.2. Synergistic Effects and Applications

The incorporation of both inorganic and organic species into the SBA-15 framework
can lead to synergistic effects, enhancing the overall performance of the material in various
applications. The following examples demonstrate the synergistic effects of inorganic–
organic composite modification on the adsorption, catalytic, and drug delivery properties
of SBA-15 [22,26,101].

Liu et al. [102] prepared a magnetic amine-functionalized adsorbent (Fe3O4@SBA-15-
PDA/HBP-NH2) by loading Fe3O4 nanoparticles on hyperbranched polymer (HBP-NH2)
functionalized mesoporous silica molecular sieve SBA-15. This adsorbent was used for the
adsorption of chromium (VI) and uranium (VI). The synergistic effect of combining Fe3O4
nanoparticles and hyperbranched polymer functionalization led to enhanced adsorption
capacities for both U(VI) and Cr(VI). The magnetic Fe3O4 nanoparticles facilitated the easy
separation and recovery of the adsorbent, while the hyperbranched polymer provided
abundant amine groups for effective chelation of metal ions. The experimental results
showed that the adsorbent had a strong affinity for the two target pollutants, with maximum
adsorption capacities of 77.4 mg/g and 66.5 mg/g for U(VI) and Cr(VI), respectively.

Similarly, Fereshte et al. [103] synthesized SBA-15 by the hydrothermal method and
prepared in situ magnetized Fe3O4@SBA-15 using Fe3O4 magnetic nanoparticles (MNP).
The synthesized material was then modified with APTES to obtain Fe3O4@SBA-15-NH2.
Finally, a magnetic Fe3O4@SBA-15-Gd nano-adsorbent was prepared via nucleophilic
addition. The preparation process is shown in Figure 11. This adsorbent achieved maximum
adsorption capacities of 344.82 mg/g and 303.03 mg/g for Cu(II) and Pb(II), respectively,
demonstrating the synergistic effect of magnetic Fe3O4 nanoparticles and gadolinium
functionalization on the adsorption performance of SBA-15. Moreover, this magnetic
adsorbent exhibited good reusability, highlighting its potential for practical applications in
heavy metal removal.
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Moreover, the development of inorganic–organic composite SBA-15 materials has
shown promising potential in catalytic applications, such as the photocatalytic degradation
of organic pollutants and the electrocatalytic reduction of CO2 [104,105]. The synergistic
combination of semiconductor nanoparticles (e.g., TiO2, CdS) and organic sensitizers
(e.g., porphyrins, metal–organic frameworks) on SBA-15 has been reported to enhance
the photocatalytic activity and stability under visible light irradiation [104,106]. Similarly,
the incorporation of metal nanoparticles (e.g., Cu, Ag) and conductive polymers (e.g.,
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polyaniline, polypyrrole) into SBA-15 has been shown to improve the electrocatalytic
performance and selectivity for CO2 reduction [105,107,108].

In addition to adsorption and catalytic applications, inorganic–organic composite
SBA-15 materials have also been explored for drug delivery. Selvakumari et al. [109]
synthesized amidoxime (AMI) functionalized mesoporous silica nanoparticles (SBA-
15@AMI NPs) by surface modification method and examined their drug loading and pH-
responsive release behavior using doxorubicin (Dox) as a model anti-cancer drug. The
preparation and modification process of SBA-15@AMI NPs is illustrated in Figure 12. The
synergistic combination of amidoxime functionalization and the mesoporous structure
of SBA-15 resulted in a pH-responsive controlled drug delivery system with potential
applications in cancer treatment. The biocompatibility and cellular uptake behavior
of SBA-15@AMI NPs were studied using the MCF-7 cell line. Overall, the prepared
SBA-15@AMI nanoparticles demonstrated their potential as a pH-responsive controlled
drug delivery system for cancer treatment.
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These studies highlight the versatility and effectiveness of inorganic–organic com-
posite modification in tailoring the properties and performance of SBA-15 for a wide
range of applications. By carefully selecting the inorganic and organic components
and optimizing the synthesis conditions, researchers can develop multifunctional SBA-
15-based materials with enhanced adsorption, catalytic, and drug delivery properties,
tailored to specific target applications.

In summary, the inorganic–organic composite modification strategies discussed in this
section have demonstrated their versatility and effectiveness in tailoring the properties and
performance of SBA-15 for a wide range of applications. By carefully selecting the inorganic
and organic components and optimizing the synthesis conditions, researchers can develop
multifunctional SBA-15-based materials with enhanced adsorption, catalytic, and drug
delivery properties, tailored to specific target applications. The successful application of
these composite materials highlights the immense potential of inorganic–organic composite
modification strategies in fields such as environmental remediation, drug delivery, and
chemical synthesis.
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4. Limitations and Future Perspectives of SBA-15

SBA-15 and its modified variants have shown remarkable advantages and extensive
applications in various fields, such as catalysis, adsorption, and drug delivery [29,110].
However, there are still several limitations that need to be addressed for their widespread
industrial implementation. These limitations can be broadly categorized into high cost,
poor physical properties, and synthesis and functionalization challenges. In this section, we
will discuss these limitations in detail and explore potential strategies to overcome them,
with a focus on specific examples and applications.

4.1. High Cost and Poor Physical Properties

Despite its numerous advantages, SBA-15 faces several limitations that hinder its
widespread industrial implementation. The high production cost, due to expensive
structure-directing agents like P123, makes large-scale production economically challeng-
ing [25,111]. SBA-15 also exhibits limited thermal and hydrothermal stability compared to
zeolites, especially in demanding reactions like biomass conversion [112]. The relatively
fragile nature of SBA-15 can lead to degradation by abrasion, particularly in slurry liquid
phase reactions [52]. Additionally, SBA-15 generally exhibits lower acidity compared to
zeolites, which can limit its effectiveness in certain catalytic applications, such as the ad-
sorption of uranium from aqueous solutions. Pure siliceous SBA-15 has an electronically
neutral framework and lacks Brønsted acidity, hindering its catalytic activity [112,113].
The pore structure of SBA-15 can sometimes hinder diffusion, which could be improved
by widening intrawall pores. Furthermore, unexpected instability in water, even at room
temperature, has been observed despite the thick walls of SBA-15 [25,52].

4.2. Synthesis and Functionalization Challenges

Synthesis and functionalization of SBA-15 also present several challenges. There
are difficulties in obtaining nanoparticles from the active phase introduced into SBA-15
and keeping them stable in acidic conditions during synthesis [25,113]. The highly acidic
conditions required for SBA-15 synthesis (pH < 1) can make it challenging to incorporate
certain metal oxides that are strongly affected by pH [33]. For example, the direct-synthesis
and pH-adjustment methods have been developed to prepare Zr-SBA-15 materials, as
zirconia is sensitive to highly acidic conditions [114]. Moreover, the incorporation of metal
oxides or nanoparticles can lead to partial pore blocking, reducing the effective surface area
and pore volume [115].

4.3. Future Perspectives and Improvement Strategies

To address these limitations and enhance the applicability of SBA-15, several strategies
can be pursued. Research should focus on finding alternative, less expensive structure-
directing agents or developing synthesis routes that reduce or eliminate the need for costly
templates [116]. Enhancing thermal and hydrothermal stability through the incorporation
of tri- and tetra-valent heteroatoms (e.g., Al, Ti, Zr) into the silica wall of SBA-15 could
improve its stability and expand its application range. For instance, the incorporation of
ceria nanoparticles has been shown to improve the thermal stability of SBA-15 [52,113].
Work on shaping techniques for SBA-15 materials could enhance their mechanical stability,
making them more suitable for industrial applications [25]. The tailored synthesis of
SBA-15 rods using different types of acids could also be explored to address some of the
limitations [33].

Further research into metal-substituted SBA-15 materials could lead to more efficient
catalytic applications. For example, the transition from Al-SBA-15 to Ga-SBA-15 has been
studied to improve the acidity and catalytic performance of SBA-15 [29]. Developing new
strategies for nanoparticle incorporation, such as the direct modification (DM) strategy for
Pt nanoparticles, could improve the content and dispersion of active phases within SBA-15
channels [25,29]. Exploring synthesis routes at less acidic pH (around 5) could facilitate
the incorporation of pH-sensitive metal oxides [29,33]. Finally, developing methods to
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increase pore diameters and optimize pore structures could address diffusion limitations
and improve catalytic performance [25,29].

By addressing these limitations and pursuing the suggested improvement strategies,
the applicability and performance of SBA-15 and its modified variants can be significantly
enhanced, leading to their wider adoption in various industrial applications, such as
catalysis, adsorption, and drug delivery.

5. Adsorption and Separation Performance and Applications of SBA-15

SBA-15, with its unique structural and physicochemical properties, has shown re-
markable performance in the adsorption and separation of various substances, including
organic pollutants, heavy metal ions, gases, and biomolecules. This section discusses the
adsorption and separation performance of SBA-15 in different applications and highlights
its potential in wastewater treatment, environmental remediation, and other related fields.

5.1. Adsorption of Organic Pollutants and Heavy Metal Ions

SBA-15 has been effectively used for the removal of various organic pollutants and
heavy metal ions from aqueous solutions. Functionalized SBA-15 materials exhibit high
surface areas, large pore volumes, and tunable surface chemistry, resulting in significant
adsorption capacities and selectivity for these pollutants [39,116].

5.1.1. Adsorption of Organic Pollutants

SBA-15 has been effectively used for the removal of various organic pollutants, such
as phenols, dyes, humic acid, and volatile organic compounds (VOCs), from aqueous
solutions [117,118]. For instance, aminopropyl-functionalized SBA-15 has shown high
adsorption capacity for phenol and p-nitrophenol from aqueous solutions, owing to
the strong interactions between the amino groups and the phenolic compounds [24].
Aminopropyl-functionalized SBA-15 is typically prepared using silane coupling agents
such as APTES [119]. The functionalization process can vary depending on synthesis
conditions, including temperature, pH, and reagent concentrations [120].

The modification effect can be characterized by various methods. Elemental analy-
sis and thermogravimetry determine the amount of organic modifier incorporated [120].
Fourier-transform infrared spectroscopy (FTIR) and solid-state nuclear magnetic reso-
nance (NMR) provide information on the chemical structure and bonding of the functional
groups [121]. N2 physical adsorption assesses changes in specific surface area and pore
volume after functionalization [122]. X-ray photoelectron spectroscopy (XPS) and scanning
electron microscopy (SEM) analyze the surface chemical composition and morphology of
the modified SBA-15, respectively [121,122]. These techniques collectively provide insights
into the structure–property relationships of functionalized SBA-15 materials.

Similarly, amino-functionalized SBA-15 has been effective in removing cationic dyes
like methylene blue and rhodamine B from water, driven by electrostatic interactions [123].
Aminopropyl-functionalized SBA-15 also exhibited outstanding adsorption capacity for
humic acid [117] and various VOCs like toluene, ethylbenzene, and xylene [118]. These
examples demonstrate the versatility and effectiveness of SBA-15 in addressing pollution
challenges in wastewater treatment and environmental remediation.

5.1.2. Adsorption of Heavy Metal Ions

SBA-15 has demonstrated excellent potential in the adsorption of heavy metal ions
from aqueous solutions, owing to its tunable physicochemical properties and surface
functionalization. Functionalized SBA-15 materials have shown high affinity and se-
lectivity for the adsorption of various heavy metal ions, such as chromium (Cr) [124],
copper (Cu) [125], zinc (Zn) [79], cadmium (Cd) [35], and lead (Pb) [126]. The adsorption
performance of SBA-15 is influenced by factors such as pH, with optimal removal often
observed in the pH range of 4–6. Adsorption studies have revealed that SBA-15 exhibits
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rapid adsorption kinetics and high adsorption capacities, following both Langmuir and
Freundlich isotherm models.

For instance, N-hydroxysuccinimide (NHS)-functionalized SBA-15 materials exhibited
excellent adsorption performance for Cu(II) ions, with a maximum adsorption capacity
of 138.8 mg/g at pH 5.5. Kinetic studies revealed that the adsorption process followed a
pseudo-second-order kinetic model, while the isotherm data fitted well with the Langmuir
model, indicating monolayer adsorption. The coordination interaction between NHS
groups and Cu(II) ions was proposed as the main adsorption mechanism [123].

Table 4 summarizes the adsorption performance of various functionalized SBA-15
materials for different heavy metal ions.

Table 4. Adsorption performance of functionalized SBA-15 materials for heavy metal ions.

Functionalized Material Heavy Metal Ion(s)
Maximum

Adsorption
Capacity (mg/g)

Optimal pH Isotherm
Model Ref.

Magnetic SBA-15 nanosorbent Cd(II) 140 5 - [35]
Crown-ether-modified SBA-15 Zn(II) - 5 Langmuir [79]

Amine-functionalized SBA-15
Cu(II), Cr(III), Co(II),
Ni(II), Cd(II), Mn(II),

Na(I)
- 5–6 - [125]

Urea-functionalized SBA-15 Cr(VI)/Cd(II)/Pb(II) 26.83/30.53/43.85 2.5/5/4 Langmuir [126]
Imidazole-derivatized SBA-15 Cr(VI) 113 4–5.5 - [127]

N-hydroxysuccini
mide-functionalized SBA-15 Cu(II) 138.8 5.5 Langmuir [128]

Furthermore, amine-functionalized SBA-15 materials exhibited high selectivity and
adsorption capacity for Zn(II) ions, while the adsorption of Cu(II) and Co(II) ions was
relatively lower [124]. This selectivity was mainly attributed to the different coordination
strengths between the amine groups and different metal ions. By tuning the type and
density of functional groups on SBA-15, selective adsorption of specific metal ions can
be achieved.

These findings highlight the significant potential of SBA-15 and its functionalized
derivatives in environmental applications, particularly in the treatment of contaminated
water. The successful adsorption of organic pollutants and heavy metal ions demonstrates
the versatility of these materials in water purification processes. Building upon these
achievements in liquid-phase applications, researchers have expanded their investigations
to explore the use of SBA-15 in gas adsorption and membrane separation processes. These
diverse applications pave the way for SBA-15 materials to play a crucial role in various
environmental remediation strategies. The following section will delve into these advanced
applications, examining how SBA-15 and its derivatives are being utilized in gas-phase
treatments and innovative separation technologies.

5.2. Gas Adsorption and Membrane Separation

SBA-15 has been widely explored for the adsorption and separation of gases, such
as CO2, H2, and CH4, due to its favorable textural properties and surface chemistry. Sur-
face modification of SBA-15 has been employed to enhance its adsorption capacity and
selectivity towards specific gases. The most important factor in post-modifying SBA-15
for gas adsorption applications is the grafting of functional groups onto the pore walls.
Amino groups are commonly introduced using silane coupling agents, such as APTES,
to functionalize SBA-15 for CO2 capture [129]. The yield of this modification process can
vary significantly depending on the synthesis conditions, including temperature, pH, and
reagent concentrations. Optimizing these parameters is crucial to achieve a high degree of
functionalization and improved gas adsorption performance [130].
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As discussed in Section 5.1.1, various characterization techniques are employed to
validate and quantify the extent of modification in functionalized SBA-15 materials. In
the context of gas adsorption applications, these techniques are particularly focused on
confirming the successful grafting of amino groups and assessing the impact of modification
on the pore structure and surface properties of SBA-15, which are critical factors influencing
gas adsorption performance [131].

Amino-functionalized SBA-15 has shown high CO2 adsorption capacity and selectivity
under simulated gas mixture conditions, making it suitable for post-combustion CO2
capture and industrial applications [132]. Studies have demonstrated that shorter pore
lengths enhance the adsorption capacity [133,134]. The amino groups on SBA-15 facilitate
strong interactions with CO2 molecules through chemisorption, making it highly effective
for CO2 capture from flue gases [132,134].

In addition to its application in gas adsorption, SBA-15 has also been explored as
a promising material for the fabrication of high-performance mixed matrix membranes
(MMMs) for various separation applications, including hydrogen purification and CO2
capture [135]. SBA-15-based MMMs have demonstrated enhanced H2 purification and
CO2 capture performance by leveraging the unique structural features of SBA-15 and the
properties of the polymer matrix. The incorporation of SBA-15 into polymer matrices
has been shown to significantly improve the gas separation efficiency by overcoming the
permeability–selectivity tradeoff [136]. The texture and aging conditions of SBA-15 play
a crucial role in determining the gas separation efficiency of the resulting MMMs [137].
Furthermore, functionalization of SBA-15 with deep eutectic solvents (DES) has been
explored for the development of mixed matrix polymeric membranes for CO2 mitigation,
demonstrating their potential for effective CO2 mitigation in industrial applications [138].

These examples illustrate the versatility and effectiveness of SBA-15 in gas adsorption
and separation applications, highlighting its promise as a material for industrial gas separa-
tion processes. The ongoing research in this field continues to explore new functionalization
methods to further enhance the performance of SBA-15-based materials in gas separation
technologies. In addition to these areas, SBA-15 has also shown potential in membrane sep-
aration applications. Expanding beyond gas and liquid separations, researchers have begun
investigating the use of SBA-15 for the adsorption and separation of various biomolecules,
which will be the focus of the next section.

5.3. Applications of Biomolecules

SBA-15 has been investigated for the adsorption and separation of various bio-
molecules, such as proteins [139], enzymes [140], and antibodies [141]. The unique
structural properties of SBA-15 make it suitable for the adsorption and separation of
biomolecules. Surface modification of SBA-15 with organic functional groups or affinity
ligands has been employed to enhance its adsorption capacity and selectivity towards
specific biomolecules.

Studies have shown that SBA-15 can effectively adsorb biomolecules such as myo-
globin, occupying around 50% of the mesopores and following a Langmuir-type monolayer
coverage on the inner pore surfaces [140]. The adsorption capacity of biomolecules, such as
lysozyme, can be further enhanced by functionalizing SBA-15 with appropriate ligands,
such as hyaluronic acid [141]. Moreover, SBA-15 has been widely used for enzyme im-
mobilization, demonstrating improved stability, reusability, and catalytic activity of the
immobilized enzymes compared to their free counterparts [142,143].

These studies highlight the potential of SBA-15 as a promising material for biocatalysis,
bioseparation, and immunoaffinity applications. The ability to fine-tune the structural and
surface properties of SBA-15 through various synthesis and functionalization strategies
makes it a versatile platform for the development of advanced biomolecule adsorption and
separation systems. Building on these capabilities in biomolecular applications, researchers
have expanded the utility of SBA-15 into chromatographic separation processes. The
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following section will explore how the unique properties of SBA-15 are being leveraged in
chromatography, further demonstrating its versatility in separation technologies.

5.4. Chromatographic Separation

SBA-15 has been effectively employed as a stationary phase in chromatographic sepa-
ration applications, such as high-performance liquid chromatography (HPLC) and capillary
electrochromatography (CEC) [144,145]. The well-defined pore structure, high surface area,
and tunable surface chemistry of SBA-15 contribute to its excellent performance in the
separation of a wide range of analytes, including small biomolecules, chiral compounds,
peptides, and proteins [144–146].

Functionalization of SBA-15 with appropriate moieties, such as C18 groups, cyclodex-
trins, or nanoparticles, has been shown to enhance its chromatographic performance and
selectivity [144,147,148]. For instance, C18-modified mesoporous SBA-15 has been used as
a stationary phase in HPLC, resulting in improved separation efficiency, increased resolu-
tion, and narrower peak widths compared to conventional C18 columns [144]. Similarly,
the incorporation of chiral selectors or nanoparticles onto the SBA-15 surface has led to
enhanced enantioseparation and improved separation performance in CEC [147,149].

The versatility and effectiveness of SBA-15 in chromatographic separation applica-
tions stem from its unique structural properties and highly tunable surface chemistry.
These characteristics make SBA-15 an attractive stationary phase for complex mixtures and
challenging analytes, positioning it to play an increasingly important role in the develop-
ment of advanced separation technologies. As the field of chromatographic separation
evolves, SBA-15-based materials are expected to contribute significantly to future innova-
tions. Beyond chromatography, SBA-15 has also emerged as a promising support material
for solid–liquid separation processes, further demonstrating its wide-ranging potential in
separation technologies. The final section of this chapter will explore these solid–liquid
separation applications, providing a comprehensive overview of SBA-15’s versatility across
various separation domains.

5.5. Solid–Liquid Separation

SBA-15 has emerged as a promising support material for the immobilization of various
functional materials, such as enzymes, metal nanoparticles, and polymers, for solid–liquid
separation applications. The large surface area, tunable pore size, and rich surface chemistry
of SBA-15 make it an ideal platform for the development of efficient and sustainable solid–
liquid separation systems.

Immobilization of enzymes on SBA-15 has been shown to improve their stability
and reusability, while maintaining high catalytic activity [140,150]. Immobilization of
enzymes on SBA-15 has been shown to improve their stability and reusability, while
maintaining high catalytic activity [151,152]. Furthermore, the functionalization of SBA-15
with polymers, such as polyethyleneimine (PEI) and chitosan, has led to the development
of highly efficient adsorbents for the removal of heavy metal ions and organic pollutants
from aqueous solutions [125,153].

The success of SBA-15 in solid–liquid separation applications can be attributed to
its unique structural properties and the ability to fine-tune its surface chemistry through
various functionalization strategies, as discussed in previous sections. As the demand
for efficient and sustainable separation technologies continues to grow, SBA-15-based
materials are poised to play a crucial role in addressing the challenges associated with
water purification, wastewater treatment, and the recovery of valuable resources from
complex mixtures.

6. Conclusions and Future Prospects

This review has provided a comprehensive overview of the recent advances in the
surface modification of SBA-15 for adsorption and separation applications. The unique
structural and physicochemical properties of SBA-15, combined with various surface
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modification strategies, have led to the development of high-performance adsorbents and
separation materials. Specifically, functionalized SBA-15 materials have demonstrated
excellent adsorption capacity, selectivity, and stability in a wide range of applications,
including the removal of organic pollutants, heavy metal ions, gases, and biomolecules, as
well as in chromatographic and solid–liquid separation processes.

Despite the significant progress, several challenges and opportunities for future re-
search have been identified. These include the development of cost-effective and scalable
synthesis methods, rational design of SBA-15-based materials with tailored properties, and
successful integration into practical applications. Future research efforts should focus on the
optimization of synthesis parameters, exploration of novel surface modification strategies,
and comprehensive understanding of the structure-performance relationships. Moreover,
the long-term stability, regeneration, and reusability of functionalized SBA-15 materials in
real-world applications need to be thoroughly investigated. Special attention should be
given to overcoming the limitations of SBA-15, such as its high cost and poor mechanical
properties, by developing alternative synthesis routes, exploring low-cost precursors, and
reinforcing the silica framework with suitable additives.

In conclusion, SBA-15-based materials have shown immense potential in addressing
critical environmental and industrial challenges related to adsorption and separation pro-
cesses. The insights provided in this review are expected to guide future research efforts in
developing advanced SBA-15-based adsorbents and separation materials for sustainable
applications. By overcoming the identified challenges and seizing the opportunities, re-
searchers can unlock the full potential of these materials, contributing to the development
of efficient, eco-friendly, and economically viable solutions for a wide range of separation
and purification processes.
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Abbreviations

2-HB 2-Hydroxybenzaldehyde
4-HB 4-Hydroxybenzaldehyde
AO Amidoxime
APTES 3-Aminopropyltriethoxysilane
BHET Bis(2-Hydroxyethyl) Terephthalate
CEC Capillary Electrochromatography
CMK-3 Carbon Mesostructured by KAIST-3
CMK-5 Carbon Mesostructured by KAIST-5
DES Deep Eutectic Solvents
DM Direct Modification
Dox Doxorubicin
Fe3O4@SBA-15 Fe3O4-wrapped mesoporous molecular sieve catalyst
Fe3O4@SBA-15-Gd Magnetic Fe3O4@SBA-15-Gd nano-adsorbent
Fe3O4@SBA-15-NH2 Fe3O4@SBA-15 modified with 3-aminopropyltriethoxysilane
FTIR Fourier-Transform Infrared Spectroscopy
Ga-SBA-15 Gallium-substituted SBA-15
HPLC High-Performance Liquid Chromatography
IL Ionic Liquid
La-IIP/SBA-15/Y Lanthanum ion-imprinted polymer on composite molecular sieve

SBA-15/Y
MCM-41 Mobil Composition of Matter No. 41
MCM-48 Mobil Composition of Matter No. 48
Melamine-MS-SBA-15 Melamine functionalized mesoporous silica-SBA-15
MMMs Mixed Matrix Membranes
MOFs Metal-Organic Frameworks
NH2-H-SBA-15 NH2-functionalized hydroxylated mesoporous SBA-15
NMR Nuclear Magnetic Resonance
P123 Pluronic P123
P-SBA-15 Phosphorous Acid Modified SBA-15
PAA Phosphonoacetic Acid
PAN Polyacrylonitrile
PAO Poly amidoxime
PAO/AO-SBA-15 Amidoxime-functionalized PAN/AO-SBA-15 membrane
PEI Polyethyleneimine
PET Polyethylene Terephthalate
PFO Palm Fatty Oil
PS Persulfate
SBA-15 Santa Barbara Amorphous-15
SBA-15@AMI NPs Amidoxime functionalized mesoporous silica nanoparticles
SDAs Structure-Directing Agents
SEM Scanning Electron Microscopy
SV Sodium valproate
TEM Transmission Electron Microscopy
TEOS Tetraethyl Orthosilicates
VOCs Volatile Organic Compounds
XPS X-ray Photoelectron Spectroscopy
XRD X-ray Diffraction
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