Influence of Diluent on Extraction Parameters of Systems for Separation Am(III) and Ln(III) Based on 1,10-Phenanthroline-2,9-Diamide
Abstract
:1. Introduction
2. Results and Discussion
2.1. Solvent Extraction of Actinides (An(III)) and Lanthanides (Ln(III))
- Solvents containing aromatic fragments in the structure (π-π stacking with ligand molecules is possible)—toluene, m-nitrobenzotrifluoride (F-3), and nitrobenzene;
- Chlorine-containing organic compounds (halogen–halogen interactions between ligand and solvent molecules due to overlapping p-orbitals of chlorine atoms)—chloroform and 1,2-dichloroethane;
- Aliphatic alcohols (hydrogen bonds)—octanol-1 and dodecanol-1;
- Ionic solvent—1-butyl-3-methylimidazolium bis(trifluoromethanesulfonyl)imide (C4mimNTf2).
2.1.1. Solvent Extraction of Am(III) and Eu(III)
2.1.2. Solvent Extraction of Ln(III)
2.2. Complexation Study
2.2.1. Solvation Numbers for Am(III) and Eu(III)
2.2.2. Saturation of Organic Phases
- Aliphatic alcohols—in extraction systems with C(Eu3+) = 0.5 mol/L, a precipitate fell out. Therefore, the system has low phase stability. The stoichiometry of the complex in the precipitate was calculated as the difference between the count rate of the initial solution and the sum of the count rates for the aqueous and organic phases, and it is equal to 1:1 (metal:ligand). The reason may be in the presence of specific interaction (hydrogen bonding) between complexes and alcohol molecules;
- Aromatic solvents F-3 and nitrobenzene—the concentration of Eu3+ practically does not change when the saturation occurs. Therefore, both 1:1 and 1:2 complexes are formed during saturation in these solvents;
- In the case of less polar toluene, chloroform, and 1,2-dichloroethane, the concentration values double when moving to a more saturated europium solution. This indicates a change in the stoichiometry of the complex in a saturated solution.
2.2.3. Spectrophotometric Titration
2.3. Approximate Solubility of L and MLn(NO3)3 Complexes in Different Diluents
2.4. X-ray Diffraction Method
3. Materials and Methods
3.1. Materials
3.2. Methods
3.2.1. Synthesis and Analysis of Complex Compounds
3.2.2. Solubility of L and Complex Compounds
3.2.3. Extraction Experiments
3.2.4. UV-Visible Titration of L and f-Elements Complexes
3.2.5. XRD Method
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Karduri, R.K.R.; Ananth, C. The Future of Nuclear Energy in a Low-Carbon World. SSRN Electron. J. 2022, 8, 65–73. [Google Scholar] [CrossRef]
- Miguirditchian, M.; Vanel, V.; Marie, C.; Pacary, V.; Charbonnel, M.C.; Berthon, L.; Hérès, X.; Montuir, M.; Sorel, C.; Bollesteros, M.J.; et al. Americium Recovery from Highly Active PUREX Raffinate by Solvent Extraction: The EXAm Process. A Review of 10 Years of R&D. Solvent Extr. Ion Exch. 2020, 38, 365–387. [Google Scholar] [CrossRef]
- Alyapyshev, M.Y.; Babain, V.A.; Ustynyuk, Y.A. Recovery of Minor Actinides from High-Level Wastes: Modern Trends. Russ. Chem. Rev. 2016, 85, 943–961. [Google Scholar] [CrossRef]
- Distler, P.; Mindová, M.; John, J.; Babain, V.A.; Alyapyshev, M.Y.; Tkachenko, L.I.; Kenf, E.V.; Harwood, L.M.; Afsar, A. Fluorinated Carbonates as New Diluents for Extraction and Separation of F-Block Elements. Solvent Extr. Ion Exch. 2020, 38, 180–193. [Google Scholar] [CrossRef]
- Zsabka, P.; Wilden, A.; Van Hecke, K.; Modolo, G.; Verwerft, M.; Cardinaels, T. Beyond U/Pu Separation: Separation of Americium from the Highly Active PUREX Raffinate. J. Nucl. Mater. 2023, 581, 154445. [Google Scholar] [CrossRef]
- Evsiunina, M.V.; Matveev, P.I.; Kalmykov, S.N.; Petrov, V.G. Solvent Extraction Systems for Separation of An(III) and Ln(III): Overview of Static and Dynamic Tests. Mosc. Univ. Chem. Bull. 2021, 76, 287–315. [Google Scholar] [CrossRef]
- Modolo, G.; Wilden, A.; Geist, A.; Magnusson, D.; Malmbeck, R. A Review of the Demonstration of Innovative Solvent Extraction Processes for the Recovery of Trivalent Minor Actinides from PUREX Raffinate. Radiochim. Acta 2012, 100, 715–725. [Google Scholar] [CrossRef]
- Babain, V.; Alyapyshev, M.; Ekberg, C.; Todd, T. Fluorinated Diluents—A Review. Solvent Extr. Ion Exch. 2023, 41, 253–291. [Google Scholar] [CrossRef]
- Konopkina, E.; Gopin, A.; Pozdeev, A.; Chernysheva, M.G.; Kalle, P.; Pavlova, E.; Kalmykov, S.; Petrov, V.G.; Borisova, N.E.; Guda, A.A.; et al. Kinetic Features of Solvent Extraction by N,O-Donor Ligands of f-Elements: A Comparative Study of Diamides Based on 1,10-Phenanthroline and 2,2′-Bipyridine. Phys. Chem. Chem. Phys. 2024, 26, 2548–2559. [Google Scholar] [CrossRef]
- Chen, Y.; Zhang, P.; Yang, X.; Guo, Q.; Weng, H.; Chong, H.; Shi, W.; Lin, M. Radiolysis of Diamide Phenanthroline Extractant: Exploring the Mechanism of HNO3 Enhancing the Extraction and An/Ln Separation Performance after Irradiation. Sep. Purif. Technol. 2023, 318, 123994. [Google Scholar] [CrossRef]
- Yatsenko, A.V.; Evsiunina, M.V.; Nelyubina, Y.V.; Isakovskaya, K.L.; Lemport, P.S.; Matveev, P.I.; Petrov, V.G.; Tafeenko, V.A.; Aldoshin, A.S.; Ustynyuk, Y.A.; et al. Unusual Lanthanoid Contraction in Crystal Structures of 1,10-Phenanthroline-2,9-Diamides Complexes with Lanthanoid and Yttrium Trinitrates and the Effect of Chlorine Substituents. Polyhedron 2023, 243, 116526. [Google Scholar] [CrossRef]
- Lemport, P.S.; Evsiunina, M.V.; Nelyubina, Y.V.; Isakovskaya, K.L.; Khrustalev, V.N.; Petrov, V.S.; Pozdeev, A.S.; Matveev, P.I.; Ustynyuk, Y.A.; Nenajdenko, V.G. Significant Impact of Lanthanide Contraction on the Structure of the Phenanthroline Complexes. Mendeleev Commun. 2021, 31, 853–855. [Google Scholar] [CrossRef]
- Borisova, N.E.; Kostin, A.A.; Reshetova, M.D.; Lyssenko, K.A.; Belova, E.V.; Myasoedov, B.F. The Structurally Rigid Tetradentate N,N′,O,O′-Ligands Based on Phenanthroline for Binding of f-Elements: The Substituents vs. Structures of the Complexes. Inorganica Chim. Acta 2018, 478, 148–154. [Google Scholar] [CrossRef]
- Zhang, X.; Wu, Q.; Lan, J.; Yuan, L.; Xu, C.; Chai, Z.; Shi, W. Highly Selective Extraction of Pu (IV) and Am (III) by N,N′-Diethyl-N,N′-Ditolyl-2,9-Diamide-1,10-Phenanthroline Ligand: An Experimental and Theoretical Study. Sep. Purif. Technol. 2019, 223, 274–281. [Google Scholar] [CrossRef]
- Xu, L.; Yang, X.; Zhang, A.; Xu, C.; Xiao, C. Separation and Complexation of F-Block Elements Using Hard-Soft Donors Combined Phenanthroline Extractants. Coord. Chem. Rev. 2023, 496, 215404. [Google Scholar] [CrossRef]
- Tsutsui, N.; Ban, Y.; Suzuki, H.; Nakase, M.; Ito, S.; Inaba, Y.; Matsumura, T.; Takeshita, K. Effects of Diluents on the Separation of Minor Actinides from Lanthanides with Tetradodecyl-1,10-Phenanthroline-2,9-Diamide from Nitric Acid Medium. Anal. Sci. 2020, 36, 241–245. [Google Scholar] [CrossRef] [PubMed]
- Lemport, P.S.; Matveev, P.I.; Yatsenko, A.V.; Evsiunina, M.V.; Petrov, V.S.; Tarasevich, B.N.; Roznyatovsky, V.A.; Dorovatovskii, P.V.; Khrustalev, V.N.; Zhokhov, S.S.; et al. The Impact of Alicyclic Substituents on the Extraction Ability of New Family of 1,10-Phenanthroline-2,9-Diamides. RSC Adv. 2020, 10, 26022–26033. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Chen, B.; Liu, Y.; Ma, J.; Li, X.; Yang, Y. Selective Extraction of Am(III) from Cm(III) and Eu(III) Using a Novel Phenanthrolinamide Ligand: Thermodynamics, Species, and Structure. Sep. Purif. Technol. 2021, 274, 119119. [Google Scholar] [CrossRef]
- Wang, S.; Yang, X.; Liu, Y.; Xu, L.; Xu, C.; Xiao, C. Enhancing the Selectivity of Trivalent Actinide over Lanthanide Using Asymmetrical Phenanthroline Diamide Ligands. Inorg. Chem. 2024, 63, 3063–3074. [Google Scholar] [CrossRef]
- Archer, E.M.; Galley, S.S.; Jackson, J.A.; Shafer, J.C. Investigation of F-Element Interactions with Functionalized Diamides of Phenanthroline-Based Ligands. Solvent Extr. Ion Exch. 2023, 41, 697–740. [Google Scholar] [CrossRef]
- Kajan, I.; Florianová, M.; Ekberg, C.; Matyskin, A.V. Effect of Diluent on the Extraction of Europium(III) and Americium(III) with N, N, N′, N′-Tetraoctyl Diglycolamide (TODGA). RSC Adv. 2021, 11, 36707–36718. [Google Scholar] [CrossRef] [PubMed]
- Williams, N.J.; Dehaudt, J.; Bryantsev, V.S.; Luo, H.; Abney, C.W.; Dai, S. Selective Separation of Americium from Europium Using 2,9-Bis(Triazine)-1,10-Phenanthrolines in Ionic Liquids: A New Twist on an Old Story. Chem. Commun. 2017, 53, 2744–2747. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Dong, X.; Yuan, J.; Pu, N.; Wei, P.; Sun, T.; Shi, W.; Chen, J.; Wang, J.; Xu, C. Performance and Mechanism for the Selective Separation of Trivalent Americium from Lanthanides by a Tetradentate Phenanthroline Ligand in Ionic Liquid. Inorg. Chem. 2020, 59, 3905–3911. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Yang, X.; Ren, P.; Sun, T.; Shi, W.; Wang, J.; Chen, J.; Xu, C. Substituent Effect on the Selective Separation and Complexation of Trivalent Americium and Lanthanides by N,O-Hybrid 2,9-Diamide-1,10-Phenanthroline Ligands in Ionic Liquid. Inorg. Chem. 2021, 60, 5131–5139. [Google Scholar] [CrossRef] [PubMed]
- Sun, X.; Luo, H.; Dai, S. Ionic Liquids-Based Extraction: A Promising Strategy for the Advanced Nuclear Fuel Cycle. Chem. Rev. 2012, 112, 2100–2128. [Google Scholar] [CrossRef] [PubMed]
- Kolarik, Z. Ionic Liquids: How Far Do They Extend the Potential of Solvent Extraction of f-Elements? Solvent Extr. Ion Exch. 2013, 31, 24–60. [Google Scholar] [CrossRef]
- Del Olmo, L.; Lage-Estebanez, I.; López, R.; García de la Vega, J.M. Effect of Dielectric Constant on Estimation of Properties of Ionic Liquids: An Analysis of 1-Alkyl-3-Methylimidazolium Bis(Trifluoromethylsulfonyl)Imide. RSC Adv. 2015, 5, 72709–72715. [Google Scholar] [CrossRef]
- Rybinska-Fryca, A.; Sosnowska, A.; Puzyn, T. Prediction of Dielectric Constant of Ionic Liquids. J. Mol. Liq. 2018, 260, 57–64. [Google Scholar] [CrossRef]
- Fu, Y.; Meng, X.; Liang, X.; Wu, J. Density and Viscosity Measurements of 1-Dodecanol and 1,12-Dodecanediol at Temperatures of up to 573.15 K and Pressures of up to 10 MPa. J. Chem. Eng. Data 2021, 66, 712–721. [Google Scholar] [CrossRef]
- Available online: http://murov.Info/orgsolvents.htm (accessed on 9 June 2024).
- Marcus, Y. The Properties of Solvents, Wiley; 1st edition, 1998. Available online: https://www.amazon.com/Properties-Solvents-Yizhak-Marcus/dp/0471983691 (accessed on 9 June 2024).
- Waghorne, W.E. Using Computational Chemistry to Explore Experimental Solvent Parameters—Solvent Basicity, Acidity and Polarity/Polarizability. Pure Appl. Chem. 2020, 92, 1539–1551. [Google Scholar] [CrossRef]
- Waghorne, W.E. A Study of Kamlet–Taft β and Π* Scales of Solvent Basicity and Polarity/Polarizability Using Computationally Derived Molecular Properties. J. Solut. Chem. 2020, 49, 466–485. [Google Scholar] [CrossRef]
- Gerasimov, M.A.; Pozdeev, A.S.; Evsiunina, M.V.; Kalle, P.; Yarenkov, N.R.; Borisova, N.E.; Matveev, P.I. Ionic Liquid as a N,O-Donor Ligand-Based Extraction System Modifier: Establishing the Mechanism of Am(III)-Selectivity Increasing. Inorg. Chem. 2024, 63, 2109–2121. [Google Scholar] [CrossRef] [PubMed]
- Nave, S.; Modolo, G.; Madic, C.; Testard, F. Aggregation Properties of N,N,N1,N1- Tetraoctyl-3-Oxapentanediamide (TODGA) in n-Dodecane. Solvent Extr. Ion Exch. 2004, 22, 527–551. [Google Scholar] [CrossRef]
- Pathak, P.N.; Ansari, S.A.; Kumar, S.; Tomar, B.S.; Manchanda, V.K. Dynamic Light Scattering Study on the Aggregation Behaviour of N,N,N′,N′-Tetraoctyl Diglycolamide (TODGA) and Its Correlation with the Extraction Behaviour of Metal Ions. J. Colloid. Interface Sci. 2010, 342, 114–118. [Google Scholar] [CrossRef] [PubMed]
- Erlinger, C.; Belloni, L.; Zemb, T.; Madic, C. Attractive Interactions between Reverse Aggregates and Phase Separation in Concentrated Malonamide Extractant Solutions. Langmuir 1999, 15, 2290–2300. [Google Scholar] [CrossRef]
- Garw, P.; Sabatinib, A.; Vaccab, A. Investigation of Equilibria in Solution. Determination of Equilibrium Constants with the HYPERQUAD Suite of Programs. Talanta 43 1996, 43, 1739–1753. [Google Scholar]
- Ustynyuk, Y.A.; Borisova, N.E.; Babain, V.A.; Gloriozov, I.P.; Manuilov, A.Y.; Kalmykov, S.N.; Alyapyshev, M.Y.; Tkachenko, L.I.; Kenf, E.V.; Ustynyuk, N.A. N,N′-Dialkyl-N,N′-Diaryl-1,10-Phenanthroline-2,9-Dicarboxamides as Donor Ligands for Separation of Rare Earth Elements with a High and Unusual Selectivity. DFT Computational and Experimental Studies. Chem. Commun. 2015, 51, 7466–7469. [Google Scholar] [CrossRef] [PubMed]
- Sheldrick, G.M. SHELXT—Integrated Space-Group and Crystal-Structure Determination. Acta Crystallogr. A Found. Adv. 2015, 71, 3–8. [Google Scholar] [CrossRef]
- Sheldrick, G.M. Crystal Structure Refinement with SHELXL. Acta Crystallogr. C Struct. Chem. 2015, 71, 3–8. [Google Scholar] [CrossRef]
Diluent | Dielectric Constant (ε) | SN (Am) | SN (Eu) |
---|---|---|---|
Toluene | 2.3 | 2.0 | 1.4 |
Chloroform | 4.8 | 2.0 | 1.2 |
Dodecanol-1 | 6.5 | 1.5 | 1.1 |
Octanol-1 | 10.2 | 1.3 | 1.0 |
1,2-dichloroethane | 10.4 | 1.5 | 1.2 |
C4mimNTf2 * | 14.0 | 2.0 | 2.0 |
F-3 | 22.3 | 1.3 | 1.1 |
Nitrobenzene | 35 | 1.6 | 1.3 |
Diluent | Dielectric Constant (ε) | Stability Constant, logβ ML | Stability Constant, logβ ML2 |
---|---|---|---|
Octanol-1 | 10.2 | 4.66 ± 0.04 | 9.83 ± 0.04 |
Butanol-1 | 17.8 | 5.86 ± 0.02 | 11.08 ± 0.05 |
Acetonitrile | 37.5 | 7.88 ± 0.08 | 13.70 ± 0.16 |
Octanol-1 | 10.2 | 4.66 ± 0.04 | 9.83 ± 0.04 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gerasimov, M.A.; Matveev, P.I.; Evsiunina, M.V.; Khult, E.K.; Kalle, P.; Petrov, V.S.; Lemport, P.S.; Petrov, V.G.; Kostikova, G.V.; Ustynyuk, Y.A.; et al. Influence of Diluent on Extraction Parameters of Systems for Separation Am(III) and Ln(III) Based on 1,10-Phenanthroline-2,9-Diamide. Molecules 2024, 29, 3548. https://doi.org/10.3390/molecules29153548
Gerasimov MA, Matveev PI, Evsiunina MV, Khult EK, Kalle P, Petrov VS, Lemport PS, Petrov VG, Kostikova GV, Ustynyuk YA, et al. Influence of Diluent on Extraction Parameters of Systems for Separation Am(III) and Ln(III) Based on 1,10-Phenanthroline-2,9-Diamide. Molecules. 2024; 29(15):3548. https://doi.org/10.3390/molecules29153548
Chicago/Turabian StyleGerasimov, Mikhail A., Petr I. Matveev, Mariia V. Evsiunina, Enni. K. Khult, Paulina Kalle, Valentine S. Petrov, Pavel S. Lemport, Vladimir G. Petrov, Galina V. Kostikova, Yuri A. Ustynyuk, and et al. 2024. "Influence of Diluent on Extraction Parameters of Systems for Separation Am(III) and Ln(III) Based on 1,10-Phenanthroline-2,9-Diamide" Molecules 29, no. 15: 3548. https://doi.org/10.3390/molecules29153548
APA StyleGerasimov, M. A., Matveev, P. I., Evsiunina, M. V., Khult, E. K., Kalle, P., Petrov, V. S., Lemport, P. S., Petrov, V. G., Kostikova, G. V., Ustynyuk, Y. A., & Nenajdenko, V. G. (2024). Influence of Diluent on Extraction Parameters of Systems for Separation Am(III) and Ln(III) Based on 1,10-Phenanthroline-2,9-Diamide. Molecules, 29(15), 3548. https://doi.org/10.3390/molecules29153548