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Abstract: A systematic study of extraction systems for the separation of f -elements using the tetraden-
tate N,O-donor diamide of 1,10-phenanthroline-2,9-dicarboxylic acid (L) in various molecular and
ionic solvents was performed. It was demonstrated that the nature of a diluent has a significant
impact on solvent extraction of Am(III) and Ln(III) and the stoichiometry of formed complexes with
f -elements. The mechanism of complexation and forms of complexes in different diluents were
investigated by radiometric methods, UV-vis titration, and XRD.
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1. Introduction

The main challenge in nuclear energy production lies in managing high-level radioac-
tive waste (HLW) generated during the reprocessing of spent nuclear fuel (SNF) [1]. The
only method currently used for the industrial recycling of SNF is the PUREX process (Pluto-
nium Uranium Reduction EXtraction) [2–4]. After the extraction of uranium and plutonium,
the residual radiotoxicity is primarily associated with minor actinides (MA), especially
241Am (T1/2 = 432.6 years), 243Am (T1/2 = 7370 years), and 244Cm (T1/2 = 18.1 years). A
progressive approach to addressing this issue is the concept of partitioning and transmu-
tation [1,3]. Recent initiatives focus on exclusively transmutating americium to diminish
long-term radiotoxicity and optimize the storage space in geological repositories. Devel-
oping a solvent extraction process is pivotal for recovering this f -element from PUREX
raffinate [5].

Two main challenges involve separating americium from fission products (mainly
lanthanides, which act as neutron poisons) and eliminating curium (a powerful source of
neutrons, limiting its use due to the need for extensive shielding at any stage of the nuclear
fuel cycle) [6]. Several processes, including PUREX-DIAMEX-LUCA [7] and EXAm [2],
have been proposed. However, despite ongoing efforts, a reprocessing system that meets
all technological criteria remains elusive.

Developing a technological scheme for implementing the partitioning and transmu-
tation concept for minor actinides involves several key stages, including selecting an
extractant and organic solvent, as well as conducting static and dynamic tests [6,8]. When
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selecting components for the extraction system for effective Am(III) recovery, the follow-
ing parameters must be considered: the values of the distribution ratios of the extracted
component (D(Am)) should range from 1 to 10 since D < 1 implies that a large fraction
of the component will remain in the aqueous phase, and significantly high values of D
(>1000) make back-extraction processes difficult or impossible. The minimum value of the
separation factor between two components allowing industrial separation is estimated as
SF (Am/component HLW) ≥ 5 [3]. The larger the separation factor, the fewer stages will
be required to achieve the needed product purity.

Diamides of 1,10-phenanthroline-2,9-dicarboxylic acids (DAPhen) are promising ex-
tractants. Due to the combination of the soft nitrogen atoms of the phenanthroline fragment
of the extractant with the hard oxygen atoms of the amide groups, this class of extractants
demonstrates good selectivity for Am(III) over Ln(III) and Am(III) over Cm(III) [6,8–20].
The results obtained for these ligands show the prospect of their industrial-scale use, espe-
cially from nitric acid solutions, as these extractants exhibit a rapidly establishing extraction
equilibrium, which is important for modeling dynamic tests [9].

The proper selection of the solvent in modeling the extraction system is an essential
task. This is the basis of the technological scheme for partitioning HLW since it constitutes
a significant portion of the organic phase. Accordingly, all safety-related requirements
mainly pertain to the properties of these compounds. Also, the price of the diluent is an
important parameter [15,16,21,22].

Hydrocarbons are most commonly used as solvents for extractants in radiochemical
practice. However, the solubility of polar ligands, such as derivatives of 1,10-phenanthroline-
2,9-dicarboxylic acids, is limited in hydrocarbons. In this case, the possible formation of
third phases can be expected, which is undesirable for technological applications [4]. More
often, polar solvents are used as diluents for extraction systems based on extractants of this
type. The most promising results have been obtained using for this aim ionic liquids [22–25]
or fluorinated solvents like m-nitrobenzotrifluoride (F-3) (Figure 1) [4,6,8].
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When using various DAPhen derivatives in combination with the ionic liquid 
C4mimNTf2 as a solvent, the cation-exchange mechanism prevails in the system, leading 
to the formation of a 1:2 (metal:ligand) complex in the organic phase. This explains the 
significant enhancement of the ligand’s extraction ability in ionic liquids compared to con-
ventional molecular solvents [23,24]. However, these systems have various disadvantages, 
including stability only in weakly acidic solutions, a prolonged establishment of the ex-
traction equilibrium, high solubility in water (especially in the presence of nitric acid), and 
high viscosity. Furthermore, this type of diluent may pose greater risks to human health 
compared to molecular solvents, raising concerns about the designation of ionic liquids as 
“green” solvents [26]. 

It is worth noting that the extraction ability of a ligand in different solvents can vary 
significantly due to different complexation mechanisms. This behavior may correlate with 
solvent properties such as the dielectric constant, molecular weight, or viscosity. Some 

Figure 1. Structure of N,N’-diethyl-N,N’-di(4-hexyl-phenyl)-diamide of 1,10-phenanthroline-
4,7-dichloro-2,9-dicarboxylic acid—L (a); m-nitrobenzotrifluoride—F-3 (b) and 1-butyl-3-
methylimidazolium bis(trifluoromethanesulfonyl)imide—C4mimNTf2 (IL) (c).

When using various DAPhen derivatives in combination with the ionic liquid C4mimNTf2
as a solvent, the cation-exchange mechanism prevails in the system, leading to the for-
mation of a 1:2 (metal:ligand) complex in the organic phase. This explains the significant
enhancement of the ligand’s extraction ability in ionic liquids compared to conventional
molecular solvents [23,24]. However, these systems have various disadvantages, includ-
ing stability only in weakly acidic solutions, a prolonged establishment of the extraction
equilibrium, high solubility in water (especially in the presence of nitric acid), and high vis-
cosity. Furthermore, this type of diluent may pose greater risks to human health compared
to molecular solvents, raising concerns about the designation of ionic liquids as “green”
solvents [26].

It is worth noting that the extraction ability of a ligand in different solvents can vary
significantly due to different complexation mechanisms. This behavior may correlate with
solvent properties such as the dielectric constant, molecular weight, or viscosity. Some
research findings suggest that extraction systems employing nonpolar organic diluents
exhibit a lower separation factor SF(Am/Eu) compared to more polar solvents. Additionally,
solvents with lower dielectric constants may demonstrate increased efficiency at higher
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acid concentrations due to their neutrality. These results raise questions about potential
synergistic effects and competition with HNO3 as well as neutral DAPhen ligands. Also
noteworthy is the lack of systematic studies of various solvents for extraction systems
based on N,O-donor ligands [16,20].

We decided to study the extraction ability of N,N’-diethyl-N,N’-di(para-hexyl-phenyl)-
diamide of 1,10-phenanthroline-4,7-dichloro-2,9-dicarboxylic acid (L) (Figure 1) as an
extractant for the separation of MA/Ln in different molecular and ionic diluents. The choice
of the ligand structure is determined by several factors, including a “strong” phenanthroline
framework and the presence of halogens and aromatic fragments (the ability for π-π
stacking and the formation of halogen bonds with solvent molecules).

The dependence of the physical properties of the solvent (dielectric constant, viscosity,
polarizability) on the parameters of the extractant was investigated. Particular attention
was paid to the structure of the complexes of f -elements in the studied systems depending
on the solvent nature.

2. Results and Discussion
2.1. Solvent Extraction of Actinides (An(III)) and Lanthanides (Ln(III))

Solvent extraction is the most suitable method for separating and concentrating f -
elements from HLW. The essence of this method lies in the distribution of components
between two unmixable phases when they are in contact. The PUREX-process raffinate
is a nitric acid solution containing a large number of components, including actinides(III)
and lanthanides(III). The organic phase mostly consists of an extractant in a hydrophobic
organic diluent. Since the solvent constitutes the majority of the organic phase, it can
influence the complexation mechanism and, hence, the characteristics of the extraction
systems. To investigate the influence of the solvent on the extraction parameters of systems
based on N,O-donor ligand L, we considered molecular and ionic diluents with varying
physicochemical properties (dielectric constant and viscosity). We studied a series of
diluents with a wide dielectric constant range—from 2 to 35. The properties of diluents
and approximate solubility of L in the solvents [8,27–33] are presented in Table S1. These
solvents can be grouped according to their structure as follows:

• Solvents containing aromatic fragments in the structure (π-π stacking with ligand
molecules is possible)—toluene, m-nitrobenzotrifluoride (F-3), and nitrobenzene;

• Chlorine-containing organic compounds (halogen–halogen interactions between ligand
and solvent molecules due to overlapping p-orbitals of chlorine atoms)—chloroform and
1,2-dichloroethane;

• Aliphatic alcohols (hydrogen bonds)—octanol-1 and dodecanol-1;
• Ionic solvent—1-butyl-3-methylimidazolium bis(trifluoromethanesulfonyl)imide

(C4mimNTf2).

In terms of further processing of used solvents, the CHON principle corresponds to
aliphatic alcohols, toluene, and nitrobenzene.

It is worth noting that all the solvents studied in this work have different viscosities.
This parameter is important as it affects the kinetics of the complexation process. Viscosity
must also be taken into account when choosing a solvent. However, this parameter does
not significantly affect the thermodynamics of the process of binding f -elements by the
ligand L under study.

2.1.1. Solvent Extraction of Am(III) and Eu(III)

The extraction of Am(III) and Eu(III) with 0.025 mol/L solutions of ligand L in various
solvents from 3 mol/L HNO3 was studied. The dielectric constant consistently emerges
as the most critical parameter for comparing extraction parameters across different dilu-
ents. [16,20]. In addition, it is presumed that the stability of complex compounds in the
solvent directly correlates with the phase stability of the organic part of the system. This
parameter should be directly related to the molarity of the diluent, that is, with the concen-
tration of solvent molecules in itself. As can be seen from the data presented in Figure 2a
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(Table S2), there is a certain pattern—in most cases, the dielectric constant of the solvent and
the distribution ratio increases in a symbatic way. For instance, although 1,2-dichloroethane
and octanol-1 share similar dielectric constants, their observed distribution ratios differ
significantly. Hence, the values of distribution ratios depend not only on the dielectric
constant of the solvent but also on other factors.
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Figure 2. D(Am), D(Eu), and SF(Am/Eu) (a) for extraction and (b) back-extraction processes in
different molecular diluents. Aqueous phase: 3 mol/L HNO3. Organic phase: 0.025 mol/L of L.
t = 15 min. (for ionic liquid t = 1 h), T = 298 ± 1 K (p = 0.95; n = 3; SD < 10%).

The separation factors have the highest values in the case of ionic liquid, dodecanol-1,
and toluene. These observations may be associated with specific interaction between L
and the solvent or the influence of other diluent properties. It is interesting to consider the
relationship between the SF(Am/Eu) and the dielectric constant of the molecular diluent.

The extraction system with a combination of ligand L and ionic liquid C4mimNTf2
demonstrated the most efficient separation. The values of distribution ratios at an L
concentration of 0.025 mol/L were 537 and 13.4 for Am(III) and Eu(III), respectively, and
SF(Am/Eu) = 40. The main problem of this system is low stability to form a third phase
and a long time to establish extraction equilibrium. When the concentration of L in the
organic phase exceeded 0.03 mol/L, a white precipitate fell out. Contacting the solution
with the precipitate and nitric acid solution did not change the situation. It is important to
note that the volume of the precipitate did not depend on the amount of dissolved ligand.
We assumed that this is probably related to the chemical interaction between the extractant
and the ionic liquid. However, on the HRMS ESI spectrum of the precipitate obtained in
extraction systems, no interaction adducts were found—the mass spectrum contained only
signals of the cation of the ionic liquid and L in the mass spectrum of positive ions and the
anion of the ionic liquid in the case of negative ions (Figures S10–S12).

The ability of the extraction system, namely, the combination of ligand and solvent,
to back-extraction is an important parameter in modeling the separation technology in
terms of solvent recycling. In Figure 2b (Table S2), it can be observed that in the case of
most molecular solvents, the distribution ratios of Am(III) and Eu(III) are less than 0.1,
indicating almost complete transfer of these elements to the aqueous phase (0.5 mol/L
HNO3). However, in the case of dodecanol-1, the back-extraction is partial—D(Am) = 8.8
and D(Eu) = 0.54.

In the case of ionic liquids, there is no back-extraction. This is probably due to the
stabilization of the complex in the organic phase. The combination of ligand L with an ionic
liquid strongly binds f -elements in the organic phase. An alternative to back-extraction
is evaporation/solvent stripping, which is also not realizable for this type of organic
compound. This is due to their melting at higher temperatures. However, they can be used
in a mixture with molecular solvents as synergistic additives [34].

To establish a pattern between SF(Am/Eu) and the solvent used, additional parameters
must be considered. The dielectric constant alone does not explain the observed changes
in distribution ratios. For instance, in the case of 1,2-dichloroethane and octanol-1, their
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dielectric constants are similar, yet their polarizabilities differ. Perhaps polarizability could
serve as an additional criterion when selecting a solvent based on the extraction properties
of the ligand.

2.1.2. Solvent Extraction of Ln(III)

The extraction of all Ln(III) (except Pm) from a 3 mol/L nitric acid solution was
studied. Ligand L (C(L) = 0.025 mol/L) was used as the extractant in various solvents. The
same trend is observed in all cases: the distribution ratios decrease from La to Lu (Figure 3,
Table S3). It can also be noted that in most cases, the distribution ratio for each lanthanide
increases with the increase in the dielectric constant of the solvent.
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L. t = 15 min. (for ionic liquid t = 1 h), T = 298 ± 1 K (p = 0.95; n = 10; number of scans = 10 SD < 2%).

In the case of ionic liquid, the distribution ratios of Ln(III) are higher than in all
molecular solvents. The general trend remains the same (the minimum in the area of Tb
and Dy). However, there is a rise from Er with a maximum of Yb. However, in the case of
extraction with molecular solvents, the general trend is a decrease in D with an increase in
the atomic number of the lanthanide.

The dependence of the ∑D(Ln) (the sum of the distribution ratios of elements from La
to Lu without Pm) obtained for molecular solvents on the dielectric constant also indicates
that in a more polar solvent, the distribution ratio is higher than in a less polar one (Figure 4).
However, in the case of 1,2-dichloroethane and 1-octanol, the values differ significantly,
which underlines that the dielectric constant alone is not enough for solvent selection when
modeling an extraction system. It should also be noted that ∑D(Ln) is significantly higher
in the case of ionic liquid than in the case of any of the considered molecular solvents
(∑D(Ln) > 3500).

Given the extraction parameters obtained for different model systems in all the solvents
studied, it is interesting to investigate the processes leading to such different properties of
the same extractant in these diluents. The likely influence of the solvent on the extraction
properties is the possibility of forming aggregates of L in the organic phase. It may be
connected with the molarity, polarizability of diluents, and the ability of hydrogen bond-
ing/specific interaction between the L and solvent molecules [21,32–34]. The aggregation
of ligands in organic phases has also been noted for diglycolic acid diamides [35,36]. This
ligand forms reverse micelles in hydrocarbon diluents, with water in the core and around
4 molecules of extractant. It should be noted that the solvation numbers for TODGA
(N,N,N,N Tetraoctyl Diglycolamide) in hydrocarbon solvents coincide with the amount of
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extractant in the micelle—thus, such a micelle, in a way, preorganizes the necessary amount
of extractant molecules, which leads to an increase in extraction. On the other hand, the
aggregation of micelles ultimately leads to the formation of a third phase. The same is true
for extraction systems based on malonamides [37]. Thus, it can be stated that the observed
difference in selectivity and extraction ability may be associated with specific states of
the extractant in the solvent. Also, the solvent can form supramolecular complexes with
ligand molecules or change its conformation, which will affect the parameters of extraction
systems. Therefore, it is especially important to study the mechanism of complex formation
between L and f -element in each solvent considered.
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2.2. Complexation Study
2.2.1. Solvation Numbers for Am(III) and Eu(III)

To determine the composition of the extracted complexes, the solvation numbers (SN)
of Am(III) and Eu(III) were determined using the slope analysis (description and equations
in Table S4). The solution of 3 mol/L HNO3 was used as the aqueous phase, and the ligand
L dissolved in organic diluents was used as the organic phase.

Non-integer solvation numbers can be explained by the formation of several types of
complexes in the organic phase. As can be seen in Table 1, the solvation numbers of Eu(III)
for L in all molecular solvents are in the range of 1–1.4. That means that ML(NO3)3 and
ML2(NO3)3 complexes can exist in the organic phase, with the complex with a metal:ligand
ratio of 1:1 predominating. Solvation numbers for Am(III) in various solvents are in the
range from 1.3 to 2.0. These data may indicate the formation of a mixture of 1:1 and 1:2
complexes, which are in equilibrium. However, in the case of toluene and chloroform, there
is a clear predominance of the 1:2 complex for americium. A similar picture was observed
for ionic liquid; complexes of composition 1:2 (M:L) predominate for both americium and
europium according to experimental solvation numbers. Previously, we have shown that
this phenomenon is related to the participation of NTf2

− in complexation between the
ligand and cation [34].
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Table 1. Solvation numbers of Am(III) and Eu(III) for L in different diluents. Aqueous phase:
3 mol/L HNO3. Organic phase: 6.25 mmol/L—0.1 mol/L of L (* for ionic liquid C(L): 1.5 mmol/L—
0.025 mol/L), number of points = 5, R2 = 0.99, t = 15 min. (for ionic liquid t = 1 h), T = 298 ± 1 K
(p = 0.95; n = 3; SD < 10%).

Diluent Dielectric Constant (ε) SN (Am) SN (Eu)

Toluene 2.3 2.0 1.4

Chloroform 4.8 2.0 1.2

Dodecanol-1 6.5 1.5 1.1

Octanol-1 10.2 1.3 1.0

1,2-dichloroethane 10.4 1.5 1.2

C4mimNTf2 * 14.0 2.0 2.0

F-3 22.3 1.3 1.1

Nitrobenzene 35 1.6 1.3

2.2.2. Saturation of Organic Phases

Next, we decided to determine the stoichiometry of complexes as well as to study the
capacity of extractants using saturation of organic phases by Eu(III) (Figure 5). Solutions
of 0.1 mol/L and 0.5 mol/L of stable Eu3+ with the addition of 152Eu3+ in 3 mol/L HNO3
were used as the aqueous phase.
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According to the obtained dependencies, the following features can be highlighted for
molecular solvents:

• Aliphatic alcohols—in extraction systems with C(Eu3+) = 0.5 mol/L, a precipitate fell
out. Therefore, the system has low phase stability. The stoichiometry of the complex
in the precipitate was calculated as the difference between the count rate of the initial
solution and the sum of the count rates for the aqueous and organic phases, and it is
equal to 1:1 (metal:ligand). The reason may be in the presence of specific interaction
(hydrogen bonding) between complexes and alcohol molecules;

• Aromatic solvents F-3 and nitrobenzene—the concentration of Eu3+ practically does
not change when the saturation occurs. Therefore, both 1:1 and 1:2 complexes are
formed during saturation in these solvents;

• In the case of less polar toluene, chloroform, and 1,2-dichloroethane, the concentration
values double when moving to a more saturated europium solution. This indicates a
change in the stoichiometry of the complex in a saturated solution.
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As a result, in the case of solvents with low dielectric constant values, 1:1 complexes
are predominantly formed in the presence of a large excess of Eu(NO3)3. In the case of
solvents with high polarity, the formation of 1:2 (metal:ligand) complexes is more favorable.

Next, the same experiments were performed with ionic liquid (C(L) = 0.025 mol/L).
This system demonstrated a low phase stability to form precipitate via contact with
0.1 mol/L and 0.5 mol/L solutions of Eu(NO3)3. According to the data obtained with
γ-spectroscopy, it was shown that radioactive Eu3+ is contained in the precipitate. There-
fore, the formed precipitate is a europium complex with L. The count rate of the precipitate
was calculated from the difference in the count rates of the original label and the sum of the
aqueous and organic phases. This count rate was recalculated into the concentration of Eu3+

in the formed precipitate. For systems with an initial europium concentration of 0.1 mol/L
and 0.5 mol/L in the aqueous phase, the content in the precipitate was 0.015 ± 0.001 mol/L
and 0.031 ± 0.002 mol/L, and the L:M ratio in the obtained systems was 1.6 and 0.8, re-
spectively. Therefore, the stoichiometry of the complex can be changed in the presence
of a large excess of f -element in the system containing ionic liquid. A predominantly 1:1
complex is formed in this case.

2.2.3. Spectrophotometric Titration

In order to establish the stoichiometry of the europium complex with L and to de-
termine their stability constants, spectrophotometric titration was carried out. Isosbestic
points are clearly visible on all absorption spectra (Figure 6). Therefore, a free ligand and
a complex of this ligand with Eu(III) are present in the solution. The absorption maxima
of the free ligand are observed at a wavelength of ~273 nm. The absorption maximum
for EuLn complexes ~330 nm coincides with UV-vis titration in acetonitrile, octanol-1,
and butanol-1. Also, for these solvents, the absorption minimum of ~ 275 nm coincides,
which indicates the same stoichiometry of the formed complexes. In all cases, complexes
of composition 1:1 and 1:2 (M:L) are formed, and this is confirmed by titration curves
(Figure 6). The most stable complexes are formed in acetonitrile, the least stable in octanol-1.
The stability constants of the Eu(III) complex with L, obtained using the HypSpec2014
program [38], are presented in Table 2.

Table 2. Stability constants of MLn (M = Eu3+, n = 1, 2) complexes in different solvents.

Diluent Dielectric Constant
(ε)

Stability Constant,
logβ ML

Stability Constant,
logβ ML2

Octanol-1 10.2 4.66 ± 0.04 9.83 ± 0.04

Butanol-1 17.8 5.86 ± 0.02 11.08 ± 0.05

Acetonitrile 37.5 7.88 ± 0.08 13.70 ± 0.16

Octanol-1 10.2 4.66 ± 0.04 9.83 ± 0.04

One can see that the solvent influences the stability constants. There is a correlation that
with the increase in dielectric permittivity, the binding constant values increase. Therefore,
more stable complexes are formed in solvents of higher polarity. Most probably, highly
polar complexes ML and ML2 are preferably formed in solvents of higher polarity.
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2.3. Approximate Solubility of L and MLn(NO3)3 Complexes in Different Diluents

The solubility of the extractant in a molecular solvent is an important parameter
determining the effectiveness of the extraction system since it affects such an important
parameter as capacity. This is because the concentration of f-element in the organic phase
is connected with the L concentration due to lipophilic complex formation. In addition,
a larger maximum solubility of the ligand in the diluent makes it easier to select optimal
conditions for separation metals. For example, it allows for avoiding or reducing correction
for the composition of the original aqueous solution containing the separated components.
In this regard, the next step in studying the reason for the change in extraction capabilities
of L when changing the solvent was to evaluate solubility.

According to Table S1, extractant L has higher solubility in 1,2-dichloroethane and
chloroform. These solvents have the highest values of molarity (the concentration of solvent
molecules in itself). The lowest solubility value is for octanol-1 and dodecanol-1, which
also correlates with the values of molarity of the solvents. Therefore, the concentration of
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the solvent in itself and the maximum possible concentration of L in this solvent change
symbiotically. Thus, for the development of an extraction system, it is necessary to consider
solvents with a high value of molarity and low molecular weight.

The subsequent step of our study involved examination of the solubility of complexes
of L with some f -elements. For these purposes, we synthesized complexes ML(NO3)3,
where M = La, Eu, Nd, Lu. The structure of these complexes was confirmed by X-ray
diffraction analysis (Section 2.4). In solubility tests, we found that the concentrations of
saturated solutions in all these complexes were approximately 0.2 M in chloroform, 1,2-
dichloroethane, and nitrobenzene. These three solvents have high molarity values, which
seemed to be the most effective. However, the fact that we did not observe the same value
in toluene, despite its high molarity, suggests that other factors (polarity) should be taken
into account.

In the case of toluene, dodecanol-1, octanol-1, F-3, and ionic liquid, when the solvent
was added portion-wise, the sample of complex (m = 5 mg) did not dissolve, and after
adding 200 µL of solvent, a precipitate fell out, which did not dissolve with further addition
of solvent. Probably, this is due to an additional competing process—the dissociation of the
complex into components. In connection with this assumption, 3 mol/L nitric acid (50 µL)
was added to the samples containing the third phase. In the case of theses complexes of
lanthanides, nitrate anion enters the inner coordination sphere, and the presence of H3O+

and H2O in the solution the stability of complexes increased. The addition of acid affected
the system with the solvent F-3—the precipitate dissolved. However, in other cases, the
third phase remained unchanged.

2.4. X-ray Diffraction Method

Single crystals of NdL(NO3)3 (CCDC number 2361229) and LuL(NO3)3 (CCDC num-
ber 2361230) were grown from a chloroform/acetonitrile/toluene mixture. However, the
crystal structures do not include any solvent molecules. Both complexes crystallize in the
non-centrosymmetric space group Pca21 and are isostructural to the europium complex
with the same ligand L [13]. There are two independent neutral molecules with similar
structures in the asymmetric unit. The metal cation is coordinated by the tetradentate
ligand and by three nitrate counterions (Figure 7). In the lutetium complex, the NO3

−

group opposite to the phenanthroline moiety is asymmetrically coordinated, with one
Lu−O bond 2.399(5) Å and the other 2.515(5) Å, while the rest of the Lu−Onitrate distances
are in the range of 2.423(4)−2.455(4) Å. In the second independent complex of lutetium,
this nitrate group is disordered over two positions, with the main component (75%) being
in the monodentate mode. The neodymium complex, as well as the published europium
complex, do not possess any asymmetry in the nitrate binding. The disorder of the nitrate
group also has a different nature and includes only bidentate nitrate groups (Figure 8).
Differences in the structures are caused by steric strains appearing with the decrease in the
ionic radius of the lanthanide.
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The addition of ethanol to the crystallization solvent mixture had an impact on the
crystal structure of the lanthanum complex with L (CCDC number 2361228). The triclinic
(p – 1) structure contains free water and ethanol molecules. In the asymmetric unit, there are
three independent complexes forming, in total, a neutral agglomerate. Two complexes (La1,
La2) are anionic and have the composition [LaL(NO3)4]−, while the third (La3) complex is
cationic and includes coordinated water molecules [LaL(NO3)(H2O)4]2+ (Figure 9). The two
12-coordinated lanthanum ions are in a distorted icosahedral environment. The geometry
of the third lanthanum ion is difficult to assign to any regular polyhedron.
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The crystal packing of complex La(NO3)3 with L is defined by a network of hydrogen
bonds (D-A distances in the range of 2.537(9)−2.801(7) Å) involving the coordinated water
molecules, nitrate oxygen atoms, and free solvent molecules (Figure 10). Moreover, different
types of π···π interactions between the phenanthroline fragments stabilize the structure.
The complexes La1 and La3 are stacked into centrosymmetric tetramers with centroid–
centroid distances of 3.798(4) and 3.755(3) Å. The complex La2 and its symmetric equivalent
form dimeric stacks with the distance between plane centroids 3.845(5) Å (Figure 11).

Hydrogen bonding and stacking lead to the arrangement of a framework consisting
predominantly of metal–oxygen cores. The hexyl chains adopting different conformations
are combined into distinct hydrophobic areas (Figure 12a), whereas the crystal packings
of the neodymium and lutetium complexes are formed only by weak non-directional
interaction and do not contain clearly distinguished regions (Figure 12b).

So, the tendency of lanthanum to have higher coordination numbers and the possi-
bilities for hydrogen bonding result in the formation of a completely different packing in
the lanthanum complex than that of the lutetium or neodymium complex with the same
ligand. However, despite the difference in the structure of the lanthanum complex, this
difference did not affect the value of its solubility.
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3. Materials and Methods
3.1. Materials

N,N’-diethyl-N,N’-di(para-hexyl-phenyl)-diamide of 1,10-phenanthroline-4,7-dichloro-
2,9-dicarboxylic acid (L) was prepared, purified, and characterized according to the pub-
lished method [39]. m-nitrobenzotrifluoride (F-3) (OJSC “PIM-INVEST”), acetonitrile
(ACROS, HPLC grade), chloroform, 1,2-dichloroethane, nitrobenzene, toluene, octanol-1,
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butanol-1, dodecanol-1 (ACROS) C4mimNTf2 (Merck, Darmstadt, Germany, >99%); crys-
talline hydrates of lanthanide nitrates (Sigma-Aldrich, Waltham, MA, USA, 99.9%); and
radionuclides 241Am, 152Eu (Company “Isotope”, Tokyo, Japan) were used in this work.
Aqueous solutions were prepared using deionized water (MilliPore Simplicity, Merck,
Darmstadt, Germany) and concentrated nitric acid (analytical grade, Chimmed Group,
Moscow, Russia) were employed.

3.2. Methods
3.2.1. Synthesis and Analysis of Complex Compounds

Complex compounds were synthesized by adding a solution of lanthanide nitrate
(0.5 mmol) in dry acetonitrile to a solution of the ligand L (0.5 mmol) in chloroform
(V = 1 mL) under stirring. Subsequently, the reaction mixture was concentrated in vacuo (at
~20 Torr), treated with 2–3 mL of diethyl ether, and the resulting precipitate of the complex
was filtered off and washed with a fresh portion of ether. The obtained complex was
air-dried to a constant weight. To confirm the complex nature of the obtained compounds,
IR spectroscopy techniques were employed using a Nicolet iS5 FT-IR spectrometer (Thermo
Scientific, Waltham, MA, USA) equipped with an attenuated total reflectance (ATR) fea-
turing a diamond optical element (resolution 4 cm−1, number of scans 32). Additionally,
the melting points of the resulting compounds were determined using a melting point
apparatus (Büchi melting point apparatus Model B-545).

NMR spectra were recorded using standard 5 mm sample tubes on Agilent 400-MR
spectrometer (Agilent, Santa Clara, CA, USA) with operating frequencies of 400.1 MHz
(1H). NMR (Figures S1–S4) and IR (Figures S5–S9) spectra and characterization (Table S5)
for all complexes and pure L are shown in Supplementary Materials. The IR spectra of all
the obtained complexes show a shift of the C=O band by about 40 cm−1 compared to the
ligand L (Table S6), which indicates the formation of metal bonds with the coordination
centers of diamides.

3.2.2. Solubility of L and Complex Compounds

The solubility of L and their complexes with lanthanides in different diluents was
determined using the following procedure: a suspended sample of the ligand/complex
with a known mass (5 mg) was placed in an Eppendorf tube, and the organic solvent was
added incrementally. After each addition of a small volume of solvent, the sample was
placed on a vortex shaker for 10 min. The process was repeated until the substance visually
dissolved. The volume of the resulting solution was then measured.

HRMS ESI—mass spectra were recorded on the MicroTof Bruker Daltonics and Or-
bitrap Elite instruments (Bruker, Billerica, MA, USA). The LC system consisted of two
LC-20AD pumps (Shimadzu, Tokyo, Japan), and an autosampler was coupled on-line
with an LCMS-IT-TOF mass spectrometer equipped with an electrospray ionization source
(Shimadzu, Tokyo, Japan). The analysis was carried out without a chromatographic column.
Time analysis was 1 min. The mobile phase consisted of HPLC-grade acetonitrile at a flow
rate of 0.3 mL/min. Mass spectra were obtained in two m/z ranges from 200 to 800 and
from 800 to 1300 Da. The following parameters were used during analysis: CDL and heat
block temperature was 548 K; nebulizing gas flow 1.5 mL/min; positive ion mode, interface
voltage 4.5 kV; ion accumulation time 30 ms.

3.2.3. Extraction Experiments

Extraction experiments were performed in 1.5 mL polypropylene Eppendorf tubes.
The organic phase (0.5 mL) and the aqueous phase (0.5 mL) were intensively mixed with
a Vortex shaker in a thermostat (T = 298 ± 1 K). After that, the samples were centrifuged
(5 min, 9000 rpm), and aliquots of 0.4 mL were taken for further analysis. For back-
extraction experiment, organic phase was contacted with equal volume of 0.05 mol/L
HNO3. After centrifugation, these aliquots were analyzed.
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For saturation of organic phases, aqueous phases containing 0.1 mol/L and 0.5 mol/L
stable Eu3+ with addition of 152Eu3+ were used. The content of 241Am (Eγ = 59.5 keV)
and 152Eu (Eγ = 121.8 keV) was determined by γ-spectrometry (ORTEC DSPec50 radio-
metric complex with a coaxial gamma detector, Ametek, Berwyn, PA, USA). The radionu-
clide contents in the initial aqueous phase were ∼1500 and ∼2500 Bq/mL for 241Am and
152Eu, respectively.

Quantitative determination of lanthanides in the initial aqueous phase (C0) and in the
aqueous phase after extraction (C) was carried out using ICP-MS (Analytic Jena Plasma
Quant MS Elite, Analytik Jena, Jena, Germany). The concentration of each lanthanide was
0.1 mmol/L. The distribution ratio D is equal to the ratio of the element concentrations in
the organic and aqueous phases, respectively. The separation factor SF(M1/M2) is equal to
the distribution ratio of two different elements.

3.2.4. UV-Visible Titration of L and f-Elements Complexes

The spectra were recorded at 298.0 ± 0.1 K in the wavelength range of 200–500 nm
using a spectrophotometer (Shimadzu UV 1900i, Shimadzu, Tokyo, Japan) equipped with a
thermostatic attachment (Shimadzu TCC-100, Shimadzu, Tokyo, Japan). Quartz cuvettes
with an optical path length of 10 mm were utilized. Working solutions of the metal
(Eu3+) and ligand L were prepared by dissolving the suspension in a molecular organic
solvent, each with concentrations of 10−3 mol/L and 10−5 mol/L, respectively. For the
titration, 2 mL of the working solution of the extractant was used, and 2 µL of the metal
cation working solution was added incrementally until the change in the appearance of
the absorption spectrum ceased. The titration was repeated three times to confirm the
reproducibility of the results. The data obtained during spectrophotometric titration were
processed using the HypSpec2014 program [38].

3.2.5. XRD Method

The complex substances were prepared by mixing the solutions of components (the
ratio of components corresponded to stoichiometry in expected complexes) or dissolving
synthesized complexes in dried acetonitrile, chloroform, toluene, or their mixture. The
crystal structures of these substances were prepared via slow isothermal evaporation. Crys-
tallographic data for complex La(NO3)3 with L were collected on a Bruker D8 Venture
diffractometer (Bruker, Billerica, MA, USA) using graphite monochromatized CuKα radia-
tion (λ = 1.54178 Å) in ω-scan mode at T = 100 K. Crystallographic data for NdL(NO3)3
and LuL(NO3)3 were collected on a Bruker D8 Venture and a Bruker Smart Photon II
diffractometer using graphite monochromatized MoKα radiation (λ = 0.71073 Å) in ω-scan
mode at T = 150 K.

Cell refinement and data reduction for all structures were conducted using the soft-
ware SAINT (V8.38A, Bruker, Yokohama City, Japan). Absorption correction based on
measurements of equivalent reflections was applied (SADABS-2016/2, Bruker 2016/2). The
structures were solved by direct methods (SHELXT 2018/2) [40] and refined by full-matrix
least-squares on F2 (SHELXL 2018/3) [41] with anisotropic displacement parameters for all
non-hydrogen atoms, except some minor components of disordered groups and partially
occupied solvent molecules in LuL(NO3)3 and complex La(NO3)3 with L, which were
refined with isotropic displacement parameters. Hydrogen atoms were placed in calculated
positions and refined using a riding model. NdL(NO3)3 and LuL(NO3)3 were treated as
inversion twins with the second domain fractions of 0.479(8) and 0.450(6), respectively. The
component ratios in all disordered groups were first refined and then fixed in the final
refinement. For crystallographic details, see Tables S7–S9.

4. Conclusions

In this work, the influence of solvent nature on the separation parameters of Am(III)
and Ln(III) in extraction systems based on N,O-donor ligand L was investigated. The
distribution ratios of Am(III) and Ln(III) in various molecular solvents: chloroform, 1,2-
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dichloroethane, toluene, nitrobenzene, octanol-1, dodecanol-1, m-nitrobenzotrifluoride
(F-3), and ionic liquid C4mimNTf2 were determined. The resulting values of D(Am)
increase from 1.4 to 537 and D(Eu) from 0.08 to 13.4 when using diluents with larger values
of dielectric constant. However, the dependence is not linear. The values of SF(Am/Eu) for
all solvents are in the region of 17–40 and do not correlate with dielectric constant values.
The values of binding constants obtained in different solvents do not contradict these data.

The mechanism of complexation in each solvent was investigated. The solvation
numbers for Eu(III) and Am(III) with L in each solvent were determined, and the spec-
trophotometric titration of Eu(III) with L was carried out. It is shown that depending on
the organic solvent used, the stoichiometry of complexes of f -elements with ligand L is dif-
ferent. Equilibrium between ML(NO3)3 and ML2(NO3)3 complexes can exist in the organic
phase; the ML(NO3)3 complex predominates in most cases. However, in the case of toluene
and chloroform, the clear predominance of the 1:2 complex was observed for Am(III). In
the case of ionic liquid, americium and europium form ML2(NO3)3 complexes preferably.

It is worth noting that the form of the complex also depends on the f -element since,
in the case of La(III), we observed a complex compound consisting of cationic and an-
ionic parts, unlike complexes of other f -elements. Nevertheless, the dissolution of these
compounds in various solvents was similar and did not depend on the metal.

An important parameter is the phase stability of the extraction system—a third phase
in the case of excess of metal formed in systems with aliphatic alcohols and ionic liquid,
unlike all other solvents (aromatic and halogen-containing).

Choosing the diluent is an important step in separation technology modeling due
to the influence of physical and chemical properties on the extraction parameters of L
and the safety of the operator. Table S9 presents a sum of all that was discussed in this
research article. The compromise variants for diamides of 1,10-phenanthroline in this list
are nitrobenzene and F-3. These are highly polar aromatic solvents, the disadvantage of
which is high transfer to the aqueous phase during extraction and fluoride anion leaching
in the case of F-3. Another disadvantage is the toxicity of these compounds. Of course,
when it comes to the treatment of high-level waste, the danger of toxicity is a secondary
consideration. Nevertheless, it is important to reduce the toxicity of the solvent. Searching
for the “ideal” diluent for diamides of 1,10-phenanthroline has not ended.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/molecules29153548/s1, properties of diluents, extraction, NMR, IR,
XRD, HRMS ESI data.
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