Restructuring and Hydrogen Evolution on Sub-Nanosized PdxBy Clusters
Abstract
:1. Introduction
2. Results and Discussion
2.1. The Structures of Sub-Nanosized PdxBy Clusters
2.2. Structure Analysis of PdxByHz under HER Conditions
2.3. Free-Energy Barrier of the HER and the Catalytic Unit
3. Discussion
4. Calculation Methods
4.1. Stochastic Surface Walking (SSW) Sampling Method
4.2. Density Functional Theory (DFT) Calculations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Chu, S.; Majumdar, A. Opportunities and challenges for a sustainable energy future. Nature 2012, 488, 294–303. [Google Scholar] [CrossRef] [PubMed]
- Turner, J.A. Sustainable hydrogen production. Science 2004, 305, 972–974. [Google Scholar] [CrossRef] [PubMed]
- Durst, J.; Simon, C.; Siebel, A.; Rheinlander, P.; Schuler, T.; Hanzlik, M.; Herranz, J.; Hasche, F.; Gasteiger, H.A. Hydrogen Oxidation and Evolution Reaction (HOR/HER) on Pt Electrodes in Acid vs. Alkaline Electrolytes: Mechanism, Activity and Particle Size Effects. In Proceedings of the 14th Polymer Electrolyte Fuel Cell Symposium (PEFC), Cancun, Mexico, 5–9 October 2014; pp. 1069–1080. [Google Scholar]
- Durst, J.; Siebel, A.; Simon, C.; Hasche, F.; Herranz, J.; Gasteiger, H.A. New insights into the electrochemical hydrogen oxidation and evolution reaction mechanism. Energy Environ. Sci. 2014, 7, 2255–2260. [Google Scholar] [CrossRef]
- McKone, J.R.; Warren, E.L.; Bierman, M.J.; Boettcher, S.W.; Brunschwig, B.S.; Lewis, N.S.; Gray, H.B. Evaluation of Pt, Ni, and Ni-Mo electrocatalysts for hydrogen evolution on crystalline Si electrodes. Energy Environ. Sci. 2011, 4, 3573–3583. [Google Scholar] [CrossRef]
- Abbas, M.A.; Bang, J.H. Rising Again: Opportunities and Challenges for Platinum-Free Electrocatalysts. Chem. Mater. 2015, 27, 7218–7235. [Google Scholar] [CrossRef]
- Faber, M.S.; Jin, S. Earth-abundant inorganic electrocatalysts and their nanostructures for energy conversion applications. Energy Environ. Sci. 2014, 7, 3519–3542. [Google Scholar] [CrossRef]
- Shavorskiy, A.; Gladys, M.J.; Held, G. Chemical composition and reactivity of water on hexagonal Pt-group metal surfaces. Phys. Chem. Chem. Phys. 2008, 10, 6150–6159. [Google Scholar] [CrossRef]
- Durst, J.; Simon, C.; Hasche, F.; Gasteiger, H.A. Hydrogen Oxidation and Evolution Reaction Kinetics on Carbon Supported Pt, Ir, Rh, and Pd Electrocatalysts in Acidic Media. J. Electrochem. Soc. 2015, 162, F190–F203. [Google Scholar] [CrossRef]
- Jerkiewicz, G.; Zolfaghari, A. Comparison of hydrogen electroadsorption from the electrolyte with hydrogen adsorption from the gas phase. J. Electrochem. Soc. 1996, 143, 1240–1248. [Google Scholar] [CrossRef]
- Sykes, E.C.H.; Fernandez-Torres, L.C.; Nanayakkara, S.U.; Mantooth, B.A.; Nevin, R.M.; Weiss, P.S. Observation and manipulation of subsurface hydride in Pd{111} and its effect on surface chemical, physical, and electronic properties. Proc. Natl. Acad. Sci. USA 2005, 102, 17907–17911. [Google Scholar] [CrossRef]
- Zhang, D.; Wei, G.F. A Theoretical Study of the In Situ Structural Reconstruction of Pdn (n=6, 19, 44) Clusters for Catalytic Hydrogen Evolution. Symmetry 2022, 14, 10. [Google Scholar] [CrossRef]
- Wang, Y.H.; Zhang, L.; Hu, C.L.; Yu, S.N.; Yang, P.P.; Cheng, D.F.; Zhao, Z.J.; Gong, J.L. Fabrication of bilayer Pd-Pt nanocages with sub-nanometer thin shells for enhanced hydrogen evolution reaction. Nano Res. 2019, 12, 2268–2274. [Google Scholar] [CrossRef]
- Markovic, N.M.; Lucas, C.A.; Climent, V.; Stamenkovic, V.; Ross, P.N. Surface electrochemistry on an epitaxial palladium film on Pt(111): Surface microstructure and hydrogen electrode kinetics. Surf. Sci. 2000, 465, 103–114. [Google Scholar] [CrossRef]
- Xie, H.; Chen, S.Q.; Liang, J.S.; Wang, T.Y.; Hou, Z.F.; Wang, H.L.; Chai, G.L.; Li, Q. Weakening Intermediate Bindings on CuPd/Pd Core/shell Nanoparticles to Achieve Pt-Like Bifunctional Activity for Hydrogen Evolution and Oxygen Reduction Reactions. Adv. Funct. Mater. 2021, 31, 2100883. [Google Scholar] [CrossRef]
- Jia, Y.; Huang, T.; Lin, S.; Guo, L.; Yu, Y.; Wang, J.; Wang, K.; Dai, S. Stable Pd-Cu Hydride Catalyst for Efficient Hydrogen Evolution. Nano Lett. 2022, 22, 1391–1397. [Google Scholar] [CrossRef] [PubMed]
- Pu, Z.; Zhao, J.; Amiinu, I.S.; Li, W.; Wang, M.; He, D.; Mu, S. A universal synthesis strategy for P-rich noble metal diphosphide-based electrocatalysts for the hydrogen evolution reaction. Energy Environ. Sci. 2019, 12, 952–957. [Google Scholar] [CrossRef]
- Ma, R.P.; Yang, X.L.; Wang, X.; Ge, J.J.; Liu, C.P.; Xing, W. Evaluation of Palladium Phosphide as Efficient Electrocatalyst for Hydrogen Evolution Reaction. Chin. J. Anal. Chem. 2021, 49, 2032–2038. [Google Scholar] [CrossRef]
- Chen, W.F.; Muckerman, J.T.; Fujita, E. Recent developments in transition metal carbides and nitrides as hydrogen evolution electrocatalysts. Chem. Commun. 2013, 49, 8896–8909. [Google Scholar] [CrossRef] [PubMed]
- Ologunagba, D.; Kattel, S. Pt- and Pd-modified transition metal nitride catalysts for the hydrogen evolution reaction. Phys. Chem. Chem. Phys. 2022, 24, 12149–12157. [Google Scholar] [CrossRef]
- Ramakrishna, S.U.B.; Reddy, D.S.; Kumar, S.S.; Himabindu, V. Nitrogen doped CNTs supported Palladium electrocatalyst for hydrogen evolution reaction in PEM water electrolyser. Int. J. Hydrogen Energy 2016, 41, 20447–20454. [Google Scholar] [CrossRef]
- Gao, X.; Yu, G.; Zheng, L.; Zhang, C.; Li, H.; Wang, T.; An, P.; Liu, M.; Qiu, X.; Chen, W. Strong Electron Coupling from the Sub-Nanometer Pd Clusters Confined in Porous Ceria Nanorods for Highly Efficient Electrochemical Hydrogen Evolution Reaction. Acs Appl. Energy Mater. 2019, 2, 966–973. [Google Scholar] [CrossRef]
- Jia, J.; Tian, D. Computational Design of Ni6@Pt1M31 Clusters for Multifunctional Electrocatalysts. Molecules 2023, 28, 14. [Google Scholar] [CrossRef] [PubMed]
- Lai, W.; Zhang, L.; Hua, W.; Indris, S.; Yan, Z.; Hu, Z.; Zhang, B.; Liu, Y.; Wang, L.; Liu, M.; et al. General pi-Electron-Assisted Strategy for Ir, Pt, Ru, Pd, Fe, Ni Single-Atom Electrocatalysts with Bifunctional Active Sites for Highly Efficient Water Splitting. Angew. Chem.-Int. Ed. 2019, 58, 11868–11873. [Google Scholar] [CrossRef] [PubMed]
- Chandrasekaran, P.; Edison, T.; Sethuraman, M.G. Electrocatalytic performance of carbon dots/palladium nanoparticles composite towards hydrogen evolution reaction in acid medium. Int. J. Hydrogen Energy 2020, 45, 28800–28811. [Google Scholar] [CrossRef]
- Chen, L.; Zhang, L.; Yao, L.; Fang, Y.; He, L.; Wei, G.; Lu, Z. Metal boride better than Pt: HCP Pd2B as a superactive hydrogen evolution reaction catalyst. Energy Environ. Sci. 2019, 12, 3099–3105. [Google Scholar] [CrossRef]
- Wei, G.; Zhang, L.; Liu, Z. Group-VIII transition metal boride as promising hydrogen evolution reaction catalysts. Phys. Chem. Chem. Phys. 2018, 20, 27752–27757. [Google Scholar] [CrossRef]
- Koper, M.T.M. Structure sensitivity and nanoscale effects in electrocatalysis. Nanoscale 2011, 3, 2054–2073. [Google Scholar] [CrossRef]
- Intikhab, S.; Rebollar, L.; Fu, X.B.; Yue, Q.; Li, Y.W.; Kang, Y.J.; Tang, M.H.; Snyder, J.D. Exploiting dynamic water structure and structural sensitivity for nanoscale electrocatalyst design. Nano Energy 2019, 64, 7. [Google Scholar] [CrossRef]
- Albert, B.; Hillebrecht, H. Boron: Elementary Challenge for Experimenters and Theoreticians. Angew. Chem.-Int. Ed. 2009, 48, 8640–8668. [Google Scholar] [CrossRef]
- Wei, G.F.; Liu, Z.P. Restructuring and Hydrogen Evolution on Pt Nanoparticle. Chem. Sci. 2015, 6, 1485–1490. [Google Scholar] [CrossRef]
- Wang, Q.L.; Xu, C.Q.; Liu, W.; Hung, S.F.; Yang, H.B.; Gao, J.J.; Cai, W.Z.; Chen, H.M.; Li, J.; Liu, B. Coordination engineering of iridium nanocluster bifunctional electrocatalyst for highly efficient and pH-universal overall water splitting. Nat. Commun. 2020, 11, 10. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.; Zhang, Q.; Bao, J.; Li, Y.; Dai, Z.; Gu, L. Significantly Enhanced Hydrogen Evolution Activity of Freestanding Pd-Ru Distorted Icosahedral Clusters with less than 600 Atoms. Chem.-Eur. J. 2017, 23, 18203–18207. [Google Scholar] [CrossRef]
- Xu, H.; Zhu, J.Z.; Zou, C.; Zhang, F.; Ming, D.; Guan, D.; Ma, L. Theoretical Design of Core-Shell 3d-Metal Nanoclusters for Efficient Hydrogen-Evolving Reaction. Energy Fuels 2023, 37, 16781–16789. [Google Scholar] [CrossRef]
- Shang, C.; Liu, Z.P. Stochastic Surface Walking Method for Structure Prediction and Pathway Searching. J. Chem. Theory Comput. 2013, 9, 1838–1845. [Google Scholar] [CrossRef]
- Blochl, P.E. Projector Augmented-Wave Method. Phys. Rev. B 1994, 50, 17953–17979. [Google Scholar] [CrossRef] [PubMed]
- Kresse, G.; Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 1999, 59, 1758–1775. [Google Scholar] [CrossRef]
- Kresse, G.; Furthmuller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 1996, 6, 15–50. [Google Scholar] [CrossRef]
- Monkhorst, H.J.; Pack, J.D. Special Points for Brillouin-Zone Integrations. Phys. Rev. B 1976, 13, 5188–5192. [Google Scholar] [CrossRef]
- Zhang, X.; Shang, C.; Liu, Z. Double-Ended Surface Walking Method for Pathway Building and Transition State Location of Complex Reactions. J. Chem. Theory Comput. 2013, 9, 5745–5753. [Google Scholar] [CrossRef]
- Wang, H.; Liu, Z. Comprehensive mechanism and structure-sensitivity of ethanol oxidation on platinum: New transition-state searching method for resolving the complex reaction network. J. Am. Chem. Soc. 2008, 130, 10996–11004. [Google Scholar] [CrossRef]
- Shang, C.; Liu, Z. Constrained Broyden Minimization Combined with the Dimer Method for Locating Transition State of Complex Reactions. J. Chem. Theory Comput. 2010, 6, 1136–1144. [Google Scholar] [CrossRef]
- Perdew, J.P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865–3868. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, D.; Wang, R.; Luo, S.; Wei, G. Restructuring and Hydrogen Evolution on Sub-Nanosized PdxBy Clusters. Molecules 2024, 29, 3549. https://doi.org/10.3390/molecules29153549
Zhang D, Wang R, Luo S, Wei G. Restructuring and Hydrogen Evolution on Sub-Nanosized PdxBy Clusters. Molecules. 2024; 29(15):3549. https://doi.org/10.3390/molecules29153549
Chicago/Turabian StyleZhang, De, Ruijing Wang, Sijia Luo, and Guangfeng Wei. 2024. "Restructuring and Hydrogen Evolution on Sub-Nanosized PdxBy Clusters" Molecules 29, no. 15: 3549. https://doi.org/10.3390/molecules29153549
APA StyleZhang, D., Wang, R., Luo, S., & Wei, G. (2024). Restructuring and Hydrogen Evolution on Sub-Nanosized PdxBy Clusters. Molecules, 29(15), 3549. https://doi.org/10.3390/molecules29153549