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Abstract: Constructing heterostructures from already synthesized two-dimensional materials is of
significant importance. We performed a first-principles study to investigate the electronic proper-
ties and interfacial characteristics of Janus MoSH/WSi2N4 van der Waals heterostructure (vdWH)
contacts. We demonstrate that the p-type Schottky formed by MoSH/WSi2N4 and MoHS/WSi2N4

has extremely low Schottky barrier heights (SBHs). Due to its excellent charge injection efficiency,
Janus MoSH may be regarded as an effective metal contact for WSi2N4 semiconductors. Further-
more, the interfacial characteristics and electronic structure of Janus MoSH/WSi2N4 vdWHs can
not only reduce/eliminate SBH, but also forms the transition from p-ShC to n-ShC type and from
Schottky contact (ShC) to Ohmic contact (OhC) through the layer spacing and electric field. Our
results can offer a fresh method for optoelectronic applications based on metal/semiconductor Janus
MoSH/WSi2N4 vdW heterostructures, which have strong potential in optoelectronic applications.

Keywords: two-dimensional heterostructures; first-principles calculations; electronic properties;
electrical contact

1. Introduction

Innovations and continuous advancements in materials technology have enabled the
successful synthesis of graphene, marking a significant milestone in the development of two-
dimensional (2D) materials [1]. Graphene [2–7] was the first material to advance research in
the two-dimensional field, and it possesses many remarkable qualities. However, the lack
of a band gap in graphene [3] prevents it from being used in high-speed electronic devices,
like field-effect transistors [8]. As a result, a two-dimensional semiconductor material
with extraordinary properties and application potential has been intensively sought by
science. A few years ago, due to their distinctive characteristics, two-dimensional (2D)
materials [9–11] became the most alluring materials. Numerous 2D materials, such as
transition metal dichalcogenides (TMDs) [12,13], phosphorene [14], and transition metal
monochalcogenides (TMMs) [15,16], have been predicted and successfully synthesized up
to this point. These two-dimensional materials possess a multitude of remarkable features,
which positions them as potentially advantageous candidates for use in energy storage [17],
photocatalysis [18], and optoelectronic applications [19–21].

Forming electrical contacts between metals and semiconductors is an important com-
ponent in today’s electronic and optoelectronic devices. The direct result of electrical contact
is that the functionality of electronic devices is effectively improved, thereby increasing the
electron transfer efficiency [22] of semiconductors, which is a mutually beneficial situation.
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The investigation of the interactions between metals and semiconductors at interfaces is
an absolutely necessary step in the process of developing highly effective and powerful
electronic devices [23,24]. If the metal and semiconductor contacts are poor, the device
may be damaged and rendered inoperable. The potential barrier usually generated at the
interface semiconductor and metal is called the Schottky barrier (SB). The existence of a
substantial Schottky barrier height (SBH) [25,26] can be a significant hindrance to charge
injection efficiency in optoelectronic and electronic applications. Therefore, reducing or
removing the Schottky barrier height (SBH) from the Schottky contact to the Ohmic contact
in the metal–semiconductor junction (MSJ) is crucial for the successful development of
effective and powerful nanodevices. Since most two-dimensional metal-semiconductor
interfaces seen in nature are Schottky interfaces, there are both inherent and extrinsic con-
straints [27,28]. These limits include work function mismatch, surface defects, sustainable
doping techniques, and many others. Therefore, the transition from ShC to OhC is an
endeavor that is indeed a challenging task.

Very recently, researchers have been very interested in 2D materials with Janus struc-
tures because of the broken mirror symmetry of these materials, which leads to many novel
features, such as enhanced piezoelectric properties, increased catalytic activity, and im-
proved electronic transport characteristics [29,30]. Transition metal dichalcogenides (TMDs)
are a class of single-layer structured materials known for their diverse physical proper-
ties, such as high carrier mobility, strong light–matter interactions, and flexibility [31–33].
These properties make TMDs highly suitable for use in transistors, photodetectors, and
flexible electronics, which are of particular interest. In recent experiments, many Janus
structures have been successfully synthesized with different synthetic strategies [34,35].
Cheng et al. [36] were the first to present the Janus structure of TMDs in 2013. Janus
MoSSe monolayers were effectively created by thermal selenization and chemical vapor
deposition by Lu et al. [35]. Recently, Janus MoSH was produced by controlled H2-plasma
treatment [37]. It is anticipated that Janus MoSH will be dynamically stable at room tem-
perature. As a result of its metallic characteristics and high inherent carrier concentration,
it offers a great deal of potential for use in applications involving metal contacts in 2D
semiconductor nanodevices [37].

Very recently, 2D layered MoSi2N4 and WSi2N4 have been successfully prepared
experimentally by chemical vapor deposition (CVD) [38]. Researchers explored their
theoretical electrical and optical properties [39–41] and found that 2D layered MoSi2N4
and WSi2N4 have semiconducting properties, good air stability at room temperature, and
excellent mechanical strength [42]. However, compared with MoSi2N4, WSi2N4 has a larger
band gap and higher molar mass, and at the same time shows a wider and stronger visible
light absorption range and intensity and higher electron–hole separation in water [43].
In addition, we reviewed a large amount of information and found that in the research
work on the formation of heterostructures between WSi2N4 and metals, except for the
related articles on the formation of heterostructures in contact with graphene [44], there is no
related research on the formation of heterostructures between WSi2N4 and other metals [45].
Therefore, we predict that WSi2N4 should also have broad application prospects [38].

More intriguingly, van der Waals heterostructures that are vertically stacked are
thought to be a useful method for regulating characteristics and extending the range of
possible applications for 2D materials. The electrical and optical characteristics of het-
erostructures depend heavily on the stacking arrangement and interfaces. Depending on
the degree of contact between the two-layer materials, the ability to generate different
stacked lattice orientations gives the heterostructure interface controllable physical fea-
tures [46,47]. In this work, we used first-principles calculations to construct and study
the electronic properties of metallic Janus MoSH and semiconductor WSi2N4 van der
Waals heterostructures (vdWHs) and studied their interfacial properties under the layer
distance and external electric field. Because of their broken vertical symmetry, Janus
MoSH and WSi2N4 form contacts that result in two distinct surfaces: MoSH/WSi2N4 and
MoHS/WSi2N4, respectively. The heterostructure remains energetically viable through
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the weak van der Waals interaction between metallic Janus MoSH and semiconducting
WSi2N4 monolayers, which also maintains the intrinsic properties of the two monolayer
materials. The findings demonstrate that Janus MoSH/WSi2N4 has an adjustable SBH, and
the contact type can be switched from p-type ShC to n-type ShC and from ShC to OhC.
Janus MoSH/WSi2N4 vdWHs have potential applications in high-performance optoelec-
tronic devices such as photodetectors, light-emitting diodes (LEDs), and solar cells. The
ability to engineer the Schottky barrier height (SBH) and transition between Schottky and
Ohmic contacts makes these heterostructures particularly attractive for improving charge
injection efficiency and overall device performance. Our research can offer a fresh method
for optoelectronic applications based on Janus MoSH/WSi2N4 vdWHs. This method of
constructing metal–semiconductor heterostructures has broad application prospects in
Schottky electronic devices and provides a foundation for the practical development of
advanced optoelectronic devices.

2. Results and Discussion
2.1. Geometric Structures and Electronic Properties

Figure 1 shows the atomic structure, phonon spectrum, projected band structure,
and density of states of the semiconducting WSi2N4 and Janus metallic MoSH (MoHS)
monolayers, respectively. After geometry optimization, both WSi2N4 and Janus MoSH
(MoHS) alone exhibit layered atomic structures with lattice constants of 2.91 Å, 3.18 Å, and
3.18 Å, which are consistent with the values [37,48] obtained by previous experimental
measurements and theoretical calculations. As shown in Figure 1a–c, for the optimized
WSi2N4 geometry structure, the W-N2 layer is sandwiched between the Si-N bilayer in the
WSi2N4 monolayer, while in the Janus MoSH (MoHS) geometry structure, Mo atoms are
sandwiched between H and S atoms. In addition, it can be observed from Figure 1h,i that
the energy band passes through the Fermi level (“Fermi level” appears in the following
articles and is represented by “EF”), and the monolayer Janus MoSH (MoHS) exhibits metal-
lic properties, while in Figure 1g,j, HSE06 (Heyd–Scuseria–Ernzerhof) and PBE (Perdew,
Burke, and Ernzerhof) methods are used to calculate the energy bands. It can be found that
the WSi2N4 monolayer exhibits semiconductor characteristics. It is an indirect bandgap
semiconductor. The Γ point and the K point are the locations of the valence band max-
imum (VBM) and conduction band minimum (CBM). The bandgap value of HSE06 is
2.66 eV, and the PBE is 2.03 eV. Generally speaking, HSE06 can forecast bandgap values
more accurately than PBE methods, which frequently overestimate the bandgaps of 2D
semiconductors [49,50]. However, compared with the HSE06 method, the PBE bandgap of
the WSi2N4 monolayer is more consistent with the experimental value, and the CBM and
VBM position cannot be altered using the HSE06 approach [51]. Therefore, we adopt the
PBE method for all calculations below. Furthermore, the density of states of semiconductor
WSi2N4 and metal Janus MoSH (MoHS) is shown in Figure 1j–l. For the metal Janus MoSH,
it can be found that the d-orbital contribution of Mo is dominant, followed by the p-orbital
contribution of S, while for Janus MoHS, the d-orbital contribution of Mo is dominant,
followed by the s-orbital contribution of H. For the semiconductor WSi2N4, the p-orbital
contribution of N dominates the VBM, while the d-orbital contribution of W dominates
the CBM. Furthermore, Figure 1d–f illustrate the phonon dispersion curves for the three
monolayers under consideration. The presence of positive frequencies at the Γ point in
monolayer WSi2N4 and the absence of any negative frequencies in Janus MoSH (MoHS)
confirm the dynamic stability of the system.
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MoSH (MoHS), respectively. (j–l) PBE method projected band structures and state density of the 
WSi2N4 and Janus MoSH (MoHS), respectively. The blue, green, orange, red, cyan, and yellow balls 
represent tungsten, silicon, nitrogen, molybdenum, sulfur, and hydrogen atoms, respectively. 
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heterostructures MoSH/WSi2N4, MoHS/WSi2N4, corresponding to Figure 2a–f. As seen in 
Figure 2, in AA stacking, the two monolayers are completely corresponding, and W atoms 
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Figure 1. (a–c) Optimized monolayers WSi2N4 and Janus MoSH (MoHS) top and side panels.
(d–f) Phonon dispersion curve. (g–i) HSE06 method projected band structures of the WSi2N4 and
Janus MoSH (MoHS), respectively. (j–l) PBE method projected band structures and state density of
the WSi2N4 and Janus MoSH (MoHS), respectively. The blue, green, orange, red, cyan, and yellow
balls represent tungsten, silicon, nitrogen, molybdenum, sulfur, and hydrogen atoms, respectively.

2.2. Structures and Electronic Properties of Heterostructures

The heterostructure was formed by vertically stacking a single layer of WSi2N4 on
top of a single layer of Janus MoSH (MoHS) along the z-direction. The initial equilibrium
interlayer distances were set to 2.74 Å and 3.15 Å, respectively, which exceed the sum
of the covalent radii of N atoms and H (S) atoms, indicating the absence of covalent
bonding between the two monolayers comprising the system. At the same time, we
take into account three different stacking configurations AA, AB, AC for the formation
of two heterostructures MoSH/WSi2N4, MoHS/WSi2N4, corresponding to Figure 2a–f.
As seen in Figure 2, in AA stacking, the two monolayers are completely corresponding,
and W atoms are directly above the H (S) atoms; in AB-stacking, Mo atoms are between
the W-Si atoms; in AC stacking, Mo atoms are in the hollow sites of monolayer WSi2N4.
According to the calculation results, the energies of the three stacked configurations of
MoSH/WSi2N4 and MoHS/WSi2N4 are very similar, and the energies in Figure 2a,f are
relatively low, with Eb being −84.30725 eV and −84.32245 eV, respectively. Therefore, we
construct heterostructures with (1 × 1) MoSH, (1 × 1) WSi2N4 and (1 × 1) MoHS, (1 × 1)
WSi2N4 unit cells using AA, AC stacking methods. According to the formula m − n/m
+ n < 5% (m and n are the lattice constants of single-layer MoSH (MoHS) and WSi2N4,
respectively), the lattice constants of MoSH/WSi2N4 and MoHS/WSi2N4 vdWHs are
calculated to be 2.91 Å, and the lattice mismatch is 4.4% < 5%, which proves the rationality
of the heterostructure.

Additionally, we calculated the binding energy and confirmed the stability of the struc-
ture: Eb = EvdWHs − EMoSH(MoHS) − EWSi2N4, where EvdWHs, EMoSH(MoHS) and EWSi2N4
are the sum energies of the corresponding vdWHs and MoSH(MoHS) and WSi2N4 monolay-
ers, respectively. The binding energies of MoSH/WSi2N4 and MoHS/WSi2N4 are −0.43 eV
and −0.18 eV, respectively. Since the binding energies of heterostructures have a negative
sign, they are energetically stable. Furthermore, we also calculated the elastic constants of
MoSH/WSi2N4 and MoHS/WSi2N4 vdWHs to assess the mechanical stability. The elastic
constants C11, C12, and C66 = (C11 − C12)/2 of MoSH/WSi2N4 vdWHs are calculated to
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be 722 N/m, 203 N/m, and 259 N/m. At the same time, the elastic constants C11, C12,
and C66 = (C11 − C12)/2 of MoHS/WSi2N4 are calculated to be 708 N/m, 221 N/m, and
243 N/m. The fact that the elastic constants of vdWHs, C11 > C12 and C66 > 0, satisfy
the Born–Huang criterion [52,53] proves that vdWHs are stable. Furthermore, we also
calculate the Young’s modulus and Poisson’s ratio of Y = (C11

2 − C12
2)/C11, V = C12/C11

and other systems. Figure S1 of the Supporting Information depicts a polar plot of Young’s
modulus and Poisson’s ratio for vdWHs. The average Young’s modulus of MoSH/WSi2N4
vdWHs is 664 N/m and Poisson’s ratio is 0.28, while the average Young’s modulus of
MoHS/WSi2N4 vdWHs is 639 N/m and Poisson’s ratio is 0.31, both of which are higher
than those of graphene [51]. The results show that high in-plane stiffness is possessed by
the two vdWHs.
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molybdenum, sulfur, and hydrogen atoms, respectively.

The energy band structures [54] of MoSH/WSi2N4, MoHS/WSi2N4 vdWHs are shown
in Figure 3a,b. MoSH (MoHS) and WSi2N4 maintain the original intrinsic band structure
while forming heterostructures. Both the metallic and semiconducting properties of the
Janus MoSH (MoHS) monolayer and WSi2N4 monolayer are well preserved. It is crucial
to determine whether metal/semiconductor interactions form ShC or OhC [55–57]. The
energy band structures in Figure 3a,b indicate that the Janus MoSH/WSi2N4 vdWHs form
ShC, and we found that thebandgap value leading to PBE is 2.01 eV. The determination
of the n-type or p-type ShC is widely recognized to be based on the SBH, as described by
the Schottky–Mott rule [58]. Specifically, the SBH for the n-type ShC (ΦBn) is determined
by the difference between the CBM and the EF, denoted as ΦBn = ECBM − EF. Similarly,
the SBH for the p-type ShC (ΦBp) is determined by the difference between the EF and
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the VBM, denoted as ΦBp = EF − EVBM. Furthermore, to verify the formation of ShC in
these two heterostructures, we elucidated the work functions of monolayers of metallic
Janus MoSH and semiconductor WSi2N4, along with their corresponding vdWHs, as
shown in Figure 4a,b. Not only can we observe the alterations of CBM and VBM in
single-layer WSi2N4 and the alterations of CBM and VBM when vdWHs are formed, but
we also discover that the contact types after the formation of single-layer WSi2N4 and
Janus MoSH heterostructures are both p-type ShC, which values are 0.79 eV and 0.34 eV.
Notably, the SBHs of MoSH/WSi2N4, MoHS/WSi2N4 vdWHs are smaller, indicating that
the WSi2N4 monolayer can be considered as an effective 2D metal contact with the Janus
MoSH monolayer.
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Figure 5a,b display the charge density difference in Janus MoSH/WSi2N4 vdWHs. The
difference in charge density is calculated in the following manner to better understand the
charge distribution in Janus MoSH/WSi2N4 vdWHs [59,60]: ∆ρ = ρvdWHs − ρMoSH (MoHS)
− ρWSi2N4, where ρvdWHs, ρMoSH (MoHS) and ρWSi2N4 represent the Janus MoSH/WSi2N4
vdWHs charge density, isolated Janus MoSH and WSi2N4 monolayers, respectively. Among
them, electron accumulation is represented by the yellow area, while electron depletion is
represented by the cyan area. The electron transfer occurring at the contact surface is clearly
shown in Figure 5a,b. In short, electrons are consumed in the Si-N layer and accumulated
in the Mo-H(Mo-S) layer, and the charge distribution is mostly centered on the contact
interface between Janus MoSH and WSi2N4. As a result, the results imply that the Janus
MoSH and WSi2N4 layers in the corresponding vdWHs exhibit weak interlayer interactions.
At the same time, Figure 5c,d illustrate the mean in-plane average electrostatic potential of
Janus MoSH/WSi2N4 vdWHs. It can be observed from Figure 5c,d that after forming the
heterostructure, the electrostatic potential of Janus MoSH and MoHS is lower than that of
isolated MoSH and MoHS, indicating that electrons are accumulated on the Janus MoSH
(MoHS) side and consumed on the WSi2N4 side. It is transferred from WSi2N4 to Janus
MoSH, and the direction of charge transfer is consistent with Figure 5a,b. In summary,
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the presence of a built-in electric field is a consequence of interfacial charge transfer.
Consequently, the mobility of carriers and the injection of charges may be influenced.
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vdWHs, respectively. (c,d) In-plane average electrostatic potential of Janus MoSH/WSi2N4,
MoHS/WSi2N4 vdWHs. The yellow and cyan regions represent charge accumulation and depletion,
respectively. The blue, green, orange, red, cyan, and yellow balls represent tungsten, silicon, nitrogen,
molybdenum, sulfur, and hydrogen atoms, respectively.

Furthermore, examining the carrier mobility of vdWHs is essential to proving that
Janus MoSH/WSi2N4 vdWHs exhibit favorable characteristics for the development of
high-performance optoelectronic devices. It is well known that carrier mobility is a crucial
factor to evaluate the conductive properties of optoelectronic materials. The carrier mobility
(µ) is inversely proportional to the effective mass (m*) of the carriers, as described by the
equation µ = eτ/m*, where e is the electronic charge and τ is the scattering time. This
indicates that a lower effective mass leads to higher carrier mobility, given a constant
scattering time. Hence, the effective mass plays a critical role in determining the mobility
of carriers in the material. Hence, we determine the effective masses of electrons (me*) and
holes (mh*) by fitting the band-edge dispersion of the VBM and CBM:

1
m* =

1
h̄2 × ∂2E(k)

∂k2

Here, ℏ is the reduced Planck’s constant derived from the Planck constant h (ℏ = h/2π) and
k is the wave vector. Our calculated me* and mh* of Janus MoSH/WSi2N4 vdWHs are listed
in Table 1. Compared with the traditional semiconductor silicon (me* = 0.81–1.18) [61], it
can be found that for Janus MoSH/WSi2N4 vdWHs (me* = 1.21), the effective mass values
of electrons are very close to those of Si, which can prove that Janus MoSH/WSi2N4 vdWHs
have higher carrier mobility. Hence, they have broad application prospects, making them
strong contenders for high-speed nano-optoelectronic device applications.

Table 1. Calculated lattice parameters (a), interlayer distance (D), band gap (Eg) obtained by PBE
calculations, and effective mass for electrons (me

x) and holes (mh
y) along the x and y directions.

a (Å) D (Å) Eg (eV) me
x/m0

µe
(cm2/Vs) mh

y/m0
µh

(cm2/Vs)
Contact
Types

1T-WSi2N4 2.91 - 2.03 0.36 1.35 -

MoSH/WSi2N4 2.91 2.74 2.01 1.21 145 1.05 96 p-ShC

MoHS/WSi2N4 2.91 3.15 2.02 1.84 167 1.17 150 p-ShC
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2.3. Heterostructures under Interlayer Distance

Changing interlayer coupling by applying mechanical strain is a widely recognized
method for tuning the interfacial properties of heterostructures. One of the advantages
in enhancing the performance of nano-optoelectronic devices is in the tunable SBH and
contact type exhibited by Janus MoSH/WSi2N4 van der Waals heterostructures. Therefore,
we have demonstrated the effect of strain engineering through adjustments in the layer
distance and the application of an external electric field. It is worth mentioning that the
layer distance in 2D-based vdWHs can be tuned by scanning tunneling microscopy [62]
or vacuum thermal annealing [63]. Furthermore, we calculated three stacking modes
(AA stacking, AB stacking, AC stacking) of Janus MoSH/WSi2N4 vdWHs under different
interlayer distances in Supporting Information Tables S1 and S2, and the findings indicate
that MoSH/WSi2N4 vdWH AA stacking and MoHS/WSi2N4 vdWH AC stacking have
the lowest binding energy. Here, strain is applied by adjusting the layer distance, defined
as ∆D = D − D0, where the original D values are 2.7 Å and 3.1 Å and D0 is the strained
interlayer distance. Tensile strain is characterized by the expansion of the layer distance
D, whereas compressive strain is characterized by the contraction of D. ∆D < 0 indicates
compressive strain, while ∆D > 0 indicates tensile strain. Figure 6a,b show the projected
band structures of Janus MoSH/WSi2N4 vdWHs at different layer distances. We found that
with the increase in tensile strain, ΦBn gradually increased and ΦBp gradually decreased in
a linear relationship. When ∆D > 0, the CBM of the WSi2N4 layer moves upwards away
from the EF, leading to an increase in ΦBn. At the same time, the VBM also moves up close
to the EF, leading to a decrease in ΦBp. The variation in SBH of Janus MoSH/WSi2N4

vdWHs with ∆D is shown in Figure 6c. When a tensile strain of 0 < ∆D < 0.6 Å is applied,
ΦBn > ΦBp can be found. In this case, MoSH/WSi2N4 is of the p-ShC type. However,
when a compressive strain of −0.8 < ∆D < 0 Å is applied, it is evident that ΦBn > ΦBp,
still maintaining the p-ShC type. Notably, when a compressive strain of ∆D ≤ −0.8 Å is
applied, it is found that ΦBp eventually becomes bigger than ΦBn; it causes a change from
the p-ShC type to the n-ShC type. As a result, by adjusting the layer distance, the SBH and
contact type in Janus MoSH/WSi2N4 vdWHs can be adjusted.
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Figure 6. (a,b) The projected band structure of Janus MoSH/WSi2N4 vdWHs at different interlayer
distances. WSi2N4 and MoSH monolayers in (a,b) are separated by red and green circles. (c) Evolution
of the contact barrier in the Janus MoSH/WSi2N4 heterostructure with different interlayer distances.

Figure 7a,b show the projected band structure of Janus MoHS/WSi2N4 vdWHs at
different layer distances. We found that the ΦBn and ΦBp curves gradually tended to
equilibrium with the increase in tensile strain. The variation in SBH of Janus MoHS/WSi2N4
vdWHs with ∆D is shown in Figure 7c. MoHS/WSi2N4 has p-ShC type when ∆D > 0
tensile strain is applied. Furthermore, when a compressive strain of −0.9 < ∆D < 0 Å is
applied, the CBM of the WSi2N4 layer can be found to shift upwards away from the EF,
leading to an increase in ΦBn. At the same time, the VBM also moves up close to the EF,
leading to a decrease in ΦBp. Since ΦBn > ΦBp, the p-ShC type is still maintained. However,
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when a compressive strain of ∆D ≤ −0.9Å is applied, it can be found that the VBM of the
WSi2N4 layer moves upwards across the EF, forming a transition from p-ShC type to p-OhC
type. Therefore, the SBH in Janus MoHS/WSi2N4 vdWHs can be tuned by changing the
layer distances, but the contact type does not change.
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2.4. Heterostructures under Electric Field

The investigation focused on analyzing the impact of the electric field on the elec-
tronic characteristics and contact types of Janus MoSH/WSi2N4 van der Waals heterostruc-
tures (vdWHs), as depicted in Figures 8 and 9. We can observe that the SBH of Janus
MoSH/WSi2N4 vdWHs varies linearly with an electric field. Here, an external electric field
is imposed on vdWHs in the z direction. Figure 8a,b show that for Janus MoSH/WSi2N4
vdWHs, when a positive electric field is introduced, the conduction band minimum of the
WSi2N4 layer is displaced in an upward direction, away from the EF, resulting in an eleva-
tion of the barrier height ΦBn. In contrast, the valence band maximum exhibits an upward
shift in proximity to the EF, leading to a reduction in ΦBp. Furthermore, when a negative
electric field is imposed, the conduction band minimum of the WSi2N4 layer undergoes a
downward displacement, approaching the EF. Consequently, this results in a decrease in
ΦBn. In contrast, the valence band maximum exhibits a downward shift relative to the EF,
leading to an increase in ΦBp. Figure 8c exhibits notable variations in SBH and contact type.
When a negative electric field around −0.37 < E < −0.07 V/Å is imposed, ΦBp > ΦBn can be
found. In this case, the n-ShC type exists in Janus MoSH/WSi2N4 vdWHs. When the mag-
nitude of the electric field becomes around −0.37 V/Å, the CBM of the WSi2N4 layer shifts
down across the EF and ΦBn decreases to 0, which indicates that Janus MoSH/WSi2N4
vdWH form changes from n-ShC type to n-OhC type. Moreover, the application of an
electric field within the range −0.07 < E < 0.26 V/Å is imposed; ΦBn increases while ΦBp
declines, and ΦBn progressively grows to be larger than ΦBp. Consequently, it was shown
that Janus MoSH/WSi2N4 vdWH form changes from n-ShC type to p-ShC type. When the
magnitude of the electric field becomes around 0.26 V/Å, the VBM of the WSi2N4 layer
moves upward across the EF, and the observed phenomenon is that ΦBp decreases to 0; this
suggests that there is a transition in the Janus MoSH/WSi2N4 vdWHs from a p-ShC type
to a p-OhC type. Likewise, the projected band structure of Janus MoSH/WSi2N4 vdWHs
along the z direction under varying applied electric fields is shown in Figure 9a,b. For
Janus MoSH/WSi2N4 vdWHs, when a positive electric field is introduced, the conduction
band minimum of the WSi2N4 layer is displaced in an upward direction, away from the EF,
resulting in an elevation of the barrier height ΦBn. In contrast, the valence band maximum
exhibits an upward shift in proximity to the EF, leading to a reduction in ΦBp. Furthermore,
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when a negative electric field is imposed, the conduction band minimum of the WSi2N4
layer undergoes a downward displacement, approaching the EF. Consequently, this results
in a decrease in ΦBn. In contrast, the valence band maximum exhibits a downward shift
relative to the EF, leading to an increase in ΦBp. When a negative electric field around
−0.24 < E < −0.14 V/Å is imposed, ΦBp > ΦBn can be found. In this instance, the n-ShC
type exists in Janus MoHS/WSi2N4 vdWHs. Notably, when the magnitude of the electric
field becomes around −0.24 V/Å, the CBM of the WSi2N4 layer shifts down across the
EF and ΦBn decreases to 0, which indicates that the Janus MoHS/WSi2N4 vdWH form
changes from n-ShC type to n-OhC type. Moreover, the application of an electric field
within the range −0.14 < E < 0.1 V/Å is imposed; ΦBn increases while ΦBp decreases, and
ΦBn progressively grows to be larger than ΦBp. Consequently, it was shown that Janus
MoHS/WSi2N4 vdWH form changes from n-ShC type to p-ShC type. When the magnitude
of the electric field becomes around 0.1 V/Å, the VBM of the WSi2N4 layer moves upward
through the EF and the observed phenomenon is that ΦBp decreases to 0; this suggests that
there is a transition in the Janus MoHS/WSi2N4 vdWH form from a p-ShC type to a p-OhC
type. The aforementioned findings demonstrate that the contact type and SBH of Janus
MoSH/WSi2N4 and MoHS/WSi2N4 vdWHs may be modulated through the application of
an electric field. Additionally, these heterostructures exhibit a transition from n-type Schot-
tky contact to p-type Schottky contact, as well as a transformation from Schottky contact to
Ohmic contact. The results of our study have the potential to offer novel opportunities for
the future development of high-performance nanodevices utilizing metal/semiconductor
Janus MoSH/WSi2N4 vdWHs.
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Figure 8. Projected band structures of Janus MoSH/WSi2N4 vdWHs along the z direction under
different applied electric fields in (a,b). WSi2N4 and MoSH monolayers are separated by red and
green circles, respectively. (c) Evolution of the contact barrier in Janus MoSH/WSi2N4 vdWHs under
different electric fields.
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3. Computational Methods

The density functional theory framework is utilized for conducting geometry struc-
tural optimization and electronic performance calculations [64]. These calculations are
carried out using the Vienna ab initio simulation package (VASP) [65], which incorporates
the projector-augmented plane wave (PAW) approach [66] to account for the ion–electron
interaction. Visualization for Electronic Structural Analysis (VESTA ver. 3.5.8) [67] is a
software tool that is utilized for processing various types of data related to structural
models, volumetric information such as electron and nuclear densities, and crystal mor-
phologies. The electronic exchange correlation functional is treated using the generalized
gradient approximation (GGA) [68] in the form proposed by Perdew, Burke, and Ernzerhof
(PBE) [69]. The energy cutoff of the plane waves is set to 550 eV, with an energy precision
of 10−6 eV. The atomic locations undergo complete relaxation until the magnitude of the
force acting on each atom is below 10−3 eV/Å. A Monkhorst-Pack k-point grid with a
KSPACING value of 0.15 Å−1 is employed in the calculations. The supercell approach
is commonly used to model monolayers, where a vacuum separation of about 40 Å is
implemented to mitigate the effects of interactions between adjacent layers. Since the
generalized gradient approximation (GGA) usually underestimates the bandgap, we chose
to use the Heyd−Scuseria−Ernzerhof (HSE06) hybrid functional [70] to calculate the band
structure. Dynamic stabilities and phonon dispersion curves are computed with the super-
cell approach, as implemented in the Phonopy code [71]. The dipole correction was also
included in the calculations.

4. Conclusions

To summarize, we investigated the electronic structure and interfacial properties
of the emerging two-dimensional metal/semiconductor Janus MoSH/WSi2N4 vdWHs
through first-principles calculations. Janus MoSH/WSi2N4 vdWHs retain the metallic
properties of a single layer of Janus MoSH and the intrinsic semiconductor properties of a
single layer of WSi2N4. In this study, we provide evidence that both Janus MoSH/WSi2N4
and MoHS/WSi2N4 exhibit p-type Schottky contacts of the SBH, measuring 0.79 eV and
0.34 eV, respectively. These findings suggest advantages in enhancing the efficiency of
charge injection. Furthermore, we conducted an investigation into the electronic structure
and SBH phenomena at varying interlayer distances and electric field strengths, and the
tunable SBH can lead to faster response times and higher sensitivity. The ability to tune the
electronic properties and interfacial characteristics through layer spacing and electric fields
can significantly enhance device performance. The findings indicate that the electronic
characteristics and interfacial contact of Janus MoSH/WSi2N4 vdWHs can be adjusted by
changing the layer distance and applying an electric field. These adjustments not only
influence the SBH, but also lead to the transformation from p-type Schottky contact to n-
type Schottky contact, and the transition from ShC to Ohc. Our findings not only contribute
to the fundamental understanding of Janus MoSH/WSi2N4 vdWHs but also provide a
pathway for their integration into high-performance optoelectronic devices.
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