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Abstract: Isatin-derived spirocyclic cores are found in several biologically active molecules. Here, we
report nucleophilic domino reactions for the synthesis of α-methylene-γ-butyrolactone/lactam con-
taining spirocyclic oxindoles. The Zn-mediated one-step reaction accommodates a range of substrates
and can be used to rapidly generate focused libraries of highly substituted spirocyclic compound.
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1. Introduction

Domino reactions are a cascade of multiple reactions that occur simultaneously, result-
ing in the formation of two or more bonds, in a single reaction vessel [1]. Unlike stepwise
reactions, domino reactions generate complex products in one pot without the need for the
separation and purification of the intermediates. A recent outlook that highlights the above
summarizes the use of domino reactions that utilize 1,2-anionotropic rearrangement in the
synthesis of complex natural products [2]. The use of metal-catalyzed reactions as part of
a domino cascade is another common approach used to generate complex molecules. A
recent review by Fan et al. includes the total synthesis of natural products with tricyclic
indole cores that employed palladium-catalyzed domino reactions [3].

Spirocyclic oxindole analogs have attracted substantial attention in recent years due
to their prevalence in various natural bioactive compounds [4–13]. We and others have
mounted a variety of substitutions such as α-methylene-γ-butyrolactone/lactam structures
on to the spirocyclic oxindole core (Figure 1) and evaluated them as bioactive compounds
(e.g., NF-κB inhibitors, anticancer, antimalarial, antiviral, antibacterial, antifungal, and anti-
inflammatory compounds) [14–30]. Specifically, we used the α-methylene-γ-butyrolactone
on the spiro-isatin core to target cysteine residues on proteins to perturb specific path-
ways [14–18].

Various research groups, including ours, have synthesized spirolactones and spiro-
lactams from a range of starting materials with and without organometallic reagents
(Scheme 1). For example, we employed an indium-catalyzed Barbier-type reaction followed
by acid-catalyzed cyclization to generate the spirocyclic core. An attractive feature of the
α-methylene-γ-butyrolactone-containing spirocyclic systems is the face-selective approach
of the biological nucleophile [18,19]. Similarly, enantiopure spirocyclic lactones can be
synthesized via a two-step sequence involving the indium-catalyzed nucleophilic amide
allylation of N-methyl isatins with allylstannanes. In contrast, spirocyclic lactams were
accessed through a three-step reaction sequence involving electrophilic amide allylation
using acetoxy methacrylamides and tetrakis(triphenylphosphine)palladium as the cata-
lyst [31–33]. A metal catalyst-free approach employed the Umpolung Kukhtin-Ramirez
SN2-SN2 cascade to insert isatin into carbon-halogen bond. The resulting intermediate
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underwent acid-catalyzed cyclization to generate the spiro oxindole [34]. Another metal
catalyst-free approach to access diastereo- and enantio-selective spirolactones is conducted
through the use of 3-OBoc-oxindoles as nucleophiles and cinchona alkaloid β-ICD as a
catalyst [35].
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Scheme 1. Synthetic approaches to isatin−based spiro−lactones and spiro lactams [31–34].

Nearly every method reported, including those described above, requires multiple
steps to access the α,β-unsaturated lactone mounted spiroisatin analogs. Herein, we
reported a simple, one-pot metal mediated double nucleophilic domino reactions to synthe-
size spiro-oxindoles with α-methylene-γ-butyrolactones or lactams from the corresponding
isatins or isatinimines as substrates (Scheme 1).



Molecules 2024, 29, 3612 3 of 10

2. Results and Discussion

We opted for a Zn-mediated domino strategy for the synthesis of spiro-lactones using
isatin (1a) and methyl 2-(bromomethyl)acrylate (2a). Zn was chosen for its high reactivity,
its ease of organozinc formation, and its lower toxicity [36]. A reaction in a sealed tube at
60 ◦C for 5 h yielded the desired product (3a) in modest yields (63%) (Table 1, entry 1). The
optimization of reaction conditions, such as temperature, solvents and catalytic amount of
an acid, along with reagent ratios identified the optimal conditions that resulted in a 22%
increase in the isolated yields (Table 1, entry 4).

Table 1. Optimization of reaction conditions a.
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Entry 2a
(equiv.)

Zn
(equiv.) Solvent Temperature

(◦C)
3

Yield (%) b

1 1 1 THF 60 63
2 1 1 THF 80 71
3 1.5 2 THF 80 84
4 1.5 1.6 THF 80 85
5 2.0 2.5 THF 80 81
6 1.5 1.6 DMF 80 63
7 1.5 1.6 Dioxane 80 59
8 1.5 1.6 DCE 80 65
9 1.5 1.6 MeOH 80 73
10 1.5 1.6 THF 70 76
11 1.5 1.6 THF 100 81

12 c 1.5 1.6 THF 80 82
a Reaction conditions: 1a (1 mmol), 2a (1.5 mmol), Zn (1.6 mmol), THF (5 mL, 80 ◦C, 5 h, sealed tube. b Isolated
yield. c Catalytic amount of protonic acid (TfOH: 20 mol%).

Under the optimized reaction conditions, we explored the scope of the Zn-mediated
spiro-lactone synthesis with mono- and disubstituted isatin analogs 1a–1t (Scheme 2). Re-
gardless of their electronic or steric properties, all isatin analogs afforded the corresponding
products 3a–3t in good to excellent yields (78–89%). Notably, substrates with substitutions
at the 4-chloro-7-methyl, the 7-carboxylic acid, and the 4-methyl esters yielded the cor-
responding desired products (3r–3t) in good to excellent yields. This demonstrates the
robustness and broad applicability of the one-pot reaction, which could also be used to
generate valuable intermediates for other research applications.

Considering that SpiD3 [14], SpiD7 [15,16], and N-methyl spiro-lactone [37] (Figure 1)
function as NF-κB inhibitors and unfolded protein response (UPR) activators with potential
anticancer activities, we next explored the effects of various functional groups on the
isatin nitrogen atom (Scheme 3). Under the optimized conditions, N-substituted isatin
monomers resulted in the corresponding desired products (3aa–3fa) in good to excellent
yields (69–91%). Dimers linked through the isatin nitrogen atom (1ga–1ia) were subjected
to the method reported here. This afforded the desired SpiD3 (3ga), SpiD7 (3ha) and the
5-iodo dimer (3ia) in 77%, 79%, and 85% yields, respectively. Compared with the previous
reports, the method reported here not only provided high yields (increasing the overall
yield for SpiD3 from 47% to 77% and for SpiD7 from 60% to 79%), but also resulted in the
desired product in just one step.
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Next, we explored the effect of substitutions on the methyl 2-(bromomethyl) acrylate
(Scheme 4). Gratifyingly, arylacrylates such as methyl (E)-2-(bromomethyl)-3-phenylacrylate
(2b) and methyl 2-(bromomethyl)-3-(3-bromophenyl)acrylate (2c), when reacted with isatin
(1a) or substituted isatins (1g, 1n–1o), provided the corresponding lactone products with
moderate to good yields and high diastereoselectivity (3cb–3fb; 69–81%; dr > 99). In
alignment with the previous reports [38,39], the stereochemistry of these products (3) was
determined based on six-membered chair-like transition states. The re-re and si-si face
attacks were found to be unfavorable due to the axial position of the phenyl group in the
indolin-2-one. These attacks produced trans-configured enantiomers, (2S,3S)- and (2R,3R)-
spirolactones. In contrast, the si-re and re-si face attacks yielded another pair of enantiomers,
(2R,3S)- and (2S,3R)-spirolactones, which are cis-configured and more favorable, leading to
cis products with respect to the phenyl group of the indolin-2-one and the aryl group of
the bromomethyl acrylate. The configuration of the cis stereoisomers was confirmed using
NOESY spectroscopy (Supporting Information: Figure S7).
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Next, we explored isatin imine as a substrate and successfully demonstrated that
the method can be extended to spiro-lactam synthesis. Notably, under the optimized
reaction conditions, isatin imine 4a was successfully converted to the desired product in
76% yield (Scheme 5; 5a). Unlike the reaction to generate the spirolactone, it took 36 h
for the spirolactam reaction to reach completion. The isolation of the lactam indicates
the loss of Boc; however, at this time, we do not know if the cyclization followed the Boc
deprotection or the other way around. The efficient formation of the spirolactam prompted
us to study the reaction scope with a series of isatin imine substrates 4b–4l (Scheme 5). Like
the spirolactone system, regardless of their electronic or steric properties, all substituted
isatin analogs explored afforded the corresponding products 5b–5l in good to excellent
yields (79–86%).

To demonstrate the practical utility of the reported method, preparative scale reactions
were performed. The resulting spirolactams (5e and 5l) were used as substrates for the
Suzuki reaction and a copper-catalyzed N-arylation reaction (Scheme 6). The model reac-
tion with 1a/4e and methyl 2-(bromomethyl)acrylate 2a was conducted at 10x scale which
resulted in 3a/5e (quantitative yield), demonstrating scalability. We explored diversifica-
tion following the gram-scale synthesis of 5e with heteroaryl boronic acids. The reactions
reached completion within ~8−10 h and resulted in the corresponding products 6 and 7
in good yields. Coupling of phenyl iodide with 1-methyl-4′-methylenespiro[indoline-3,2′-
pyrrolidine]-2,5′-dione (5l) afforded N-phenyl α-methylene-γ-lactam 8 in a moderate yield.



Molecules 2024, 29, 3612 6 of 10

Molecules 2024, 29, 3612 6 of 10 
 

 

however, at this time, we do not know if the cyclization followed the Boc deprotection or 

the other way around. The efficient formation of the spirolactam prompted us to study 

the reaction scope with a series of isatin imine substrates 4b–4l (Scheme 5). Like the spi-

rolactone system, regardless of their electronic or steric properties, all substituted isatin 

analogs explored afforded the corresponding products 5b–5l in good to excellent yields 

(79–86%). 

 

Scheme 5. Substrate scope of isatin-derived N-Boc ketimines 4 a. 

To demonstrate the practical utility of the reported method, preparative scale reac-

tions were performed. The resulting spirolactams (5e and 5l) were used as substrates for 

the Suzuki reaction and a copper-catalyzed N-arylation reaction (Scheme 6). The model 

reaction with 1a/4e and methyl 2-(bromomethyl)acrylate 2a was conducted at 10x scale 

which resulted in 3a/5e (quantitative yield), demonstrating scalability. We explored diver-

sification following the gram-scale synthesis of 5e with heteroaryl boronic acids. The re-

actions reached completion within ~8−10 h and resulted in the corresponding products 6 

and 7 in good yields. Coupling of phenyl iodide with 1-methyl-4′-methylenespiro[indo-

line-3,2′-pyrrolidine]-2,5′-dione (5l) afforded N-phenyl α-methylene-γ-lactam 8 in a mod-

erate yield. 

Based on the experimental observations and previous reports from Lee et al. [38] and 

the René Csuk group [39], we propose a plausible mechanism for the domino reactions 

(Scheme 7). The allylation reaction could proceed through four plausible transition states. 

The re-re and si-si attacks are thought to proceed through the six-membered chair-like 

transition states B and C, respectively, in which the phenyl group of the indolin-2-one 

occupies an unfavorable axial position, leading to the formation of trans-configurated 

products. In contrast, the si-re and re-si attacks are predicted to occur through the more 

favorable transition states A and D, respectively, resulting in cis-configurated products 

with respect to the phenyl group of the indolin-2-one and aryl group. Studies have re-

ported that both si-re and re-si attacks in these transition states increase the favorability of 

the intermediate E. Subsequent nucleophilic addition mediates cyclization, generating the 

spiro-lactone 3 or spiro-lactam 5. 

Scheme 5. Substrate scope of isatin-derived N-Boc ketimines 4 a.
Molecules 2024, 29, 3612 7 of 10 
 

 

 
Scheme 6. Scale-up experiments and derivatizations of products. 

N
H

O

X Br

OMe

O

N
H

O
X

O

Zn

Zn
, T

HF, 
80

 C

X = O; 3
X = NH; 5

1

2

E

R2

1: X = O
4: X = NBoc

R2
H

N
H

O

O

O

O ZnBr

R2

R1

R1

R1

XZn
R2Br

Y

XZn
R2Br

Y

Asi-re Bsi-si

N
H

O
NH

O

Zn
X

Y
Br

R2

Zn
X

Y
Br

R2

NH

O

H
NO

Cre-reDre-si
Y = COOMe, R2 = H/Ar

R1

R1

R1

R1

‡

 
Scheme 7. Proposed mechanism. 

3. Materials and Methods 
1H NMR and 13C NMR spectra were measured on a Bruker spectrometer, using CDCl3 

and DMSO-d as the solvents with tetramethyl silane (TMS) as an internal standard at room 
temperature. High-resolution mass spectra (HR-MS) were acquired using an Agilent 6230 
LC/TOF mass spectrometer (Agilent technology Co., Ltd. Santa Clara, CA, USA). All sol-
vents used in the experiment were dried using activated molecular sieves, and the other 
reagents used in the experiment were all analytically pure without any other treatment. 
Chemical shifts are given in δ relative to TMS, and the coupling constants J are given in 
Hz. Characterization data of the compounds and NMR spectra of the compounds are 
given in the Supplementary Materials. 

  

Scheme 6. Scale-up experiments and derivatizations of products.

Based on the experimental observations and previous reports from Lee et al. [38] and
the René Csuk group [39], we propose a plausible mechanism for the domino reactions
(Scheme 7). The allylation reaction could proceed through four plausible transition states.
The re-re and si-si attacks are thought to proceed through the six-membered chair-like
transition states B and C, respectively, in which the phenyl group of the indolin-2-one
occupies an unfavorable axial position, leading to the formation of trans-configurated
products. In contrast, the si-re and re-si attacks are predicted to occur through the more
favorable transition states A and D, respectively, resulting in cis-configurated products
with respect to the phenyl group of the indolin-2-one and aryl group. Studies have reported
that both si-re and re-si attacks in these transition states increase the favorability of the
intermediate E. Subsequent nucleophilic addition mediates cyclization, generating the
spiro-lactone 3 or spiro-lactam 5.



Molecules 2024, 29, 3612 7 of 10

Molecules 2024, 29, 3612 7 of 10 
 

 

 
Scheme 6. Scale-up experiments and derivatizations of products. 

N
H

O

X Br

OMe

O

N
H

O
X

O

Zn

Zn
, T

HF, 
80

 C

X = O; 3
X = NH; 5

1

2

E

R2

1: X = O
4: X = NBoc

R2
H

N
H

O

O

O

O ZnBr

R2

R1

R1

R1

XZn
R2Br

Y

XZn
R2Br

Y

Asi-re Bsi-si

N
H

O
NH

O

Zn
X

Y
Br

R2

Zn
X

Y
Br

R2

NH

O

H
NO

Cre-reDre-si
Y = COOMe, R2 = H/Ar

R1

R1

R1

R1

‡

 
Scheme 7. Proposed mechanism. 

3. Materials and Methods 
1H NMR and 13C NMR spectra were measured on a Bruker spectrometer, using CDCl3 

and DMSO-d as the solvents with tetramethyl silane (TMS) as an internal standard at room 
temperature. High-resolution mass spectra (HR-MS) were acquired using an Agilent 6230 
LC/TOF mass spectrometer (Agilent technology Co., Ltd. Santa Clara, CA, USA). All sol-
vents used in the experiment were dried using activated molecular sieves, and the other 
reagents used in the experiment were all analytically pure without any other treatment. 
Chemical shifts are given in δ relative to TMS, and the coupling constants J are given in 
Hz. Characterization data of the compounds and NMR spectra of the compounds are 
given in the Supplementary Materials. 

  

Scheme 7. Proposed mechanism.

3. Materials and Methods
1H NMR and 13C NMR spectra were measured on a Bruker spectrometer, using CDCl3

and DMSO-d as the solvents with tetramethyl silane (TMS) as an internal standard at room
temperature. High-resolution mass spectra (HR-MS) were acquired using an Agilent 6230
LC/TOF mass spectrometer (Agilent technology Co., Ltd. Santa Clara, CA, USA). All
solvents used in the experiment were dried using activated molecular sieves, and the other
reagents used in the experiment were all analytically pure without any other treatment.
Chemical shifts are given in δ relative to TMS, and the coupling constants J are given in Hz.
Characterization data of the compounds and NMR spectra of the compounds are given in
the Supplementary Materials.

3.1. General Method for the Synthesis of Spiro-Fused 2-Oxindole/α-Methylene-γ-Butyrolactone

To zinc (1.5 mmol) in an anhydrous THF solvent (3 mL), substituted isatin (1; 1 mmol)
and methyl 2-(bromomethyl)acrylate (2; 1.5 mmol) were added in sequence in a sealed
tube at r.t. under N2. The reaction tube was directly sealed and reacted at 80 ◦C (oil
bath temperature) for 5 h and the progress of the reaction was monitored via thin-layer
chromatography. Once the reaction was completed, the mixture was cooled to room
temperature and quenched via the addition of 1N HCl (2 mL). The resulting mixture
was extracted with ethyl acetate (3 × 5 mL) and the combined organic layers were dried
over Na2SO4, filtered, and concentrated under reduced pressure. The crude product was
purified by means of flash chromatography on silica gel to give the corresponding product.

3.2. General Method for the Synthesis of Spiro-Fused 2-Oxindole/α-Methylene-γ-Butyrolactam

To zinc (1.5 mmol) in an anhydrous THF solvent (3 mL), substituted isatin imines
(4; 1 mmol) and methyl 2-(bromomethyl)acrylate (2; 1.5 mmol) were added in sequence
in a sealed tube at r.t. under N2. The reaction tube was directly sealed and reacted at
80 ◦C (oil bath temperature) for 36 h and the progress of the reaction was monitored via
thin-layer chromatography. Once the reaction was completed, the mixture was cooled to
room temperature and quenched via the addition of 1N HCl (2 mL). The resulting mixture
was extracted with ethyl acetate (3 × 5 mL) and the combined organic layers were dried
over Na2SO4, filtered, and concentrated under reduced pressure. The crude product was
purified by means of flash chromatography on silica gel to give the corresponding product.
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4. Conclusions

In summary, we report the development of a one-pot protocol for the synthesis of spiro
lactones/lactam derivatives. Isatins or the corresponding imines undergo a Zn-mediated
Barbier/aza-Barbier reaction with 2-(bromomethyl)acrylates and the resulting intermediate
undergoes cyclization. Key highlights of this study include the use of readily available
starting materials to generate a spirocyclic system, this method’s operational simplicity, the
use of a non-toxic metal, broad substrate applicability, and high atom efficiency. Addition-
ally, we demonstrated scalability and diversification, indicating that these spirosystems
can serve as key intermediates to rapidly generate bioactive libraries. Studies focused on
the asymmetric synthesis of spirolactones/lactams are currently underway and will be
reported in due course.
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