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Abstract: Organic solar cells (OSCs) are considered a very promising technology to convert solar
energy to electricity and a feasible option for the energy market because of the advantages of light
weight, flexibility, and roll-to-roll manufacturing. They are mainly characterized by a bulk hetero-
junction structure where a polymer donor is blended with an electron acceptor. Their performance
is highly affected by the design of donor–acceptor conjugated polymers and the choice of suitable
acceptor. In particular, benzotriazole, a typical electron-deficient penta-heterocycle, has been com-
bined with various donors to provide wide bandgap donor polymers, which have received a great
deal of attention with the development of non-fullerene acceptors (NFAs) because of their suitable
matching to provide devices with relevant power conversion efficiency (PCE). Moreover, differ-
ent benzotriazole-based polymers are gaining more and more interest because they are considered
promising acceptors in OSCs. Since the development of a suitable method to choose generally a
donor/acceptor material is a challenging issue, this review is meant to be useful especially for organic
chemical scientists to understand all the progress achieved with benzotriazole-based polymers used
as donors with NFAs and as acceptors with different donors in OSCs, in particular referring to
the PCE.
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1. Introduction

The continuous increase in global energy demand due to population growth and eco-
nomic development cannot be any longer satisfied simply by traditional energy resources (e.g.,
coal, oil, and gas) because of their limited, exhausting supplies and environmental impact.

While energy from fossil fuels remains non-sustainable, solar energy is renewable, and
it is generally considered the most promising way to solve the global energy crisis.

The conversion of sunlight energy to electrical energy is achieved in photovoltaic
devices containing suitable semiconductors; first- and second-generation technologies use
inorganic semiconductors such as crystalline silicon, thin layers of cadmium telluride,
copper indium diselenide, and copper indium gallium selenide [1].

In order to provide electricity at a lower cost, new photovoltaic systems have been
developed albeit not yet commercialized at large scale. Among such emerging third-
generation technologies, organic solar cells (OSC) based on polymer semiconductors,
defined as polymer solar cells (PSC), are receiving more and more attention since the
discovery of bulk heterojunction (BHJ) solar cells (Figure 1) in the early 1990s [2].

In such a system, the active layer is obtained by blending a conjugated polymer
serving as a donor (D) with an electron acceptor (A) to form bicontinuous interpenetrating
networks at the nanoscale in order to favor separation into free carriers of the tightly
bounded electron–hole pairs at the D/A interface, namely, excitons formed upon light
excitation, and to allow migration of the charges to the respective electrodes (Scheme 1).
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Figure 1. Bulk heterojunction organic solar cell scheme, adapted from [1]. 

 
Scheme 1. Electric charge generation mechanism and processes in BHJ organic cells: (1) light-
generated exciton formation; (2) light-generated exciton diffusion; (3) charge-transfer exciton 
formation; (4) charge-transfer exciton dissociation/carrier formation; (5) carrier transportation and 
collection. Adapted with permission from Y. Bai, L.W. Xue, H.Q. Wang, Z.G. Zhang, Research 
Advances on Benzotriazole-based Organic Photovoltaic Materials. Acta Chimi Sin 79 (2021) 820–852. 
©2021 Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences [3]. 

Photons passing through the transparent anode are absorbed by the donor molecules 
and, depending on their energy and the bandgap of the polymer, electrons will be excited 
from the highest occupied molecular orbital (HOMO) to the lowest unoccupied molecular 
orbital (LUMO), leaving a positive charge on the HOMO. Once the excitons reach the 
interface between donor and acceptor, it is thermodynamically more favorable for the 
electrons to be situated in the LUMO of the electron acceptor material lying below the 
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Scheme 1. Electric charge generation mechanism and processes in BHJ organic cells: (1) light-
generated exciton formation; (2) light-generated exciton diffusion; (3) charge-transfer exciton for-
mation; (4) charge-transfer exciton dissociation/carrier formation; (5) carrier transportation and
collection. Adapted with permission from Y. Bai, L.W. Xue, H.Q. Wang, Z.G. Zhang, Research Ad-
vances on Benzotriazole-based Organic Photovoltaic Materials. Acta Chimi Sin 79 (2021) 820–852.
©2021 Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences [3].

Photons passing through the transparent anode are absorbed by the donor molecules
and, depending on their energy and the bandgap of the polymer, electrons will be excited
from the highest occupied molecular orbital (HOMO) to the lowest unoccupied molecular
orbital (LUMO), leaving a positive charge on the HOMO. Once the excitons reach the
interface between donor and acceptor, it is thermodynamically more favorable for the
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electrons to be situated in the LUMO of the electron acceptor material lying below the
LUMO of the donor and for the holes to remain in the HOMO of the electron donor material.

Such intermolecular charge transfer (CT) states should evolve into the separate charge
states so that free electrons and holes are obtained and transported to the cathode and to
the anode, respectively, minimizing charge recombination in the organic cells which would
inhibit the total charge flux [4]; the charge carriers are taken to the respective electrodes with
the aid of the internal electric field resulting from the difference in the working function
of the electrodes. Photocurrent generation is therefore a stepwise process, where all the
principal stages need to be optimized to produce photocurrent efficiently [5].

The performance of an OSC is therefore assessed in terms of power conversion ef-
ficiency (PCE or η, in percentage) which is directly proportional to short-circuit current
density (JSC), open-circuit voltage (VOC), and fill factor (FF) as reported in the follow-
ing equation:

PCE = (VOC × JSC × FF)/(IP × M)

where IP is the power density of the incident light irradiation and M is spectral mismatch
factor [6]. Besides interface engineering for efficient charge collection, such parameters
correlated to the photovoltaic processes are in particular influenced by material properties;
considering that an OSC works through the close collaboration of matching donors and
acceptors, the cell performance, properties, and the molecular and nano-/microstructures
of polymer donor materials, which are ultimately governed by the molecular structure of
the polymer donor, are connected by complex hierarchical relationships as illustrated in
Scheme 2.
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Scheme 2. Scheme of the structure–property–cell performance relationships of a polymer donor for
OSCs, where α is the absorption coefficient, εr is the dielectric constant (or relative permittivity), µ
is the mobility, and MW and D are the molecular weight of the polymer donor and its distribution,
respectively. Defects may include terminal groups, homo-coupled units in a copolymer, random
arrangements of comonomers in a copolymer, regio-irregular units, branching, lightly cross-linked
units, oligomers, etc. Some or all of these relationships may apply to small-molecule donors as well
as polymer and small-molecule acceptors. The red lines evidence the connection with Voc, the green
ones with JSC and the blue ones with FF; the lines surrounding the building block and departing from
it are in light blue to evidence better its several relationships with parameters different from Voc, JSC

and FF. Adapted from ref. [7] with permission from the Royal Society of Chemistry.
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In order to find a system in which to tune so many strictly correlated variables,
the scientific community began to focus their research on the development of donor–
acceptor, D-A, conjugated polymers, regarded as the second sub-group of third-generation
semiconducting polymers [8], which, having both electron-rich (pushing) units and electron-
deficient (pulling) units, may allow the following: (1) a broad absorption in visible and
near-infrared regions to harvest sun light efficiently to increase JSC, (2) suitable alignment
of HOMOs and LUMOs for efficient charge separation and higher VOC, (3) good charge
mobility to overcome recombination process and facilitate the charge transport efficiency
for high FF and JSC, (4) processability in the fabrication of OSCs and suitable morphology,
and (5) nanoscale phase separation for effective charge separation and extraction [9].

In particular, the donor–acceptor approach, first demonstrated by Havinga et al. [10],
gained popularity as a means to narrow the bandgap of conjugated copolymers since the
push–pull function among donor–acceptor units could promote charge transfer and create
electronic delocalization [11].

Utilizing an electron-rich donor with a high-lying HOMO level in combination with
an electron-deficient acceptor with a low-lying LUMO level, copolymerization of donor
and acceptor monomers, which usually occurs via classical coupling reactions, such as
Suzuki–Miyaura and Migita–Stille, determines the hybridization of their orbitals resulting
in a reduced bandgap through the simultaneous raising of the HOMO and lowering of the
LUMO and shifting optical absorbance to a lower energy compared to constituent donor
and acceptor homopolymers [12].

Among the various acceptors for constructing the p-type semiconductor benzotriazole,
BzT (Figure 2), a nitrogen-containing heterocyclic benzazole derivative is a moderately
electron-deficient unit due to the diimine structure which offers the following chemically
functionalizable sites [13,14]:
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(1) The central nitrogen position can be functionalized with a Z group, mostly an alkyl
chain, to endow solution processability, which, separate from the conjugated backbone,
reduces the steric hindrance, thereby enhancing the effective intrachain π-conjugation and
interchain packing; (2) The 5- and 6-positions on the benzotriazole unit can be modified
chemically by introducing other substituents to modulate the frontier orbital levels and
oxidational stability of the resulting molecules.

On the other hand, regarding the n-type organic semiconductor of the active layer,
fullerene derivatives have been widely used and investigated as acceptors because of their
strong electron-accepting ability, high electron mobility, and ability to form proper-sized
BHJ domains in PSC devices [15]. In order to overcome their weak absorption in the visible
spectral region, limited energy level tunability, and the inadequate long-term stability of
the devices caused by the susceptibility to dimerization and gradual aggregation, thanks to
the invention of the A–D–A-structured small-molecule non-fullerene acceptor ITIC [16],
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in the last decade, non-fullerene acceptors (NFAs), consisting of organic small molecules
or polymers, have been developed and successfully employed in OSCs with effective
improvement to PCE [17,18] which can be achieved by following such important criteria:
(1) complementary absorptions between donor and acceptor components to enhance light
harvesting; (2) matching energy levels to ensure efficient charge separation and to minimize
voltage loss (Vloss, defined as Vloss = Egap/q − Voc, where Egap is the lowest optical
bandgap among the donor and acceptor components); (3) balanced charge mobilities to
avoid charge accumulation at device interfaces; and (4) favorable morphology including
high crystallinity, face-on orientation, and small domain size [19].

In particular, among the NFAs, BzT-based polymers have been very recently prepared
and successfully tested as acceptors in the OSC active layers.

Benzatriazole is therefore an important building block both for donor and acceptor
polymers; this review is meant to provide an overview of the progress over the last ten years
on the use of this simple moiety for the synthesis of both BzT-based donor D-A conjugated
polymers combined with NFAs and BzT-based acceptor polymers, in particular referring to
PCE values of corresponding devices constructed with such polymers in their BHJ active
layer. The OSC containing an active layer composed of D and A species will be indicated
as D:A-based devices, and the chemical structures of NFAs used with a BzT-based polymer
and the donor polymers used with BzT-based polymer acceptors mentioned throughout
these sections are depicted in the Supporting Information (Figures S1 and S2).

2. D-A Conjugated Polymers

The literature is very rich with papers dealing with BzT-based D-A conjugated poly-
mers, but to the best of my knowledge in NFAs-OSC, only three polymers (Figure 3) are pre-
cisely characterized by the formula D-A containing a benzotriazole-based electron-deficient
unit directly linked to a donor, specifically, two benzo [1,2-b:4,5-b′]dithiophene derivatives
(polymers PY1 and PY39) [20,21] or a fluorene derivative (polymer PBTA-FN) [22].
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It is common to indicate conjugated polymers generally as D-A species, but to be 
clear and precise, most of the polymers are characterized more properly by a formula such 
as D-π spacer-A-π spacer, as in Scheme 3; the D unit can be a single or a group of 
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It is common to indicate conjugated polymers generally as D-A species, but to be
clear and precise, most of the polymers are characterized more properly by a formula
such as D-π spacer-A-π spacer, as in Scheme 3; the D unit can be a single or a group of
molecules, the π spacer is a bridging unit, specifically furan, thiophene, selenophene, and
thieno[3,2-b]thiophene, and A is a BzT derivative, which contains different organic or
siloxane groups Z on the azole nitrogen and Y,Y′ substituents consisting of H, Cl, F, CN,
OR, or forming a ring condensed with BzT.
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Considering the π-spacer, thiophene is one of the most used molecules as a π-bridge,
since it has high charge-transport ability and extends the conjugation length of the polymer,
and it is definitely the most used in BzT-based conjugated polymers. The introduction of
thiophene on the polymer backbone decreases steric hindrance that may occur between
D-A units and may favor planarity. Moreover, it determines the widening of the absorption
in the direction of near-infrared region (NIR) wavelengths in addition to increasing the
absorption coefficient due to strong intramolecular charge transfer (ICT) [23].

Considering the acceptor, it is possible to identify two main groups of polymers, one
based on 5,6-difluorobenzotriazole (F-BzT) and one on the π-extended BzT unit consisting
of the BzT unit condensed with various rings.

Therefore, conjugated polymers will be illustrated in two sections in which the poly-
mers will be listed based upon the type of bridge and donor moiety.

2.1. F-BzT-Based Conjugated Polymers with Thiophene Bridge

The 5,6-difluorobenzotriazole unit provides a lot of advantages for the constructions of
conjugated polymers in comparison to simple BzT-based polymers [24–32], which may be
attributed to its small van der Waals radius of 1.35 Å and high electronegativity, effectively
modifying the energy levels and enhancing optical absorption without a negative influence
on molecular packing. This unit with two flanking thiophenes, called FTAZ, is the most
largely used BzT-based acceptor core (Figure 4).
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2.1.1. FTAZ-Conjugated Polymers with BDT as Donor Moiety

Thieno[3,2-b]thiophene, BDT Figure 5, which is usually connected to the thiophene
bridge along the polymer backbone via one of the condensed thiophenes except for just
one case where it is linked via the X group, is the most used donor molecule in BzT-based
polymers: actually, its rigid and planar structure provides great potential for tuning the
energy levels, bandgaps, and charge carrier mobility with the desired chemical structure
modifications via side-chain engineering, i.e., the convenient choice of the X group [26].
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The first polymer containing an alkyl derivative of BDT and FTAZ, PBnDT-FTAZ,
Figure 6, was reported by Price et al. [33] and blended with the fullerene derivative [6,6]-
phenyl C61-butyric acid methyl ester (PC61BM) as acceptor, obtaining a OSC with a PCE
higher than 7%, quite relevant for that time for BzT-based polymers.
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Figure 6. Structural formula of PBnDT-FTAZ [33].

However, when the polymer was blended with NFAs, the PCE of the OSC containing
such active layers increased except with SF-PDI2 [25] (Table 1), reaching the maximum
value of 13.03% without additive and IDIC [34] or 13.58% with 1,8-diiodooctane (DIO) and
chloronaphthalene (CN) with IDCIC [35]; the corresponding J-V curves are reported in
Figure 7.
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Figure 7. The J-V curves recorded under AM1.5G (100 mWcm−2) illumination of (A) FTAZ:IDIC-
based device, [34] © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim; (B) FTAZ:IDCIC-based
device, [35] © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

Table 1. PCE values of D:NFA OSCs under simulated AM1.5G (100 mWcm−2) illumination.

Polymer Donor Non-Fullerene Acceptor PCEmax
a (%) PCEavg

b (%) References

PBnDT-FTAZ SF-PDI2 2.3 [25]
FTAZ c IDIC 13.03 [34]

FTAZ c IDCIC 9.64 (13.58) d 9.09 ± 0.34
(13.10 ± 0.26) d [35]

FTAZ c ITIC 1 8.54 8.32 ± 0.19 [36]
FTAZ c ITIC 2 11.0 10.6 ± 0.2 [36]
FTAZ c ITIC-Th 8.88 8.67 ± 0.15 [37]
FTAZ c ITIC-Th 1 12.1 11.9 ± 0.1 [37]
FTAZ c INIC 7.7 7.5 [38]
FTAZ c INIC1 10.1 9.9 [38]
FTAZ c INIC2 10.8 10.6 [38]
FTAZ c INIC3 11.5 11.2 [38]
FTAZ c IHIC 2 7.45 7.30 ± 0.18 [39]

FTAZ c IOIC 2 11.2 (12.1) e 11.1 ± 0.1
(12.1± 0.2) e [39]

FTAZ c IDIC 12.5 12.1 ± 0.4 e [40]
FTAZ c IT-M 11.89 (12.22) f [41]

PBnDT-FTAZ IT-M 12.0 g 11.7 ± 0.3 [42]
OTAZ h IT-M 4.1 3.8 ± 0.2 [42]

F OTAZ i IT-M 5.7 5.2 ± 0.4 [42]
4′-FT-FTAZ j ITIC-Th1 10.3 [28]

a PCE maximum value, reported for as-cast film from halogenated solvents unless otherwise specified. b PCE
average values and standard deviations when available. c The authors have shortened the name PBnDT-FTAZ
in just FTAZ. d Film processed with DIO and CN as additives. e Film processed with DIO as additive. f Film
processed with 2,3,5,6-tetrafluoro-7,7,8,8-tetracyanoquinodimethane (F4-TCNQ) as additive. g Film processed
with toluene. h Structural formula reported in Figure S3. i Structural formula reported in Figure S4. j Structural
formula reported in Figure S5.

It was also possible to process a device with PCE over 11% using toluene instead
of halogenated solvent [42], which holds great promise for the development of low-cost,
low-toxicity, and high-efficiency OSCs as well as showing the successful combination of this
wide-band-gap (WBG) polymer (Eg ca 2 eV) with NFAs with respect to fullerene acceptors.
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In Table 1, PCEs of devices with slightly different polymers [4′-FT-FTAZ has fluorine
in the β-position in the thiophene bridge while OTAZ, instead of fluorine in the 5- and
6-position, has two oligo-(ethylene-oxide) chains] [42] are reported in order to provide a
full overview on the 2-butyloctyl-functionalized BDT donor derivative.

The use of NFAs was definitely a breakthrough in the development of OSCs, and
in particular WBG (Eg 1.9–2.0 eV) polymers with a D–A molecular skeleton of thienyl
benzodithiophene-alt-4,7-bis(thiophen-2-yl)benzotriazole (BDTT-alt-XTAZ), Figure 8, have
become widely used and successful material systems due to their strong optical absorption
in the wavelength range of 400–650 nm with a high absorption coefficient of ∼105 cm−1 in
film, ordered molecular packing, high hole mobility of ∼10−3 cm2 V−1 s−1, and favorable
morphological insensitivity [43].
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Figure 8. Structural formula of BDTT-alt-XTAZ polymers.

The first polymers J50 and J51, Figure 9, were synthesized by Min et al. [44] who
observed their two-dimensional character and the redshift in their absorption spectrum
with respect to the linear copolymer analogues with alkoxy side-chains or alkyl side-chains
on the BDT unit.
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The combination of J51 with the polymer acceptor N2200 allowed researchers to
produce the first all-polymer cell containing a BzT-based polymer donor, with PCE of
8.28% [24]. Better efficiency was achieved with ITIC (PCE 9.26%), having a stronger
absorbance than N2200 in the longer-wavelength region [45]: the J-V curves are reported in
Figure 10.
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Figure 10. The J-V curves of a J51:ITIC-based device recorded under AM1.5G (100 mWcm−2)
illumination [45] © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

Except for a few polymers in which the alkyl group bound to BDTT in the α-position was
substituted by an ethynyl derivative (2-triisopropylsilylethynyl) [46] or linear hexyl/octyl
chain [47–49], research was devoted to the study of polymers with the 2-ethylhexyl group,
J52 [50] Figure 11, also indicated as PBZ [51] or PBDT(T)FTAZ [52].
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Figure 11. Structural formula of the J52/PBZ/PBDT(T)FTAZ polymer with the different
names [50–52].

This was tested with various acceptors [50,52–59] (Table 2), the best performance being
obtained when J52 was paired to a JC2 acceptor (PCE 10.27%) (the J-V curve is shown in
Figure 12) [56].
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Table 2. PCE values of J52:NFA OSCs under simulated AM1.5G (100 mWcm−2) illumination.

Polymer Donor Non-Fullerene Acceptor PCEmax
a (%) PCEavg

b (%) References

J52 ITIC 5.18 (5.51) c 4.85 ± 0.26
(5.26 ± 0.18) c [50]

PBZ (J52) ITIC 8.00 7.5 ± 0.3 [51]
J52 m-ITIC 3.45 (5.98) c 5.89 ± 0.12 c [53]
J52 BTA13 7.82 7.63 ± 0.015 [54]
J52 ITIC 3.78 3.01 [55]

PBDT(T)FTAZ (J52) N2200 4.95 (5.83) d (6.14) c 4.71 (5.55) d (5.95)c [52]
J52 JC2 10.27 10.12 ± 0.09 [56]
J52 Y6 7.15 [57]
J52 Y6 6.02 [58]
J52 IT-4F 6.4 [43]

a PCE maximum value, reported for as-cast film from halogenated solvents unless otherwise specified. b PCE
average values and standard deviations when available. c After thermal treatment. d Film processed with DIO as
additive.
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Figure 12. The J-V curve of a J52:JC2-based device recorded (violet line) under AM1.5G (100 mWcm−2)
illumination reproduced from [56] with permission from the Royal Society of Chemistry.

J52 was also copolymerized with other polymers to obtain random terpolymers
(Figure S6) [52,60], or slightly changed by introducing a siloxane group on the azole
nitrogen to provide J55 (Figure S7A) [61], but it mostly underwent further functionalization
of the thienyl group with the introduction of fluorine or chlorine (Scheme 4).

Fluorination is a well-known method to improve photovoltaic performance: first, from
a synthetic point of view, fluorine does not react with aromatic boronic or stannyl monomers
in the palladium-catalyzed carbon–carbon coupling reactions, which are the most applied
methods in the synthesis of polymers for OSCs [62]. Fluorine is more electronegative than
hydrogen (3.98) and has a similar size to hydrogen. The small size and high electron affinity
of the fluorine atom can effectively amend the energy levels by lowering both HOMO and
LUMO energy levels with benefits for VOC [63]. With a fluorine substitution in the donor
unit, the resulting polymer will possess a minimized steric effect due to the similar size
of fluorine and hydrogen. Besides the significant effect on the HOMO energy levels in
these fluorine-substituted polymers, the intermolecular noncovalent interactions such as
F. . .H(O) or F. . .F can also affect the molecular stacking of polymer chains as a result of
more ordered aggregation in the nanoscale phase-separated bulk-heterojunction film; they
potentially also improve charge carrier mobility, what is beneficial to JSC.
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smaller stacking spacing than J52 [51] which resulted in the better performance of 
PFBZ:ITIC-based OSCs, yielding a higher PCE of 10.4% (Table 3). Moreover, the PCE val-
ues of the PFBZ:ITIC-based devices are insensitive to the variation of active layer thick-
ness and the PFBZ:ITIC-based devices exhibit high tolerance to the thermal annealing. 
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As expected, the monofluorinated J52-F (Scheme 4) also indicated as PFBZ exhib-
ited lower HOMO/LUMO levels, stronger p–p interaction, higher extinction coefficient,
and smaller stacking spacing than J52 [51] which resulted in the better performance of
PFBZ:ITIC-based OSCs, yielding a higher PCE of 10.4% (Table 3). Moreover, the PCE values
of the PFBZ:ITIC-based devices are insensitive to the variation of active layer thickness
and the PFBZ:ITIC-based devices exhibit high tolerance to the thermal annealing.
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Table 3. PCE values of J52 derivative:NFA OSCs under simulated AM1.5G (100 mWcm−2) illumination.

Polymer Donor Non-Fullerene Acceptor PCEmax
a (%) PCEavg

b (%) References

J91 m-ITIC 6.05 (11.63) c 11.32 ± 0.21 c [53]
J52-F(PFBZ) ITIC 10.4 9.8 ± 0.4 [51]

J52-F BTA13 8.36 8.28 ± 0.11 [54]
J52-F BTA3 9.04 8.68 [64]
J52-F BTA4 5.61 5.34 [64]
J52-F BTA5 11.26 10.95 [64]
J52-F BTA3b 9.81 9.72 ± 0.09 [65]
J52-F J14 10.33 10.29 ± 0.04 [65]
J52-Cl ITIC 11.53 10.9 [55]
J52-Cl Y6 12.31 12.31 ± 0.06 [29]
J52-Cl IT-4F 9.7 9.3 [43]

L68 (J52-Cl) IT-4F 9.30 9.1 ± 0.2 [66]
L68 (J52-Cl) TTPT-T-4F 12.72 12.42 ± 0.27 [67]

J52-Cl JC2 11.44 11.21 ± 0.18 [56]
J52-Cl BTA1 0.6 [68]
J52-Cl BTA11 0.13 [68]
J52-Cl BTA3 10.5 [68]
J52-Cl BTA13 7.16 [68]
J52-Cl BTA7 5.78 [68]
J52-Cl BTA17 5.18 [68]
J52-Cl Y18 13.64 [21]

J52-Ome d JC2 11.18 10.92 ± 0.16 [56]
L24 IT-4F 1.33 1.3 ± 0.1 [66]
L810 IT-4F 12.1 11.7 ± 0.4 [66]

J52FTh ITIC 12.23 (13.32) c [69]

J52ClF IT-4F 13.73 (14.59) c 13.49 ± 0.24
(14.32 ± 0.27) c [59]

J11 m-ITTC 10.16 (12.32) c 10.01 ± 0.24
(11.81 ± 0.21) [70]

J12 m-ITTC 8.31 (8.74) c 7.99 ± 0.13
(8.31 ± 0.25) [70]

J11 Y10 11.37 (13.46) e 11.17 ± 0.2 (13.26 ± 0.2) [71]
a PCE maximum value, reported for as-cast film from halogenated solvents unless otherwise specified. b PCE
average values and standard deviations when available. c After thermal treatment. d Structural formula in Figure
S7B. e Film processed with CN as additive after thermal treatment.

J52-F was tested also with other NFAs (Table 3): BTA5 is the acceptor more suitable to
determine a higher PCE (the J-V curves are reported in Figure 13A) and in particular high
VOC (1.17 V), which is, however, the lowest VOC among the three devices (VOC 1.19 V for
J52-F:BTA3, VOC 1.21 V for J52-F:BTA4) [64]. In particular, the highest VOC value, 1.21 V,
resulted from the raised lowest unoccupied molecular orbital energy level of BTA4 with
respect to the other acceptors (Figure 13B).

Also, double fluorination of the BDT thienyl side-chain group was successful in pro-
ducing polymer J91 which demonstrated enhanced absorption, low-lying highest occupied
molecular orbital energy level, and higher hole mobility in comparison with its control
polymer J52; the J91:m-ITIC based OSC performed better (PCE 11.63%, Voc 0.984 V, Jsc
18.03 mAcm−2 and FF 65.54%) than the analogous one with J52 (PCE 5.98%, Voc 0.701 V,
Jsc 17.16 mAcm−2, FF 49.73%) [53]; the J-V curves are reported in Figure 14.
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Figure 14. The J-V curves of J91:m-ITIC- and J52:m-ITIC-based devices recorded under AM1.5G
(100 mWcm−2) illumination [53] © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

It is interesting also to observe that, similar to the F atom, chlorine too shows strong
electronegativity and demonstrates the large potential to adjust the molecular energy levels,
crystallinity, and carrier mobility of the target polymers; in particular, due to the heavy
atom effect and empty 3d orbitals of the chlorine atom, the HOMO energy level of the
target polymer is lowered further than that of the fluorine substituted polymer [62]. Not
secondarily, the synthetic costs are much lower and routes of chlorination more simple.

Therefore, J52-Cl, also indicated as L68 [66] (Scheme 4), the analogous chlorine deriva-
tive of J52-F, was synthesized and tested with various acceptors (Table 3) [21,29,55,56,66,67],
obtaining OSC devices with very promising PCEs (Table 3) ranging from 11.53% with
ITIC [55] up to 13.64% with Y18 [21]; the J-V curve of the J52-Cl:Y18-based device is
reported in Figure 15.
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Moreover, because of a feasible chlorination synthetic pathway for the thiophene
group linked to BDTT, it was possible to prepare efficient chlorinated polymer donors with
a low-lying HOMO energy level altering the position of the chlorine atom from the meta-
to the ortho-position of the thiophene unit (Figure 16) [70,71].
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In particular, the OSC containing J11 blended with m-ITTC performed better than the
one with J12 and m-ITTC (Table 3), exhibiting a high PCE of 12.32% with a high FF of 73%,
which even increased with Y10 (PCE 13.46%); the J-V curve of the J11Cl:Y10-based device
is reported in Figure 17. This is thanks to the more redshifted spectrum of Y10, which
is characterized by a narrow optical bandgap (Eg

opt) of 1.35 eV compared to the Eg
opt of

m-ITTC (1.61 eV), which is beneficial for obtaining a higher Jsc [71].
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Figure 17. The J-V curve of J91:Y10-based device recorded under AM1.5G (100 mWcm−2) illumination
reproduced from ref. [71] with permission from the PCCP Owner Societies.

Other side-chain engineering on J52-Cl regarded the R groups of the azole nitrogen
to produce L24 and L810, (Scheme 4, Table 3) [66], and very recently further molecu-
lar engineering of J52 and J52-Cl occurred by replacing the thiophene π-bridge with
3-fluorothiophene in the main chain to obtain J52-FTh [69] and J52ClF [51] (Scheme 4),
which notably improved the photovoltaic performance (Table 3): in particular, the PCE of
the J52ClF:IT-4F-based OSC was boosted from 9.7 [50] to 14.59% [62] by realizing extensive
and important noncovalent contacts such as F−H, F−S, and F−Cl. The J-V curves of
J52Fth:ITIC- and J52ClF:IT4F-based devices are reported in Figure 18.
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Figure 18. The J-V curves of (A) J52-FTh:ITIC reproduced with permission from [69] Organic
Electronics 108 J.X. Liao, F.B. Weng, P.J. Zheng, G.B. Xu, L.X. Zeng, Z.G. Huang, T.J. Deng, Y.Q. Pang, S.Y.
Wu, J.H. Chen, H.B. Zhao, Y.J. Xu, Enhanced efficiency of polymer solar cells via simple fluorination
on the π-bridge of polymer donors, © 2022 Published by Elsevier B.V (2022) and (B) J52ClF:IT-4F-
based devices recorded under AM1.5G (100 mWcm−2) illumination, [51] © 2017 WILEY-VCH Verlag
GmbH & Co. KGaA, Weinheim.

Besides alkyl chains, alkylthio groups were used as substituents of the BDTT unit to
develop the donor polymers reported in Figure 19 (PCEs in Table 4) [50,54,61,72–78].

The incorporation of the alkylthio groups was inspired by sulfur’s special function of
forming pπ(C)–dπ(S) orbital overlap between the conjugated side-chains and the alkylthio
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substitution, thus down-shifting the highest occupied molecular orbital (HOMO) levels
and redshifting absorption.
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J64 ITIC 7.51 (8.59) c 7.23 ± 0.19 (8.36 ± 0.18) c [74] 
J61 BTA1 0.26 0.26 ± 0.003 [76] 
J61 BTA2 3.02 2.98 ± 0.04 [76] 
J61 BTA3 8.25 8.03 ± 0.14 [76] 

J52-FS  BTA13 3.84  3.83 ± 0.02 [54] 
J52-FS  Y6 10.58 10.14 ± 0.40 [77] 

J52-Cl-S  Y6 10.48 10.23 ± 0.24 [57] 
J65 ITIC 4.92 (6.91) c 4.58 ± 0.32 (6.01 ± 0.36)) [61] 

PBDTFBTA-2T Y6 11.76 11.37 ± 0.35 [78] 
PBDTFBTA-TSi Y6 14.18 13.76 ± 0.40 [78] 
PBDTFBTA-2Si Y6 11.92 11.45 ± 0.39 [78] 

a PCE maximum value, reported for as-cast film from halogenated solvents unless otherwise speci-
fied. b PCE average values and standard deviations when available. c After thermal treatment. 
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Table 4. PCE values of alkylthio-substituted BDTT-alt-FTAZ:NFA OSCs under simulated AM1.5G
(100 mWcm−2) illumination.

Polymer Donor Non-Fullerene Acceptor PCEmax
a (%) PCEavg

b (%) References

J60 ITIC 5.17 (8.97) c 5.07 ± 0.14 (8.67 ± 0.31) c [50]
J61 ITIC 9.15 (9.53) c 8.93 ± 0.26 (9.22 ± 0.24) c [50]
J61 ITIC 10.57 10.28 ± 0.15 [72]
J61 ITIC 9.32 c [75]
J61 m-ITIC 11.77 11.49 ± 0.16 [72]

PSBZ ITIC 9.7 (10.5) c 9.2 ± 0.4 (10.0 ± 0.3) c [73]
J62 ITIC 9.09 (10.81) c 8.87 ± 0.19 (10.68 ± 0.11) c [74]
J63 ITIC 7.38 (8.13) c 7.24 ± 0.13 (8.02 ± 0.09) c [74]
J64 ITIC 7.51 (8.59) c 7.23 ± 0.19 (8.36 ± 0.18) c [74]
J61 BTA1 0.26 0.26 ± 0.003 [76]
J61 BTA2 3.02 2.98 ± 0.04 [76]
J61 BTA3 8.25 8.03 ± 0.14 [76]

J52-FS BTA13 3.84 3.83 ± 0.02 [54]
J52-FS Y6 10.58 10.14 ± 0.40 [77]

J52-Cl-S Y6 10.48 10.23 ± 0.24 [57]
J65 ITIC 4.92 (6.91) c 4.58 ± 0.32 (6.01 ± 0.36)) [61]

PBDTFBTA-2T Y6 11.76 11.37 ± 0.35 [78]
PBDTFBTA-TSi Y6 14.18 13.76 ± 0.40 [78]
PBDTFBTA-2Si Y6 11.92 11.45 ± 0.39 [78]

a PCE maximum value, reported for as-cast film from halogenated solvents unless otherwise specified. b PCE
average values and standard deviations when available. c After thermal treatment.

It is interesting to observe that, differently from the polymers previously described, the
research of such was particularly focused on evaluating the photovoltaic properties given
the variations of the topology of the BDTT substituents, i.e., selecting linear or branched
chains with different length which strongly affects the aggregation state and morphology
and, therefore, PCE.
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The best performance (PCE 14.18%) was obtained by a device fabricated with the
asymmetric siloxane-functionalized polymer PBDTFBTA-TSi blended with Y6 (the J-V
curve of the PBDTFBTA-TSi:Y6-based device is shown in Figure 20A) [78]; the introduced
siloxane functional groups showed less of an effect on the absorption and frontier orbital
levels of the polymers but had a significant effect in improving the miscibility between
the donor polymers and the non-fullerene acceptor, weakening the phase separation of
the related blend films, which allowed for finely tuning the active blend morphology.
As a consequence, PBDTFTBA-TSi:Y6 blends had the most balanced crystallinity and
miscibility with more interpenetrating microstructures (Figure 20B), generating the most
appropriate phase separation for exciton dissociation and charge transport and resulting in
a high PCE value.

1 
 

 

Figure 20. (A) The J-V curve of the PBDTFBTA-TSi:Y6-based device (red line) recorded under
AM1.5G (100 mWcm−2) illumination in red reproduced from [78] with permission of American
Chemical Society © 2020 American Chemical Society. (B) Atomic Force Microscopy (AFM) height
images (a–c) and phase images (d–f) of the active blends. (g–i) PiFM images of the active blends
adapted from [78] with permission of American Chemical Society © 2020 American Chemical Society.
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Moreover, in order to construct a device with higher PCE, rather than ternary copoly-
merization [79], one facile solution is to use a ternary approach: two donor polymers
having complementary absorption spectra are combined with an acceptor to construct a
ternary solar cell [80,81]. In this way, PCE of 14.88% was achieved when J61 was blended
with PffBTT2-DPPT2 (Figure S8) and Y6 [78,81].

The last group of BDTT substituents are alkylsilyl groups: the alkylsilyl side-chain
approach developed by Bin et al. [82] is simple and convenient for downshifting the HOMO
energy level and strengthening the absorption due to the bond interaction of the low-lying
s* orbital of the Si atom with the p* orbital of the aromatic units. Moreover, the Si atom has
a significant effect on the crystallinity of the polymer. Bin et al. [82] synthesized polymer
J71 (Figure 21A) which, blended with ITIC, produced devices with PCE of 11.4% (the J-V
curve of J71:Y6-based devices is shown in Figure 22).
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genated alkylsilyl-substituted BDTT-alt-FTAZ, PBZ-ClSi/J71-Cl [30,43], J101 [30].
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Later on, different alkyl groups (branched or linear chains longer than n-propyl) were
introduced to produce polymers J70, J72, J73, and J74 (Figure 21A) (Table 5) [83], but
most of the research was based on testing J71 with various NFAs or also other deposition
techniques [84–87].

Table 5. PCE values of alkylsilyl-substituted BDTT-alt-XTAZ:NFA OSCs under simulated AM1.5G
(100 mWcm−2) illumination.

Polymer Donor Non-Fullerene Acceptor PCEmax
a (%) PCEavg

b (%) References

J71 ITIC 9.03 (11.41) c 8.94 ± 0.24 (11.2 ± 0.29) [82]
J71 m-ITIC 12.05 11.77 ± 0.15 [83]
J70 m-ITIC 11.62 11.40 ± 0.18 [83]
J72 m-ITIC 10.23 9.95 ± 0.22 [83]
J73 m-ITIC 10.71 10.43 ± 0.16 [83]
J74 m-ITIC 9.63 9.47 ± 0.12 [83]
J71 ITCPTC 6.38 (7.13) c 5.88 ± 0.52 (6.61 ± 0.67) c [84]
J71 MeIC 6.64 (8.83) c 6.22 ± 0.47 (8.38 ± 0.56) [84]
J71 ITC6-IC 11.32 10.89 [85]
J71 IDIC 11.75 11.23 [85]
J71 Me-IC 10.57 10.37 [85]
J71 ITCPTC 10.46 10.03 [85]
J71 ITIC 10.95 10.55 [85]

PBZ-ClSi (J71-Cl) IT-4F 12.8 b 12.5 [43]
J71 IT-4F 7.79 (8.16) d [30]

J71-Cl (PBZ-ClSi) IT-4F 9.47 (11.10) e [30]
J101 IT-4F 8.07 (11.30) e [30]

a PCE maximum value, reported for as-cast film from halogenated solvents unless otherwise specified. b PCE
average values and standard deviations when available. c Film processed with toluene and 1-phenylnaphthalene
as additive. d After thermal treatment. e Film processed with diphenyl ether as additive.

It is noteworthy to underline that chlorination, analogously to J52 derivatives, helped
in improving PCE [43].

In particular, PBZ-ClSi (J71-Cl) (Figure 21B), thanks to the presence of Cl and alkylsilyl
substituents, showed reduced HOMO levels (Figure 23A), increased absorption coefficient,
and improved charge mobility with respect to J52 and J52-Cl [43].

As a result, the non-halogen-solvent-processed OSC based on PBZ-ClSi:IT-4F achieved
a high PCE of 12.8% with a high VOC of 0.93 V, JSC of 19.2 mA cm−2, FF of 71.5%, and
Eloss as low as 0.57 eV, while the OSCs based on PBZ:IT-4F and PBZ-Cl:IT-4F performed
worse (PCEs of 6.4% and 9.7%, respectively); the corresponding J-V curves are reported in
Figure 23B.
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Good performance was also obtained for J101 (Figure 21B, Table 5) where chlorine
was introduced into the main chain of the BTD-alt-XTAZ polymer as well as in the side-
chains [30].

Besides thienyl and analogous selenophene groups [88], alkoxide and aryl species
were used to functionalize BDT to produce other donor polymers.
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enhancing the light-harvesting and charge transport and lowering the HOMO energy levels. 

This strategy was followed by Liu et al. [91] who introduced 2-octyldodecylalkoxide, a 
one-dimensional side-chain, and a naphthalene group, a 2D side-chain, as well on BDT and 
prepared two polymers (Figure 25A): in particular, the OSC fabricated with the polymer con-
taining the naphtalene linked in the α-position to BDT, PαNBDT-T1, blended with ITIC 
showed a PCE of 9.60%, higher than with the other isomer PβNBDT-T1 (PCE 6.73%). This 

Figure 23. (A) The energy level diagram of PBZ, PBZ-Cl, PBZ-ClSi, and IT-4F. (B) The J-V curves of
PBZ:IT-4F-, PBZ-Cl:IT-4F-, and PBZ-ClSi:IT-4F-based devices recorded under AM1.5G (100 mWcm−2)
illumination adapted from ref. [43] with permission from the Royal Society of Chemistry.

The alkoxide derivatives J40 and P6 (Figure 24)-based OSCs did not show great perfor-
mance even when the introduction of oligo(ethylene glycol) side-chains also on the benzo-
group of BzT allowed the processing of the active layer film with 2-methyltetrahydrofuran
(2-MeTHF), a renewable and green solvent [89,90].
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To achieve better performance, it was necessary to introduce a two-dimensional (2D)
side-chain which extends the π-conjugation and strengthens the intermolecular interactions,
enhancing the light-harvesting and charge transport and lowering the HOMO energy levels.

This strategy was followed by Liu et al. [91] who introduced 2-octyldodecylalkoxide, a
one-dimensional side-chain, and a naphthalene group, a 2D side-chain, as well on BDT and
prepared two polymers (Figure 25A): in particular, the OSC fabricated with the polymer
containing the naphtalene linked in the α-position to BDT, PαNBDT-T1, blended with ITIC
showed a PCE of 9.60%, higher than with the other isomer PβNBDT-T1 (PCE 6.73%). This
different performance is particularly ascribed to a better blending morphology with a more
uniform phase separation as evident from transmission electron microscopy (TEM) images
(Figure 25B,C) because of weaker intermolecular stacking due to a larger dihedral angle
between the naphthalene rings (α form) and BDT.

Two more polymers containing just naphthalene derivatives on the BDT skeleton
(PDTTz-N, T1, Figure 26A,A’) were prepared and studied (Table 6) [92,93], but beyond
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naphthalene as 2D side-chain on BDT, the aryl substituent linked to BDT is usually a
benzene ring functionalized with other phenyl, i.e., PBDTTz-BP [92], PBDTTz-SBP [47],
and P2 [94] (Figure 26B), alkoxide (PBZ1 [95,96], PBZ-m-CF3 [95], DZ1, DZ2 and DZ3 [97])
(Figure 26C), alkylthio (PBTA-PS and PBTA-PSF [98] Figure 26C), alkyl (PBTZa and
PBTZb Figure 26B [99]) or trialkylsilylethynyl groups (PBDTPSi-FTAZ Figure 26C [100]).
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Figure 25. (A) Structural formula of PαNBDT-T1 and PβNBDT-T1 [91]; (B) TEM image of the
active layer containing PβNBDT-T1:ITIC (1:1.5, w/w); (C) TEM image of the active layer containing
PαNBDT-T1:ITIC (1:1.5, w/w) adapted from ref. [91] with permission of the Royal of Chemistry.

Table 6. PCE values of aryl-substituted BDT-alt-FTAZ:NFA OSCs under simulated AM1.5G
(100 mWcm−2) illumination.

Polymer Donor Non-Fullerene Acceptor PCEmax
a (%) PCEavg

b (%) References

PDTTz-N ITIC 6.61 [92]
PBDTTz-BP ITIC 8.03 [92]
PBDTTz-BP ITIC 9.20 8.97 [47]

PBDTTz-SBP ITIC 12.09 11.89 [47]
P2 ITIC 5.91 (6.59) c [94]

PBZ1 ITIC 4.3 (5.8) c 4.1 (5.7) c [95]
PBZ-m-CF3 ITIC 7.9 (10.4) c 7.8 (10.3) c [95]

PBTA-PS ITIC 11.85 11.52 [98]
PBTA-PSF ITIC 13.91 13.60 [98]

PBTZa ITIC-4Cl 6.02 (8.50) c 5.96 (8.31) c [99]
PBTZb ITIC-4Cl 12.09 (14.53) c 11.81 (14.34) c [99]

T1 ITIC 11.83 11.50 ±0.33 [93]
DZ1 MeIC 8.26 7.94 ± 0.19 [97]
DZ2 MeIC 10.21 9.98 ± 0.20 [97]
DZ3 MeIC 5.97 5.77 ± 0.20 [97]

PBDTPSi-FTAZ IDIC 5.78 (7.07) c 5.62 ± 0.16 (6.91 ± 0.16) c [100]
a PCE maximum value, reported for as-cast film from halogenated solvents unless otherwise specified. b PCE
average values and standard deviations when available. c After thermal treatment.
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Figure 26. Structural formula of aryl-substituted BDT-alt-FTAZ [47,92–100]: (A) Structural formula of
PBDTTz-N, (A’) Structural formula of T1, (B) Structural formula of PBDTTz-BP, PBSTTz-SBP, P2,
(C) Structural formula of PBZ1, PBZ-m-CF3, DZ1, DZ2, DZ3, PBTA-PS, PBTA-PSF, PBTZa, PBTzb,
PBDTPSi-FTAZ.
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Actually, the phenyl group is an alternative pathway to thiophene by extending the
π-conjugated degree through the polymer which would be very helpful in delocalizing
the electron cloud, adjusting the frontier energy level, molecular conformation, and charge
transport [47]; PCE values are reported in Table 6.

It is interesting to report that, by taking advantage of the weaker electron-donating
nature of the phenyl-substituted BDT with respect to the thienyl-substituted BDT and
thanks to the introduction of fluorine, the PBTA-PSF:ITIC-based device could reach a high
PCE of 13.91% with a VOC higher than 1 V (1.01 V), promoted by the low HOMO energy
level (Figure 27A), a large JSC of 18.51 mAcm−2, and an FF of 74.40% (the J-V curve of the
PBTA-PSF:ITIC-based device is shown in Figure 27B) [98].
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Figure 27. (A) The energy level diagrams of donors PBTA-PS and PBTA-PSF. (B) The J-V curves of
PBTA-PSF:ITIC (red line)-based device recorded under AM1.5G (100 mWcm−2) illumination [98] ©
2019 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

On the other hand, the introduction of an alkyl substituent on the phenyl group (in
particular, 2-ethylhexyl to produce the two isomers PBTZa and PBTZb [99]) via a simple
and low-cost chemical strategy (Grignard reagents rather than lithium-based reagents)
allowed researchers to finely tune the polymer crystallinity and further optimize the
miscibility between donor and acceptor. The PBTZb:ITIC-4Cl-based device performed
better than that based on PBTZa:ITIC-4Cl with PCE of 14.53%, Jsc of 21.75 mAcm−2, and a
high fill factor of 77% which could be attributed to a more balanced charge-carrier transport
ability and better morphology (the J-V curve of the PBTZb:ITIC-4Cl-based device is shown
in Figure 28A, AFM images in Figure 28B,C). The polymer crystalline domains are slightly
damaged and passed by the acceptor as indicated by lower RMS roughness for PBTZb
blend film (2.08 in comparison to 2.59 for PBTZa blend film, Figure 28B,C). The PBTZb
blend exhibited an appropriate nanoscale phase separation, which then can facilitate charge
separation and transport, beneficial to BHJ PSCs. On the contrary, due to the relatively
larger phase separation, the coarse morphology of the PBTZa blend caused inferior overall
photovoltaic performance.

By blending PBz-1 with 20% PTB7-Th (Figure S9) and L8-BO, it was possible to
achieve a PCE of 15.85% [96]; JSC increased without affecting VOC and FF, which is due to
suppressed charge recombination and enhanced photon harvesting in the ternary photoac-
tive layer because of PTB7-Th’s complementary light absorption of PBZ1:L8-BO binary
films and increase in long-wavelength light absorption for the ternary films.
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(100 mWcm−2) illumination. (B) AFM height image (1 × 1 µm) of PBTZa:ITIC-4Cl blend. (C) AFM
height image (1 × 1 µm) of PBTZb:ITIC-4Cl blend [99] © 2020 Wiley-VCH GmbH.

2.1.2. FTAZ-Conjugated Polymers with Other Donor Moieties

A further development of the research for the construction of D-A photovoltaic poly-
mers was to make changes to the largely used BDT building block by extending the
coplanar length via condensation of a thiophene unit to each BDT thienyl group to pro-
duce dithieno[2,3-d;2′,3′-d′]benzo[1,2-b;4,5-b′]dithiophenes (DTBDT), Figure 29A [101], or
by substituting one thienyl ring with furan to produce thieno[2,3-f ]benzofuran (BDO),
Figure 29B (Table 7) [102,103].

Table 7. PCE values of DTBDT- and BDO-based polymers:NFA OSCs under simulated AM1.5G
(100 mWcm−2) illumination.

Polymer Donor Non-Fullerene Acceptor PCEmax
a (%) PCEavg

b (%) References

PE51 Y6 13.34 13.17 ± 0.12 [101]
PE52 Y6 14.61 14.33 ± 0.28 [101]
PE53 Y6 13.72 13.52 ± 0.15 [101]

PTBFBz ITIC 6.54 (8.33) c 6.42 (8.12) c [102]
PTSDO-Bz ITIC 8.66 [103]
PTDO-Bz ITIC 6.59 [103]
PPEH-Bz ITIC 8.23 [103]

PPFOEH-Bz ITIC 8.16 [103]
a PCE maximum value, reported for as-cast film from halogenated solvents unless otherwise specified. b PCE
average values and standard deviations when available. c After thermal treatment.
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Figure 29. Structural formula of (A) DTBDT (evidenced in blue) [101] and (B) BDO (evidenced in red
and green)-based polymers [102,103].

Much more studied than the asymmetric BDT derivative, even if not as much as the
BDT system, is the BDT furan analogue benzo[1,2-b:4,5-b′]difuran (BDF). The replacement
of the thiophene unit with furan possessing a smaller size may result in the formation of
more planar and rigid structures with favorable inter/intramolecular interactions, tighter
packing, smaller reorganization energy, and better self-assembly behavior than their BDT
based counterparts. The stronger electronegativity of the oxygen atom in furan than
the sulfur atom in thiophene endows BDF-based polymers with lower HOMOs that are
preferred for high VOC, and the slight blueshift on absorption of the resulted BDF-based
polymers is also expected in comparison with that of BDT-based polymers. Moreover,
furan can be easily obtained from extensive bio-renewable sources, i.e., vegetables, leaves,
and crops, at low cost [104].

BDF-based polymers can be distinguished by the substituents linked to the BDF phenyl
ring which consist of aromatic pentacycle or aryl groups (Figure 30); for the first time, furyl
derivatives were used as side-chain groups [26,105] and the corresponding polymers
blended with ITIC or m-ITIC allowed for better performance than the analogues with the
thienyl group (PBDFF-Bz:m-ITIC-based device PCE of 10.28% with respect to PBDFT-
Bz:m-ITIC-based device PCE of 9.84%) (Table 8) (J-V curves are shown in Figure 31) [105].
This can be ascribed to the fact that PBDFF–Bz possesses a lower HOMO energy level and
stronger p-p stacking than PBDFT–Bz.
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Figure 31. The J-V curves of PBDFF-Bz:m-ITIC- (light green line) and PBDFT-Bz:m-ITIC-based dark
green line) devices recorded under AM1.5G (100 mWcm−2) illumination reproduced from ref. [105]
with permission of the Royal Society of Chemistry.



Molecules 2024, 29, 3625 28 of 53

Table 8. PCE values of BDF-based polymers:NFA OSCs under simulated AM1.5G (100 mWcm−2)
illumination.

Polymer Donor Non-Fullerene Acceptor PCEmax
a (%) PCEavg

b (%) References

PBDFT-Bz ITIC 9.26 9.08 [105]
PBDFT-Bz m-ITIC 9.84 9.62 [105]
PBDFF-Bz ITIC 9.46 9.28 [105]
PBDFF-Bz m-ITIC 10.28 10.02 [105]
PBDFS-fBz ITIC 9.00 [26]

PBDFT-FFBz m-ITIC 7.57 7.32 ± 0.20 [106]
PBDFF-FFBz m-ITIC 8.79 8.32 ± 0.32 [106]

J81 ITIC 10.6 [107]
J81 m-ITIC 11.5 [107]

L2 (F11/P-ClT) TTPT-T-4F 14.0 13.68 ± 0.21 [67]
F10 (P-FT) m-ITIC 10.5 [62]

F11 (L2/PClT) m-ITIC 11.37 [62]
P-FT (F10) m-ITIC 11.43 c 10.87 ± 0.23 a [108]
P-FT (F10) Y6 10.61 c 10.03 ± 0.48 a [108]

P-ClT (L2/F11) m-ITIC 11.61 c 11.04 ± 0.55 a [108]
P-ClT (L2/F11) Y6 11.03 c 10.64 ± 0.15 a [108]

P-P m-ITIC 8.28 c 7.32 ± 0.59 a [108]
P-P Y6 9.49 c 8.11 ± 0.11 a [108]

P-4FP m-ITIC 8.86 c 8.70 ± 0.26 a [108]
P-4FP Y6 13.34 c 12.71 ± 0.51 a [108]

PBDFTz-SBP ITIC 12.42 12.24 ± 0.22 [109]
PBDFP-Bz ITIC 11.10 d 10.69 ± 0.27 [110]
PBDFP-Bz IT-M 12.93 e 12.19 ± 0.38 [110]
PBDFP-Bz Y6 14.62 13.49 ± 0.62 [111]

PBDFP-dT-Bz Y6 16.03 [112]
PBDFP-dF-Bz Y6 15.59 [112]
PBDFP-TF-Bz Y6 17.01 [112]
PBDFP-TF-Bz Y6:PCBO12 18.1 [112]

a PCE maximum value, reported for as-cast film from halogenated solvents unless otherwise specified. b PCE aver-
age values and standard deviations when available. c After aging. d Film processed with DIO additive, after thermal
treatment and further treatment with methanol. e Film processed with DIO additive, after thermal treatment.

In 2019 Zhu prepared an “all-furan” polymer, PBDFF-FFBz (Figure 30C): PBDFT-FFBz:
m-ITIC devices showed an appreciable PCE (8.79%) (Table 8) [106].

BDF-based polymers containing thienyl side-chain groups produced good perfor-
mance as well [62,67,107], thanks to functionalization with halogen and in particular with
chlorine (L2:TTPT-T-4F-based device with PCE of 14.0%, Table 8, the J-V curve is shown in
Figure 32) [67].
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Zheng et al. [108] reported interesting research on polymers P-FT (F10) and P-ClT
(L2/F11), showing that the PCE of devices fabricated with P-FT and P-ClT blended with
m-ITIC or Y6 after aging improved (Table 8): the J-V curves of the corresponding devices
are reported in Figure 33. Moreover, the PCEs from the devices processed under ambient
condition only possessed 0.3–2% loss compared to those devices under inert conditions,
which indicates more stability and utility for practical applications.
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The same was observed for P-P and P-4FP (Figure 30B) [108], with the last polymer
PCE raised up to 13.34% with Y6 (the J-V curves of the corresponding devices are shown in
Figure 33) [108].

Polymers P-P and P-4FP are characterized by the presence of an aryl group on BDF;
actually, BDF-based polymers with an aryl side-chain group on BDF were developed
successively, taking advantage of the fact that with large-conjugated phenyl side-chain
the coplanarity of the polymer backbone is further increased, enhancing the aggregation
tendency of polymer chains (Figure 30D, Table 8) [108–112].

In particular, the most recent research on BDF-based polymers regards the develop-
ment of polymers containing (2-ethylhexyl)(2-fluorophenyl)sulfane side-chain polymers;
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Gao et al. [112] modified the polymer backbone via engineering of the p-bridge to enhance
their εr, dielectric constant, which affects the charge dynamics process. In this way, the
asymmetric PBDF-TF-BTz (Figure 30D) demonstrated a larger εr, 4.22, than PBDF-dT-BTz
with a symmetric thiophene p-bridge (3.15) (Figure 30B) and PBDF-dF-BTz with a sym-
metric furan p-bridge (3.90) (Figure 30D). The OSC fabricated with PBDF-TF-BtZ and Y6
showed a power conversion efficiency of 17.01% which increased up to 18.1% with an FF
of 80.11% when a fullerene derivative (PCBO-12, Figure S10) was introduced as a third
component (the J-V curves of the corresponding devices are shown in Figure 34).
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There are only very few more D-A FTAZ-based polymers containing D moieties 
(Scheme 5) which do not possess analogous structure to BDT; they consist of indacenodi-
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Figure 34. The J-V curves of (A) devices based on Y6 blended with polymers PBDF-dT-Btz, PBDF-
TF-Btz, and PBDF-dF-Btz and (B) devices based on Y6:PCBO-12 in various ratios blended with
PBDF-TF-BtZ (best performance corresponds to red line) recorded under AM1.5G (100 mWcm−2)
illumination [112] © 2023 Wiley-VCH GmbH.

There are only very few more D-A FTAZ-based polymers containing D moieties (Scheme 5)
which do not possess analogous structure to BDT; they consist of indacenodithiophene [113],
dithienothiapyran [114], and thiophenes functionalized with fluorine [15] or intercalated with a
difluorinated aryl group [115] in which the structure–property relationship and the importance
of tuning morphology and crystallinity have been particularly evidenced.
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2.1.3. BzT-Based Conjugated Polymers with Other Bridges

Furan, selenophene, and thieno[3,2-b]thiophene (TT) (Figure 35) are the other bridging
units which have been used to construct BzT-based conjugated polymers.
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Figure 35. Structural formula of furan, selenophene, and thieno[3,2-b]thiophene.

While furan has been used twice as bridge [105,112] and selenophene just once [116],
the TT molecule has been the object of more intensive research, in particular by Zhou’s group.

Actually, TT is characterized by interesting optical and electrochemical properties due
to its centrosymmetric, coplanar, and rigid structure, providing redshifted absorption, low
bandgap, and high charge mobility compared to thiophene-containing polymers due to
high delocalization of π-electrons and better intermolecular π-stacking interactions [117].

The first approach was to prepare polymers analogous to J61 and J52 (Figure 36) [29,118].
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attention that the same polymer has very similar name.

In particular, the PE4(PE5):Y6-based device has higher PCE (14.02%) (Table 9) than the
J52-Cl:Y6-based one with quite high FF (75.4%), mainly as a consequence of the backbone
conformation which changed from a zig-zagged type to a linear type with a little influence
on the planarity (the J-V curves are shown in Figure 37) [29]. This conformation is more
helpful in forming ordered interchain packing, resulting in obviously enhanced crystallinity
and charge mobility.
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Table 9. PCE values of BDTT-alt-TT-BzT polymers:NFA OSCs under simulated AM1.5G
(100 mWcm−2) illumination.

Polymer Donor Non-Fullerene Acceptor PCEmax
a (%) PCEavg

b (%) References

PE1 BTA3 8.43 8.36 ± 0.09 [118]
PE2 BTA3 5.83 5.75 ± 0.05 [118]
PE2 Y6 13.50 13.05 ± 0.26 [77]

PE4 (PE5) Y6 14.02 13.90 ± 0.08 [29]
PE5 (PE4) Y6 14.48 14.25 ± 0.21 [57]

PE40 Y6 7.07 6.29 ± 0.86 [119]
PE42 Y6 10.11 9.93 ± 0.14 [119]
PE44 Y6 13.62 12.81 ± 0.50 [119]
PE45 Y5 13.76 13.40 ± 0.26 [120]
PE46 Y5 13.55 13.32 ± 0.19 [120]
PE47 Y5 6.51 6.14 ± 0.18 [120]
PE45 Y6 10.30 10.16 ± 0.12 [120]
PE46 Y6 14.25 13.72 ± 0.38 [120]
PE47 Y6 15.58 15.16 ± 0.38 [120]
PCN1 BTA3 12.07 11.63 ± 0.44 [58]
PCN2 BTA3 15.2 14.83 ± 0.37 [58]

a PCE maximum value, reported for as-cast film from halogenated solvents unless otherwise specified. b PCE
average values and standard deviations when available.
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Figure 37. The J-V curves of the PE4:Y6-based device (pink line) and J52-Cl:Y6-based device (red
line) recorded under AM1.5G (100 mWcm−2) illumination reproduced from ref. [29] with permission
of the American Chemical Society © 2019 American Chemical Society.

All-chlorinated polymer PE5-Cl showed a poorer PCE than the corresponding PE5(PE4)
(Table 9) because of the twisted backbone and weak p-p stacking induced by the dichlori-
nation on the benzotriazole [57].

More recently, by substituting the thienyl group on BDT with a phenyl ring with
different levels of fluorine substituent [119,120], the PCE increased up to 15.58% (Figure 38,
Table 9); in particular, the different trend of PCE with Y5 and Y6 of the polymers PE45,
PE46, and PE47 is due to a better miscibility of Y6 with the more fluorinated species (the
J-V curves are shown in Figure 39) [120].
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Figure 39. The J-V curves of devices based on Y6 blended with polymers PE45, PE46, and PE47
and of devices based on Y6 blended with polymers PE45, PE46, and PE47 recorded under AM1.5G
(100 mWcm−2) illumination reproduced from ref. [120] with permission from Springer Nature ©
Science China Press 2023.

Given the beneficial effects of halogenation also for TT-based BzT polymers and
the superior optoelectronic properties to their non-halogenated counterparts, it is worth
pointing out that the introduction of halogens have drawbacks such as additional and
expensive synthesis steps and risks to human health and the ecological environment.
Therefore, as an alternative to fluorine, Wang et al. [58] developed halogen-free donor
polymers based on dicyanobenzotriazole in which the introduction of the cyano group
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actually lead to lowered energy levels, redshifted absorption, and improved photovoltaic
performance in binary OSCs with Y6.

In particular with respect to PCN1, which has the same structure as PCN2 (Figure 40)
but with thiophene as the bridge instead of the TT derivative, PCN2 had stronger π-π
stacking and better charge transport, resulting in PCN2:Y6 devices with higher and more
balanced carrier mobility, less exciton recombination loss, suitable phase separation size,
and thus higher PCE (Table 9).
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2.2. Condensed Ring BzT-Based Conjugated Polymers

The utilization of building blocks with enlarged planarity for the preparation of p-type
conjugated polymers can provide enhanced electron-delocalization and intermolecular
interaction which may determine better photovoltaic performance.

The pyrrolo[3,4-f]benzotriazole-5,7-dione (TzBI) unit developed by Cao’s group is the
main BzT-fused-type building block used to construct conjugated polymers with BDTT
derivatives (Figure 41A,B) except for the one with DTBDT, PTzBI-DT (Figure 41C) [121].

It is interesting to report that polymers PTzBI (Figure 41A) [121–124], PTzBI-oF
(Figure 41A) [125], PTzBI-Si (Figure 41A) [126–128], and P2F-Si (Figure 41B) [128]—the
last two with a siloxane group introduced to increase the solubility without disturb-
ing the intermolecular stacking regarding the branched alkyl-side-chains—have been
blended with NFAs also with not-halogenated solvents such as tetrahydrofuran [127],
2-MeTHF [122,125–127], cyclopentyl methyl ether (CPME) [127,128], and limonene
(LM) [128] which are more environmentally friendly, determining appreciable PCE
(Table 10).
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In order to improve the photovoltaic performance, the octyl chain bonded to the azole 
nitrogen was substituted with the branched 3-ethylheptyl [124,129–131,133,135] or silox-
ane groups [126–128], the bridging thiophene or the BDTT thienyl group was halogenated 
[124,130,132–135], or the thienyl group bonded to BDT was substituted by difluoro aryl 
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In particular, Fan et al. [130] constructed a device using P2F-EHp (Figure 41B) as a 
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Figure 41. Structural formula of D-A TzBI-based polymers where the TzBI unit is indicated
in blue [121–134]: (A) Structural formula of PTzBI, PTzBI-oF, PTzBi-Si, PHT, PFT-EHp, PCT-
EHp/PTzBI-Cl, PTzBI-dF, (B) Structural formula of P2F-EHp, PTzBI-2Fp, P2FSi, (C) Structural
formula of PTzBI-DT.

Table 10. PCE values of TzBI-based polymers:NFA OSCs under simulated AM1.5G (100 mWcm−2)
illumination.

Polymer Donor Non-Fullerene Acceptor PCEmax
a (%) PCEavg

b (%) References

PTzBI-DT ITIC 8.11 (9.43) c 7.99 (9.32) c [121]
PTzBI ITIC 8.64 (10.23) d 8.60 (10.13) d [121]
PTzBI N2200 9.16 e 9.06 ± 0.14 e [122]
PTzBI N2200 8.21 f 8.05 ± 0.15 f [123]
PTzBI Y6 9.24 9.06 ± 0.18 [124]

PTzBI-Si N2200 8.3 e (10.1) g 8.2 ± 0.1 e

(9.9± 0.2) g [126]

PTzBI-Si N2200 10.1 e 9.9 ± 0.2 e [127]
PTzBI-Si N2200 7.6 g 7.4 ± 0.2 g [127]
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Table 10. Cont.

Polymer Donor Non-Fullerene Acceptor PCEmax
a (%) PCEavg

b (%) References

PTzBI-Si N2200 11.0 h 10.8 ± 0.2 h [127]
PTzBI-Si PNDICI 5.4 i (3.0) j 5.2 ± 0.2 i (2.8 ± 0.1) j [128]

P2F-Si PNDICI 4.6 i (4.2) j 4.4 ± 0.1 i (4.1 ± 0.1) j [128]
P2F-EHP BTPT-4F 1.09 c 1.06 ± 0.06 c [129]
P2F-EHP BTPTT-4F (Y6) 16.02 d 15.75 ± 0.25 d [129]
P2F-EHP Y6 15.65 15.50 ± 0.15 [130]
P2F-EHP Y6+PC61BM 16.18 16.07 ± 0.13 [130]
P2F-EHP BTA3 4.62 4.45 ± 0.02 [131]
P2F-EHP BTA3-F 8.38 8.25 ± 0.02 [131]

PTzBI-2Fp ITIC-4F+5% N2200 13.0 12.9 ± 0.1 [132]
PTzBIoF PS1 13.8 g 13.5 [125]

PM6-TzBI-10 L8-BO 18.36 [135]
PHT-EHp Y6 7.7 d 7.63 ± 0.2 [133]
PFT-EHp Y6 14.16 14.02 ± 0.13 [130]
PFT-EHp Y6 15.4 d 15.0 ± 0.2 [133]

PCT-EHp (PTzBI-Cl) Y6 15.06 14.96 ± 0.06 [130]
PCT-EHp (PTzBI-Cl) Y6 15.8 d 15.6 ± 0.1 [133]
PCT-EHp (PTzBI-Cl) Y6DT 16.4 d 16.2 ± 0.2 [133]
PTzBI-Cl (PCT-EHp) Y6 10.35 9.99 ± 0.36 [124]

PTzBI-dF Y6 9.13 8.77 ± 0.36 [124]
PTzBI-dF L8-BO 16.74 k 16.49 ± 0.25 [134]
PTzBI-dF Y6 16.23 k 16.03 ± 0.20 [134]
PTzBI-dF L8-BO+Y6 18.26 17.95 ± 0.31 [134]

P1 ITIC 7.14 l 7.02 ± 0.08 [136]
P2 ITIC 4.17 l 3.96 ± 0.14 [136]
P3 ITIC 3.66 l 3.60 ± 0.07 [136]

PfBTAZT-BDT
(PfBTAZT-H) ITIC 6.04 5.71 [137]

PfBTAZT-fBDT
(PfBTAZT-F) ITIC 6.59 d 6.05 d [137]

PfBTAZT-H
(PfBTAZT-BDT) BTA3 6.65 6.53 ± 0.16 [138]

PfBTAZT-F
(PfBTAZT-fBDT) BTA3 7.69 7.53 ± 0.09 [138]

PfBTAZT-Cl BTA3 8.00 7.95 ± 0.06 [138]
P32 IHIC 8.59 m [139]
P33 IHIC 6.63 m [139]

PfBTAZT-fBDT
(PfBTAZT-F) Y6 8.77 8.50 ± 0.14 [140]

PffBTAZT-fBDT Y6 14.53 14.29 ± 0.16 [140]
PY1 IT-M 12.49 12.20 ± 0.30 [19]

PY39 Y18 12.45 12.26 ± 0.19 [20]
PDTH-TZNT IT-M 4.42 4.05 ± 0.37 [141]
PDTF-TZNT IT-M 10.05 (11.48) n 9.74 ± 0.31 (11.16 ± 0.32) n [141]
PDTS-TZNT ITIC 10.45 10.13 ± 0.32 [142]
PDTS-TZNT IT-4F 11.31 11.00 ± 0.31 [142]

PDTSF-TZNT ITIC 12.16 11.81 ± 0.35 [142]
PDTSF-TZNT IT-4F 13.25 12.92 ± 0.33 [142]

PE93 Y6 9.32 9.28 ± 0.09 [143]
PE93 BTA75 10.11 10.05 ± 0.11 [143]
PE93 BTA76 12.16 11.98 ± 0.18 [143]

a PCE maximum value, reported for as-cast film from halogenated solvents unless otherwise specified. b PCE
average values and standard deviations when available. c Film processed with dibenzylether (DBE) and DIO
additives. d Film processed with DBE additive. e Film processed with 2-MeTHF. f Film processed under 30%
humidity. g Film processed with 2-MeTHF after thermal treatment. h Film processed with CPMe. i Film processed
with THF. j Film processed with LM. k Film processed with DBE additive after thermal treatment. l Film processed
with diphenylether (DPE). m Film processed with DIO additive after thermal treatment. n Film processed
with 5,5,10,10,15,15-hexabutyl-2,7,12-tri(4-(3-ethylhexyl-4-oxothiazolidine-2-yl)dimalononitrile-benzothiadiazole)-
truxene (meta-TrBRCN) additive.
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In order to improve the photovoltaic performance, the octyl chain bonded to the
azole nitrogen was substituted with the branched 3-ethylheptyl [124,129–131,133,135] or
siloxane groups [126–128], the bridging thiophene or the BDTT thienyl group was halo-
genated [124,130,132–135], or the thienyl group bonded to BDT was substituted by difluoro
aryl groups [128–130,132] (Table 10).

In particular, Fan et al. [130] constructed a device using P2F-EHp (Figure 41B) as a
donor and Y6 as acceptor which also achieved PCE above 14% in the case of a device area
of >1.1 cm2 (aperture area of 1 cm2); the J-V curves of OSCs with device areas of 0.04 and
1.0 cm2 are reported in Figure 42.
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from ref. [130] with permission of the American Chemical Society © 2020 American Chemical Society.

Actually, by engineering the electrical properties of the device with the introduction of
a metallic frame (similar to the interconnection of solar modules) on the indium tin oxide
(ITO) substrate, the charge extraction was enhanced and optoelectronic losses were mini-
mized while maintaining the optical benefits, thus achieving high JSC without sacrificing
the FF of the device. Furthermore, the PCE was even increased above 16% via the addition
of PC61BM which helped in optimizing the microstructure.

Moreover, when PTzBI was incorporated into the high-performance donor polymer
PM6 to obtain terpolymers, the morphology was optimized gradually for improving charge
generation and charge transport, also suppressing charge recombination [135]. Actually,
the incorporation of the high-dipole and electron-deficient group of TzBI into the high-
performance donor polymer introduces extra driving forces for crystallization by enhancing
intermolecular interactions even if the additional segment in the terpolymer backbone
inevitably introduces backbone disorder, which increases entropy. In this way, the device
containing the terpolymer with 10% of PTzBI (PM6-TzBI-10) (Figure 43) blended with
L8-BO exhibited a PCE of 18.36% (Table 10).

The regulation of the morphology of the BHJ photoactive layer is a crucial step in
achieving high PCE, as recently reported by An et al. [134] who found that by combining
L8BO:Y6 in an optimized ratio with the polymer donor PTzBI-dF, the corresponding device
achieved a promising PCE of 18.26% (Table 10) (the J-V curves are shown in Figure 44).
More importantly, the optimized OSCs could deliver excellent long-term thermal stability
under 85 ◦C for 1400 h, which addresses the inherent thermal instability issues in state-of-
the-art NFAs.
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Figure 44. The J-V curves of devices based on PTzBI-dF2F-EHp blended with various NFAs recorded
under AM1.5G (100 mWcm−2) illumination [134].

Another electron acceptor containing fused rings with benzotriazole is the thiophene-
fused benzotriazole unit, developed by Chen’s group [136–140].

Considering that BzT-based polymers show absorption spectra in the region of
300–700 nm, an effective strategy to make full use of the sunlight is to reduce the bandgap
of D–A conjugated systems via the stabilization of the population of the electronic quinoid
state. Therefore, when thiophene is fused with the BzT unit, its aromaticity can stabilize
the quinoid structure of the conjugated backbone and strengthen the intramolecular charge
transfer to extend the absorption band for efficient light harvesting, thus improving the
photocurrent of OSCs.

The thiophene-fused benzotriazole unit was combined with various BDT derivatives
(Figure 45).
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Figure 45. (A) Structural formula of D-A thiophene-fused benzotriazole-unit-based polymers [136–142];
(B) structural formula of PffBTAZT-fBDT and its quinoid form [140].

The best PCE was obtained with PffBTAZT-fBDT (Figure 45B) blended with Y6 (PCE
14.53%, Table 10) (the J-V curves are shown in Figure 46) thanks to the subtle structural
modification of thiophene-fused benzotriazole unit obtained introducing another F atom
at the β-position of the fused thiophene ring of the fBTAZT unit [140]; actually, in this
way, fluorine could build an “F. . .HC” non-covalent interaction with its adjacent thiophene
ring as a “p-bridge” to partially lock the conformation of the conjugated backbone and
strengthen the rigidity of the molecular skeleton, which is favorable for the light harvesting
efficiency and the charge mobility which improve JSC. At the same time, the introduction
of a strongly electronegative F atom could further reduce the HOMO energy level of the
polymer donor, which is also favorable for the enhancement of VOC, JSC, VOC, and FF,
which were increased from 23.68 to 25.43 mAcm−2, from 0.633 to 0.817 V, PCE from 58.46
to 69.94% and 8.77 to 14.53%, respectively, with respect to the parent mono-fluorine system.
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Figure 46. The J-V curves of the device based on PfBTAZT-fBDT:Y6 (red line) recorded under
AM1.5G (100 mWcm−2) illumination reproduced from ref. [140] with permission of the Royal Society
of Chemistry.

Very few more fused-ring BzT-based conjugated polymers consist of a benzotriazole
unit condensed with two thiophens (PY1, Figure 3A) [19] and BDT derivatives (PY39,
Figure 3A) [20] or of naphtobistriazole, where the two BzT benzogroups are condensed
together, with thiophene as bridge and thiophenes (Figure 47A) [141] or BDT derivatives
(Figure 47B) as donor [142] (Table 10).
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Figure 47. (A,B) Structural formula of D-A naphtotriazole-based polymers [141,142]. (C) Structural
formula of PE93 [143].
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The last and most recent copolymer PE 93 (Figure 47C, Table 10) was obtained by
linking a fluorinated derivative BDT, as the donor unit, through a TT molecule as bridge to
an acceptor consisting of two BzT units fused in a pyrrole ring presenting seven nitrogen
atoms that uniformly distribute frontier molecular orbital wave functions; the rigid conju-
gated ring could make the whole conjugated unit almost perfectly planar, the torsion angle
between the two BzT units being only 0.21◦ [143].

3. BzT-Based Acceptor Polymers

Several non-fullerene acceptors used in OSCs are small molecules (SMAs) containing
a BzT core; a very recent trend is to polymerize such a small molecule to prepare n-type
narrow-bandgap polymer acceptors to be used in all-polymer solar cells.

Such a procedure has emerged as an effective way of enhancing both efficiency and
morphological stability of all-polymer OSCs while also preserving the attractive merits of
SMAs, such as high light absorbance in the NIR and efficient charge generation along with
small Eloss in the corresponding devices [144].

Except for the polymer PY-FBTA developed by Peng et al. [145] in 2023, in which
an acceptor unit A (an Y6 derivative) is paired to a second acceptor unit A consist-
ing of the well-known FTAZ, Figure 48, all of the research focused on BzT-based ac-
ceptor polymers which are obtained by connecting the non-fullerene acceptor building
block of dithienothiophen[3,2-b]pyrrolobenzotriazole capped with 3-(dicyanomethylidene)-
indan-1-one through thiophene [125,144,146–151], vinylidene [152], and dithiophene [153]
(Figure 49, Table 11).
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B= thiophene, R=CH2CH(C4H9)C6H13, R'=CH2CH(C10H21)C12H25, R''=C11H23 PZT-C12
B= thiophene, R=C8H17,R'=CH2CH(C10H21)C12H25, R''=C11H23 PZT-C8
B= thiophene, R=CH2CH(C2H5)C4H9, R'=CH2CH(C10H21)C12H25, R''=p-(C9H13)C5H4 PTz-Ph
B= thiophene, R=CH2CH(C2H5)C4H9, R'=CH2CH(C10H21)C12H25, R''=CH3 PTz-Me
B= thiophene, R=CH2CH(C2H5)C4H9, R'=CH2CH(C10H21)C12H25, R''=H PTz-H
B= thiophene, R=CH2CH(C2H5)C4H9, R'=CH2CH(C10H21)C12H25, R''=CH2CH(C4H9)C6H13 PTz-BO
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Figure 49. Structural formula of BzT-based acceptor polymers [125,144,145,148–153]. 
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Figure 49. Structural formula of BzT-based acceptor polymers [125,144,145,148–153].

The first acceptor, PS1, was designed with a bulky and solubilizing alkyl chain on
the key building block so that it was possible to process it with the BzT-based copolymer
PTzBI-oF (Figure 41A) using the non-halogenated solvent 2-MeTHF [125]. The correspond-
ing device reached a significant PCE of 13.8%, even higher than the corresponding device
obtained from chlorinated solvent (PCE 12.1% with chloroform) thanks to the more fa-
vorable film morphology induced by 2-MeTHF (Table 11) (the J-V curves are shown in
Figure 50A and TEM images in Figure 50B): delicate and inter-continuous bright and dark
regions were visible in both blends in the TEM images, but these features were finer in
the 2-MeTHF-processed blend. Moreover, improved crystallinity and reduced-size do-
mains in the 2-MeTHF-processed blend can assist in charge transfer and transportation and
eventually increase the JSC and FF of the OSCs.
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Table 11. PCE values of donor polymer:BzT-based acceptor polymer OSCs under simulated AM1.5G
(100 mWcm−2) illumination.

BzT-Acceptor Polymer Donor PCEmax
a (%) PCEavg

b (%) References

PS1 PTzBI-of 13.8 c 13.8 c [125]
PS1 PTzBI-of 12.1 d 12.1 d [125]
PYT PBDB-T 12.9 12.7 ± 0.2 [144]

PZT (PZT-C1) PBDB-T 14.5 14.2 ± 0.3 [144]
PZT-γ (PTz-C11) PBDB-T 15.8 15.6 ± 0.2 [144]

Graded index(GI)-PZT PBDB-T 25.1 25.1 [150]
PYV-Tz PBDB-T 13.02 12.78 ± 0.24 [152]
PYBzT J52 11.22 10.67 ± 0.28 [153]

PYBzDT J52 8.93 8.69 ± 0.26 [153]
PZT-C12 PBDB-T 13.1 12.8 ± 0.3 [148]
PZT-C8 PBDB-T 13.8 13.5 ± 0.3 [148]

PZT-C1 (PZT) PBDB-T 14.9 14.5 ± 0.4 [148]
PTz-BO PBDB-T 15.76 15.56 ± 0.19 [149]

PTz-C11 (PZT-γ) PBDB-T 15.59 15.36 ± 0.22 [149]
PTz-BO:PTz-C11 PBDB-T 16.58 16.34 ± 0.22 [149]

PY-FBTA PM6 13.95 13.74 [145]
PTz-H PBDB-T 16.53 16.28 ± 0.19 [151]

PTz-Me PBDB-T 14.48 14.22 ± 0.22 [151]
PTz-Ph PBDB-T 12.82 12.56 ± 0.25 [151]

PTz-BO:PTz-H PBDB-T 18.16 17.86 ± 0.25 [151]
a PCE maximum value, reported for as-cast film from halogenated solvents unless otherwise specified. b PCE
average values and standard deviations when available. c Film processed with 2-MeTHF. d Film processed
with CHCl3.
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Figure 50. (A) The J-V curves of the devices based on PTzBI-oF:PS16 processed from different
solvents recorded under AM1.5G (100 mWcm−2) illumination; (B) TEM image of PTzBI-oF:PS16
blend film processed from chloroform; (C) TEM image of PTzBI-oF:PS16 blend film processed from
2-MeTHF [125].

Extending the conjugation through a dithiophene spacer (PyBzDT) did not help in
improving the PCE of the device containing J52 as donor polymer (Table 11) with respect
to the “simple” thiophene-based acceptor (PYBzT) while the control of the regioregularity
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of polymer acceptors is important for improving the device performance, as shown by Fu
et al. [144].

Actually, through a thorough purification it was possible to isolate the regioregular
PZT-γ species [144], reported later as PTz-C11 [149] (Figure 51), that endows the polymer
acceptor to have more extended and intense absorption and superior backbone ordering
and form an optimal blend with the donor; in this way, PCE was increased from 14.5 to
15.8% thanks to higher JSC and FF of devices with PBDB-T as donor polymer (the J-V curve
is shown in Figure 52).
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This PCE is expected to further increase up to 25.1% with Jsc 27.74 and Voc 0.986 V in
a cell which utilizes a graded-index active layer containing the high-absorption-efficiency
polymer PBDB compound with branched 2-butyl octyl, linear n-octyl, and methyl groups
as well as a light-trapping anti-reflection coating thin film based on ITO to reduce incident
light reflection and enhance its absorption [150].

A simple and feasible approach for material optimization via modulation of the struc-
tural conformation and interchain interaction and thereby the adjustment of optoelectronic
properties and crystallization behavior is also the tuning of the side-chain substituents
analogously to what is performed for polymer donors.

Fu et al. [148] varied N-alkyl chains on the BzT core including the branched 2-
butyloctyl, linear n-octyl, and methyl groups. After decreasing the size of alkyl chains, the
resulting PZT polymers exhibit better crystallinity, leading to higher charge carrier mobility
in both neat and blended films. Consequently, the PZT-C1 with the methyl group, the
smallest one, is the best for all-polymer OSC applications and delivers higher PCE (14.9%)
than the other two (PCE 13.1% and 13.8%) when paired with the polymer donor PBDB-T.

Analogously, Li et al. [151] prepared three polymer acceptors, PTz-Ph, PTz-PMe, and
PTz-H (Figure 49), modifying the polymer backbone at the level of the external thienyl
group by substituting the phenyl, methyl, and hydrogen in the β position of the thiophene
unit. Weakening the steric hindrance resulted in stronger ICT effects and intermolecular
interaction, as well as significant bathochromic absorption; photovoltaic performance of
the corresponding OSC devices with PDBD-T as donor polymer was therefore improved
due to higher Jsc and FF. Benefitting from the remarkable light harvesting, the polymer
acceptor PTz-H performs well in the all-polymer OSC, delivering the highest PCE of 16.53%
for all benzotriazole-based devices (the J-V curve is shown in Figure 53A). Moreover, the
addition of PTz-H as a third component to the PBDB-T:PTz-BO binary system improved
photon utilization in the NIR region (the J-V curves are shown in Figure 53B), so that the
optimal ternary device exhibited an outstanding PCE of 18.16%, which represented one of
the highest PCE values reported for all-polymer OSCs to date.
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PBDB-T:PTzH blends and (B) PBDB-T:PTz-BO, PBDB-T:PTz-BO:PTzH, and PBDB-T:PTzH blends
recorded under AM1.5G (100 mWcm−2) illumination [151] © 2024 Wiley-VCH GmbH.

4. Conclusions

The importance of the photovoltaic technology based on polymers is that it represents
a real alternative to fossil fuels for producing electricity, since it uses the most energetic
renewable resource available.

This review reports the extensive studies in the past five/ten years which have led to
the development of many new p- and n-type photoactive organic semiconductor materials
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starting from the benzotriazole moiety and should be helpful to the organic chemist to better
understand how important is to find the right combination of donor and acceptor in terms
of molecular orbital interactions, conductivity, miscibility, crystallinity, morphology, etc.,
to obtain a device with high PCE in order to take advantage of the tremendous synthetic
efforts behind the research.

Fully aware that tailoring a device structure too is fundamental in the improvement
of the OSC photovoltaic performance, this review illustrates how the goal of achieving
better and better photovoltaic performance from the preparation of suitable BzT-based
polymers is pursued from a chemical point of view, in particular by means of side-chain
engineering rather than acting on the polymer backbone; actually, in the case of D-A
conjugated polymers, most of the research was focused on the BDT-FTAZ skeleton.

However, the most recent trend of research regards the substitution of the simple
thiophene with halogenated thiophene or with the more rigid and planar TT molecule as
bridging unit between the BzT A unit and the D donor.

While other papers have already reviewed BzT-based D-A donor polymers and small-
molecule-based NFAs, this review is the first to collect the successful work performed
with BzT-based acceptor polymers, developed since 2021; such research is challenging but
quite promising.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/molecules29153625/s1.
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