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Abstract: Reactions with allyl-, acetyl-, and phenylisothiocyanate have been studied on the basis of 3-
amino-4,6-dimethylpyridine-2(1H)-one, 3-amino-4-phenylpyridine-2-one, and 3-amino-4-(thiophene-
2-yl)pyridine-2(1H)-one (benzoyl-)isothiocyanates, and the corresponding thioureide derivatives
8-11a-c were obtained. Twelve thiourea derivatives were obtained and studied for their anti-diabetic
activity against the enzyme α-glucosidase in comparison with the standard drug acarbose. The
comparison drug acarbose inhibits the activity of α-glucosidase at a concentration of 15 mM by 46.1%
(IC50 for acarbose is 11.96 mM). According to the results of the conducted studies, it was shown
that alkyl and phenyl thiourea derivatives 8,9a-c, in contrast to their acetyl–(benzoyl) derivatives
and 10,11a-c, show high antidiabetic activity. Thus, 1-(4,6-dimethyl-2-oxo-1,2-dihydropyridin-3-yl)-3-
phenylthiourea 9a has the highest inhibitory activity against the enzyme α-glucosidase, exceeding
the activity of the comparison drug acarbose, which inhibits the activity of α-glucosidase by 56.6% at
a concentration of 15 mm (IC50 = 9,77 mM). 1-(6-methyl-2-oxo 4-(thiophen-2-yl)-1,2-dihydropyridin-
3-yl)-3-phenylthiourea 9c has inhibitory activity against the enzyme α-glucosidase, comparable to
the comparison drug acarbose, inhibiting the activity of α-glucosidase at a concentration of 15 mm
per 41.2% (IC50 = 12,94 mM). Compounds 8a, 8b, and 9b showed inhibitory activity against the
enzyme α-glucosidase, with a lower activity compared to acarbose, inhibiting the activity of α-
glucosidase at a concentration of 15 mM by 23.3%, 26.9%, and 35.2%, respectively. The IC50 against
α-glucosidase for compounds 8a, 8b, and 9b was found to be 16.64 mM, 19.79 mM, and 21.79 mM,
respectively. The other compounds 8c, 10a, 10b, 10c, 11a, 11b, and 11c did not show inhibitory
activity against α-glucosidase. Thus, the newly synthesized derivatives of thiourea based on 3-
aminopyridine-2(1H)-ones are promising candidates for the further modification and study of their
potential anti-diabetic activity. These positive bioanalytical results will stimulate further in-depth
studies, including in vivo models.

Keywords: 3-aminopyridin-2(1H)-ones; isothiocyanates; thiourea derivatives; α-glucosidase inhibi-
tion; antidiabetic activity; IC50; molecular docking

1. Introduction

It is known by now that the extremely high prevalence of diabetes mellitus is regarded
as a global threat. So, if by now, according to the Atlas of Diabetes, approximately 537 mil-
lion adults worldwide aged 20 to 79 years suffer from diabetes (10.5% of all adults in this
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age range), then by 2030, approximately 643 million people will suffer from diabetes, and
by 2045, their number will increase to 783 million [1,2].

The “diabetes pandemic” requires an intensification of the search for new drug
controls.

It is known that thiourea is widely used in the synthesis of heterocyclic compounds,
and functional derivatives of the thiourea class exhibit a wide range of pharmacological
effects (anticonvulsant, anticancer, antiviral, antifungal, antibacterial), including the hy-
poglycemic effect [3–8]. It is believed that the main pharmacological activity of thiourea
derivatives is due to specific interaction with target receptors of proteins or enzymes.
Hydrogen bonds of both donor amino groups and the acceptor ionic group may play an
important role in this [9].

Among the most well-known medicinal substances of thiourea, drugs with a cyclic
thiourea structure are Carbimazole and Propylthiouracil, which are used to treat hyperthy-
roidism (hyperthyroidism), as well as Thiopental barbiturate, which is used to induce
general anesthesia, treat seizures, and reduce intracranial pressure [10–12] (Figure 1).
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istration of streptozotocin (the activity of the tested compounds was controlled by the 
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high values of enzyme inhibition. Compound 4 had the highest inhibition value and, in 
addition, proved to be safe for use in animals, without having any toxic or lethal effects, 
preventing the effects of hyperglycemia and hyperlipidemia, and it also contributed to 
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Figure 1. Drugs with structural cyclic thiourea.

In particular, the extremely high relevance of the search for new substances with
hypoglycemic potential among thiourea derivatives is predetermined by the fact that
effective antidiabetic drugs (chlorpropamide, glibenclamide, tolbutamide, glimepiride,
glipizide, etc.) have already been created on the basis of sulfonylurea derivatives, the effect
of which is based on the stimulation of islet beta cells of the pancreas. At the same time, the
main target for sulfonylurea preparations is SUR 1, a receptor for ATP-sensitive potassium
ion channels [13–18].

The search for new antidiabetic agents is also being conducted among conventional
thiourea derivatives. Thus, work [19] provides extensive data on the antidiabetic activity of
a series of diaryl-substituted thioureas (Figure 2). As a result of bioscreening, the authors
identified several diaryl-substituted thioureas 1–3 with the highest inhibitory activity.
According to the authors, these deserve attention as potential candidates for the role of
hypoglycemic substances.
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In [20], S. Naz and co-authors synthesized three thiourea derivatives containing a
pyridine aryl backbone (4-1,3-bis(2-benzyl-3-phenyl-1-(pyridine-2-yl)propyl)thiourea, 5-1,3-
bis(pyridin-2-ylmethyl) thiourea, and 6-1-(2-benzyl-3-phenyl-1-(pyridine-2-yl)propyl)-3-
phenylthiourea) (Figure 2). They conducted in vivo tests on Swiss albino mice with diabetes
caused by a single administration of streptozotocin (the activity of the tested compounds
was controlled by the authors through the inhibition of the enzyme glucose-6-phosphatase),
which showed high values of enzyme inhibition. Compound 4 had the highest inhibition
value and, in addition, proved to be safe for use in animals, without having any toxic
or lethal effects, preventing the effects of hyperglycemia and hyperlipidemia, and it also
contributed to weight loss in experimental animals.

Previously, we described a method for obtaining 4-aryl(hetaryl)-substituted 3-aminop-
yridine-2(1H)-ones based on the intramolecular cyclization of N-(3-oxoalkenyl)amides [21].
It has been shown that almost all the obtained 3-aminopyridine-2(1H)-ones have high
antiradical activity. Derivatives of 3-aminopyridine-2(1H)-one are of interest as poten-
tial biologically active compounds [22,23]. For example, “Amrinone” is an inhibitor of
pyridine phosphodiesterase 3, which has cardiotonic and vasodilating effects [24]. Some
derivatives of 3-aminopyridine-2(1H)-one exhibit antiviral activity, including against the
AIDS virus [25,26]. The presence of an “embedded” amino acid fragment makes them
attractive building blocks for the synthesis of new derivatives with promising biological
applications [27,28].

We also previously showed that the reduction in Schiff bases with sodium borohydride
obtained through the condensation of 3-amino-6-methyl-4-phenylpyridine-2(1H)-one with
aromatic aldehydes leads to the formation of 3-(arylmethyl)-6-methyl-4-phenylpyridine-
2(1H)-ones, which have also shown high antiradical and cytoprotective activity [29,30], tran-
quilizing (anxiolytic) activity in the in vivo “dark-light chamber” test, and antidepressant
activity in the “Porsolt passive swimming test” [31]. At the same time, several derivatives
of 3-(arylmethylamino)-6-methyl-4-phenylpyridine-2(1H)-one have been found with higher
potential neurotropic activity, higher than in comparison drugs (mexidol and amitriptyline).
In addition, conjugates synthesized on the basis of 3-aminopyridine-2(1H)-ones containing
1,3,4-thiadiazole cycle have shown their hypoglycemic, antidiabetic potential in inhibiting
α-amylase and α-glucosidase and shown excellent antidiabetic activity [32,33] exceeding
the effectiveness of the comparison drug acarbose.

Thus, the established high pharmacological potential of new derivatives of 3-aminopy-
ridine-2(1H)-ones opens up opportunities and prospects for the search for new substances
with a hypoglycemic effect by identifying substances capable of inhibiting the activity of
α-amylase and α-glucosidase.

2. Results and Discussion
2.1. Chemistry

By the time of this study, thioureas obtained on the basis of 3-aminopyridine-2(1H)-one
were presented only in isolated examples [34,35] and practically not studied biologically.

In order to obtain thioureide and thiourea derivatives of pyridones-2 and their sub-
sequent bioscreening for antidiabetic activity, we synthesized them through the interac-
tion of 3-aminopyridine-2(1H)-ones 7a-c with some isothiocyanates (allylisothiocyanate,
phenylisothiocyanate, benzoyl, and acetylisothiocyanate) according to the methods de-
scribed in [36–38].

The synthesis of the initial acylisothiocyanates was carried out in situ by heating the
corresponding chlorangidrides (benzoyl chloride, acetyl chloride) with potassium thio-
cyanate in an acetone medium. Further interaction of isothiocyanates with 3-aminopyridine-
2-(1H)-ones 7a-c led to the formation of thiourea derivatives 8-11a-c (Scheme 1).
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Thiourea derivatives 8-11a-c isolated with good yields (70–80%) are fine crystalline
powdery substances of white or light beige color, moderately soluble in polar organic
solvents (when heated). The structure of the obtained new thiourea derivatives was
confirmed via 1H and 13C NMR spectroscopy and mass spectrometry.

2.2. In Vitro α-Glucosidase Inhibition Assay

To check the known literature data on the antidiabetic activity of sulfur-containing
derivatives, including thiourea, we carried out screening studies for the presence of antidi-
abetic activity on compounds 8-11a-c.

Antidiabetic activity was assessed by the degree of the inhibition of α-glucosidase
activity by the test substances.

The study of the α-glucosidase activity inhibition degree by the test compounds was
performed using a standard method with minor modifications [39].

The results of the study of the inhibitory activity of the test compounds against the
α-glucosidase enzyme are shown in Table 1.

Table 1. Inhibitory activity of the test compounds 8-11a-c against the α-glucosidase enzyme.

Compound Structure Inhibitory Activity of Test Compounds at a Concentration of 15
mM Against the α-Glucosidase Enzyme (%) IC50 (mM)

8a
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Table 1 shows the inhibitory activity of tested compounds at a concentration of 15 mM
against the α-glucosidase enzyme and the concentration at which a 50% inhibition of
α-glucosidase activity occurs (IC50).

α-Glucosidase Inhibition Assay
All of the newly synthesized compounds 8-11a-c were tested for their in vitro α-

glucosidase inhibitory activity. The results are summarized in Table 1.
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Based on the data presented in Table 1, we see that compound 9a has the highest
inhibitory activity against the α-glucosidase enzyme, exceeding the activity of the acarbose
comparison drug, which inhibits the activity of α-glucosidase at a concentration of 15 mM
by 56.6%. The calculation of the average inhibitory concentration IC50 (mM) of compound
9a showed a value of 9.77 mM. While the comparison drug acarbose inhibits the activity
of α-glucosidase at a concentration of 15 mM by 46.1%, the calculation of the average
inhibitory concentration of IC50 (mM) acarbose showed a value of 11.96 mM. Compound
9c has inhibitory activity against the enzyme α-glucosidase, comparable to the comparison
drug acarbose, inhibiting the activity of α-glucosidase at a concentration of 15 mM by 41.2%,
the calculation of the average inhibitory concentration IC50 (mM) of compound 9c showed
a value of 12.94 mM. Three more compounds 8a, 8b, and 9b showed inhibitory activity
against the enzyme α-glucosidase, inferior in activity to acarbose, inhibiting the activity
of α-glucosidase at a concentration of 15 mM by 23.3%, 26.9%, and 35.2%, accordingly.
The calculation of the average inhibitory concentration of IC50 (mM) with respect to α-
glucosidase for compounds 8a, 8b, and 9b showed values of 16.64 mM, 19.79 mM, and
21.79 mM, respectively. The remaining compounds 8c, 10a, 10b, 10c, 11a, 11b, and 11c
showed no inhibitory activity against α-glucosidase.

2.3. Molecular Docking

In order to obtain an idea of the protein–ligand interactions of synthesized thiourea
derivatives 8-11a-c in the active center of the enzyme, studies were conducted using
molecular docking.

Despite the fact that out of the 12 synthesized thiourea derivatives, only five (8a,
8b, 9a-c) demonstrated high inhibitory activity against the enzyme α-glucosidase, all
compounds were selected for further calculations.

Further, the structures of the molecules were docked with the active center of pro-
teins (PDB ID: 3A4A) [40] and (PDB ID: 5NN8) [41], since they play an important role in
maintaining glucose levels in the body.

Molecular modeling was performed using the AutoDock Vina software package [42]
(https://vina.scripps.edu/ accessed on 20 May 2024). Three-dimensional (3D) structures
were obtained from the RCSB Protein Data Bank [43]. The chemical structures of the
studied compounds were drawn using the ChemOffice software (Chem Draw 16.0), and
energy minimization for three-dimensional stabilization of the structure was performed
using ChemBio3D Ultra 14.0. Protein structures were prepared for docking by removing a
water molecule and a native ligand; hydrogen atoms were added to the standard geometry
before docking, and the structures were converted to pdbqt format using the AutoDock
MGL software package [44] (https://ccsb.scripps.edu/mgltools/ accessed on 20 May
2024). A program with the AutoDock Vina graphical user interface was used to set up a
grid for modeling docking. The grid was installed in such a way that it surrounded the
area of interest of the macromolecule. Active sites of the corresponding proteins were
predicted using the CASTp server [45]. For the isomaltase enzyme (PDB ID: 3A4A) [40],
the coordinates of the active site grid were X = 18.70, Y = −6.80, and Z = 23.50 (size:
22 × 18 × 22 Å) [46]; for the α-glucosidase enzyme (PDB ID: 5NN8) [41], the coordinates
of the active site grid were X = −11.00, Y = −38.95, and Z = 94.39 (size: 25X25X25 E) [47].
During the docking process, no more than nine conformations were considered for each
ligand. The conformations with the most favorable (lowest) free binding energy were
selected for the analysis of interactions between the target receptor and ligands using the
Discovery Studio 2015 Visualizer software package [48].

The control docking procedure was conducted using co-crystallized ligands to verify
the docking parameters, followed by their extraction and redocking into the same binding
pockets. The molecular docking procedure was validated as effective and reliable, with a
root mean square deviation (RMSD) of less than 1.5 Å. The redocked poses nearly overlap
with the co-crystallized conformations. Docking parameters are considered acceptable if
the RMSD of the docking ligand relative to the crystallized one is less than 1.5 Å. [49].

https://vina.scripps.edu/
https://ccsb.scripps.edu/mgltools/
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The results of the molecular docking show that the affinity of the interaction of the
studied compounds, 8a-c, 9b,c, 10a-c, and 11b, with the selected protein receptors (PDB ID:
3A4A, PDB ID: 5NN8) did not exceed the affinity of the interaction of these proteins with
acarbose used as a comparison (Table 2).

Table 2. Binding affinity (kcal/mol) of thiourea derivatives 8a-c-11a-c and acarbose in the active cen-
ters of the binding pocket of the isomaltase (PDB: 3A4A) and α-glucosidases (PDB: 5NN8) enzymes.

Ligand
Receptor

3A4A 5NN8

Acarbose −8.4 −8.0

8a −6.8 −5.8

8b −7.8 −6.5

8c −6.6 −6.0

9a −8.6 −8.2

9b −7.6 −7.2

9c −8.2 −7.8

10a −6.9 −6.2

10b −7.6 −7.8

10c −6.9 −6.8

11a −8.5 −7.6

11b −8.3 −7.8

11c −8.6 −7.2

On the other hand, compounds 9a and 11b showed high binding ability to selected
protein receptors, which is partly consistent with the results of in vitro tests assessing the
inhibitory activity of α-glucosidase.

The lack of actual biological activity in the acyl derivatives of thioureas 10a-c and 11a-c,
despite the molecular docking showing very good docking results, can be explained by the
poor solubility of these compounds under the conditions of the biological experiment with
the enzyme α-glucosidase.

Since, according to the results of docking, compounds 9a and 9c showed better results
in binding energy, we describe in more detail their interaction with two receptor proteins.

Thus, an analysis of the interaction of compound 9a with a protein receptor (PDB
identifier: 3A4A) showed that the resulting complex has a high binding energy in the active
site of the protein (−8.6 kcal/mol) of formation due to four strong hydrogen bonds of NH
and SH groups with amino acid residues: TYR158, GLU411, GLU277, and ASP352. In
addition, the amino acids TYR158 and TYR72 form a π-π T-shaped interaction with the π

systems of pyridone phenyl and rings, respectively. Also, the amino acid residues ASP352
and ASP215 interact with the π-system of the phenyl ring through the π-anionic bond. In
addition, the presence of six Van der Waals interactions was recorded: GLN279, VAL216,
ARG 213, HIS351, PHE178, and ASP69 (Figure 3).

Compound 9c has a binding energy (−8.2 kcal/mol) in the active site of the protein
due to the formation of two π-π interactions; the π-systems of the phenyl and pyridone
rings with amino acid residues TYR158 and PHE303, respectively, are composed. It has
also been shown that the New Hampshire group interacts with the amino acid residue of
ASP307 stable through hydrogen bonding. A π-π T-shaped space appeared between the
π-system T-shaped column and the release of amino acids TYR158. In addition, five Van
der Waals interactions are formed; HIS280, ARG315, THR306, GLN279, and PHE178 can be
stained (Figure 4).
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Figure 4. Complex of 9c with isomaltase (PDB ID: 3A4A).

Compound 9a demonstrated high binding affinity to the 5NN8 protein (−7.5 kcal/mol)
due to the formation of two hydrogen bonds between the NH group and the oxygen atom of
the pyridone ring with amino acid residues ASP282 and ARG600, respectively. There is also
a π-π stacked interaction between the amino acid residue TRP376 and the π-system of the
phenyl ring. In addition, the S atom and the pyridone ring form three π-sulfur interactions
with the residues PHE649, TRP376, and MET519. Other amino acid residues such as
LEU405, ASP404, HIS674, SER523, TRP481, and SER676 form Van der Waals interactions
(Figure 5).

The docking analysis showed that compound 9b has a binding affinity to the selected
protein receptor (−7.1 kcal/mol). As shown in Figure 6, compound 9c forms one strong
hydrogen bond between the NH group of the pyridine ring with the amino acid residue
ASP282. The formation of two π-anion interactions is realized by binding the π-system of
the phenyl and pyridone rings to the amino acid residues ASP518 and ASP282, respectively.
In addition, as in the case of compound 9a, three π-sulfur interactions are formed between
the S atom and the pyridone ring with residues PHE649, TRP376, and MET519. The
presence of a family of Van der Waals interactions with amino acid residues LEU405,
ASP404, HIS674, SER523, TRP481, ARG600, and SER676 was also recorded.
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Thus, according to the results of the molecular docking of phenylthiourea 9a, c showed
a good correlation with the conducted in vitro tests.

The docking results and interactions with target proteins for the other compounds are
provided in the Supplementary Materials (Tables S1 and S2).

3. Experimental Procedures
3.1. Materials and Methods

The description of this section (figures of spectrums) is included as Supplemen-
tary Materials.

1H and 13C NMR spectra were recorded on a Bruker DRX400 (400 and 100 MHz,
respectively) and Bruker AVANCE 500 (500 and 125 MHz, respectively), and Magritek
spinsolve 80 carbon ultra (81 and 20 MHz, respectively) instruments were used using the
DMSO-d6 internal standard with TMS or residual solvent signals (2.49 and 39.9 ppm 1H
and for 13C nuclei in DMSO-d6).

Samples were analyzed by HPLC-MS on an Agilent 1260 Infinity II chromatograph
coupled to an Agilent 6545 LC/Q-TOF high-resolution mass spectrometer with a Dual
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AJS ESI ionization source operating in positive ion mode using the following parameters:
capillary voltage: 4000 V; spray pressure: 20 (psi); drying gas: 10 l/min; gas temperature:
325 ◦C; sheathed gas flow: 12 l/min; shielding gas temperature: 400 ◦C; nozzle voltage: 0 V;
fragmentation voltage: 180 V; skimmer voltage: 45 V; and octopole RF: 750 V. Mass spectra
with LC/MS accuracy were recorded in the range 100–1000 m/z, scan rate: 1.5 spectrum/s.

Chromatographic separation was carried out on columns: ZORBAX RRHD Eclipse
Plus C18 (2.1 × 50 mm, particle size 1.8 µm). The column temperature during the analysis
was maintained at 35 ◦C. The mobile phase was formed by eluents A and B. In the positive
ionization mode, 0.1% formic acid solution in deionized water was used as eluent A, and
0.1% formic acid solution in acetonitrile was used as eluent B. Chromatographic separation
was performed with elution according to the following scheme: 0–10 min 95% A, 10–13 min
100% B, and 13–15 min 95% A. The flow of the mobile phase was maintained at 400 µL/min
throughout the analysis. In all experiments, the sample injection volume was 1 µL. The
sample was prepared by dissolving the entire sample (in 1000 µL) in methanol (for HPLC).
Sample dilution was carried out immediately before analysis.

The recorded data were processed using Agilent MassHunter 10.0 software.
Melting points were determined using a Stuart SMP10 hot bench. The monitoring of

the reaction course and the purity of the products were carried out by TLC on Sorbfil plates
and visualized using iodine vapor or UV light.

3.2. Synthesis of Thiourea Derivatives: The General Methodology

Method A. To the solution of the corresponding 3-amino-4,6-dimethylpyridin-2(1H)-
one 7a-c (1.0 mmol) in a mixture of DMF–methylene chloride (2:1), 1.2 mmol phenyl
isothiocyanate (for compounds 9a-c) was added dropwise. The reaction mixture was stirred
for 10–15 h at room temperature. The resulting precipitate was cooled, filtered, washed
with cold acetone, dried, and recrystallized from a mixture of solvents 2-propanol–hexane
(2:1) or DMF–2-propanol (for 9c).

Method B. A mixture of ammonium thiocyanate (1.2 mmol), acetyl chloride (for com-
pounds 10a-c), or benzoyl chloride (for compounds 11a-c) in 20 mL of acetone was heated
with reflux and stirring for 2 h. The resulting precipitate of KCl was filtered off and immedi-
ately added to a solution of 1 mmol of the corresponding 3-aminopyridin-2(1H)-one (7a-c)
in 10 mL of acetone and stirred for an additional 3 h. The reaction mixture with the precipi-
tated solid was cooled, filtered, washed with acetone, and dried. After recrystallization
from a mixture of 2-propanol–DMF (2:1), compounds 10-11a-c were obtained.

The physicochemical constants and spectral characteristics of thioureas 1-allyl-3-(4,6-
dimethyl-2-oxo-1,2-dihydropyridin-3-yl)thiourea (8a), 1-allyl-3-(6-methyl-2-oxo-4-phenyl-
1,2-dihydropyridin-3-yl)thiourea (8b), N-((4,6-dimethyl-2-oxo-1,2-dihydropyridin-3-yl)car-
bamothioyl)benzamide (11a), and N-((6-methyl-2-oxo-4-phenyl-1,2-dihydropyridin-3-yl)car-
bamothioyl)benzamide (11b) were described by us in [33].

1-Allyl-3-(6-methyl-2-oxo-4-(thiophen-2-yl)-1,2-dihydropyridin-3-yl)thiourea (8c). Yield
360 mg (59%), M.p.: = 289–292 ◦C. 1H NMR (400 MHz, DMSO-d6) δ ppm (J, Hz): 2.20 (s,
3H, 6-CH3); 4.05 (br. s, 2H, CH2); 4.98 (br. s., 1H, C=Ha); 5.11 (br. d, J = 15.1 Hz, 1H, C=Hb);
5.76 (br. s., 1H, -CH=CHaHb); 6.45 (s, 1H, H-5); 7.14 (d, J = 4.1 Hz, 1H, H-4 thiophene); 7.61
(br. s. 1H, NH-CH2); 7.66 (d, J = 3.7 Hz, 1H, H-3 thiophene); 7.71 (d, J = 4.6 Hz, 1H, H-5
tiophene); 8.52 (br. s., 1H, NHCS); 11.64 (br. s., 1H, NHCO). 13C NMR (101 MHz, DMSO-d6)
δ ppm 18.5 (CH3); 46.3 (NH-CH2); 102.6; 114.9 (=CH2); 120.5; 126.9 (C-3 thiophene); 128.7
(C-4 thiophene); 130.3 (C-5 thiophene); 135.1 (CH2C=); 137.3; 141.0; 143.3; 161.0; 189.0 (CS).

1-(4,6-Dimethyl-2-oxo-1,2-dihydropyridin-3-yl)-3-phenylthiourea (9a). Yield: 0.180 g
(66%), white powder, M.p.: 140–143 ◦C. 1H NMR (500 MHz, DMSO-d6) δ ppm (J, Hz): 2.05
(s, 1H, CH3); 2.13 (s, 1H, CH3); 5.90 (s, 1H, H-5); 7.09 (t, 1H, J = 7.2 Hz, H-4 Ph); 7.30 (t, 2H,
J = 7.6 Hz, H-3,5 Ph); 7.50 (d, 2H, J = 7.3 Hz, H-3,5 Ph); 8.68 (br. s., 1H, NHPh); 9.57 (br. s.,
1H, NHCS); 11.63 (br. s., 1H, NHCO). 13C NMR (125 MHz, DMSO-d6) δ ppm 18.2 (CH3);
18.2 (CH3); 106.6 (C-5); 124.1 (2C Ph); 125.9 (C Ph); 128.3 (2C Ph); 129.9; 139.7; 142.3; 147.9;
160.4; 180.7. HRMS m/z: calcd for C14H16N3OS+ [M + H]+: 274.1009; found: 274.0099.
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1-(6-Methyl-2-oxo-4-phenyl-1,2-dihydropyridin-3-yl)-3-phenylthiourea (9b). Yield:
0.232 g (69%), white powder, M.p.: 141–144 ◦C. 1H NMR (81 MHz, DMSO-d6) δ ppm (J,
Hz): 2.22 (s, 1H, CH3); 6.03 (s, 1H, H-5); 7.14–7.43 (m, 10H, H-2,3,4,5,6 Ph, H-2,3,4,5,6 Ar);
8.67 (br. s., 1H, NHPh); 9.51 (br. s, 1H, NHCS); 11.83 (br. s., 1H, NHCO). 13C NMR (20 MHz,
DMSO-d6) δ ppm 18.4 (CH3); 105.8 (C-5); 123.6 (2C Ph); 128.2 (8C Ph); 137.6; 139.6; 143.3;
149.0; 160.8; 162.3; 181.2. HRMS m/z: calcd for C19H18N3OS+ [M + H]+: 336.1165; found:
336.1175.

1-(6-Methyl-2-oxo-4-(thiophen-2-yl)-1,2-dihydropyridin-3-yl)-3-phenylthiourea (9c).
Yield: 0.260 g (76%), white powder, M.p.: 145–147 ◦C. 1H NMR (81 MHz, DMSO-d6) δ
ppm (J, Hz): 2.22 (s, 1H, CH3); 6.47 (s, 1H, H-5); 7.09–7.76 (m, 8H, H-2,3,4,5,6 Ph, H-3,4,5
thiophene); 8.76 (s, 1H, NHPh); 9.73 (br. s, 1H, NHCS); 11.69 (br. s., 1H, NHCO). 13C NMR
(20 MHz, DMSO-d6) δ ppm 18.5 (CH3); 102.8 (C-5); 124.3 (2C Ph); 126.9 (1C thiophene);
128.2 (5C Ph); 128.7 (1C thiophene); 130.2 (1C thiophene); 137.4; 139.6; 141.4; 143.0; 160.9;
162.3; 181.6. HRMS m/z: calcd for C17H16N3OS2

+ [M + H]+: 342.0729; found: 342.0735.
N-((4,6-Dimethyl-2-oxo-1,2-dihydropyridin-3-yl)carbamothioyl)acetamide (10a). Yield:

0.127 g (53%), light beige powder, M.p.: 273–275 ◦C. 1H NMR (500 MHz, DMSO-d6) δ ppm
(J, Hz): 1.99 (s, 3H, CH3); 2.12 (s, 6H, 2CH3); 5.90 (s, 1H, H-5); 11.42 (br. s., 1H, NHCS); 11.44
(br. s., 1H, NHCO); 11.69 (br. s., 1H, NHCO). 13C NMR (125 MHz, DMSO-d6) δ ppm 18.18
(CH3); 18.21 (CH3); 23.7 (CH3); 106.6 (C-5); 123.1; 143.0; 147.6; 159.5; 172.4; 180.7. HRMS
m/z: calcd for C10H14N3O2S+ [M + H]+: 240.0801; found: 240.0810.

N-((6-Methyl-2-oxo-4-phenyl-1,2-dihydropyridin-3-yl)carbamothioyl)acetamide (10b).
Yield: 0.168 g (56%), light beige powder, M.p.: 249–251 ◦C. 1H NMR (500 MHz, DMSO-d6)
δ ppm (J, Hz): 2.05 (s, 3H, CH3); 2.21 (s, 3H, CH3); 6.02 (s, 1H, H-5); 7.35–7.39 (m, 3H,
H-3,4,5 Ph); 7.42–7.45 (m, 2H, H-2,6 Ph); 11.29 (br. s., 1H, NHCS); 11.34 (br. s., 1H, NHCO);
11.91 (br. s, 1H, NHCO). 13C NMR (125 MHz, DMSO-d6) δ ppm 18.4 (CH3); 23.6 (CH3);
105.5 (C-5); 122.1; 127.6 (2C Ph); 128.2 (2C Ph); 128.5; 137.1; 144.0; 148.9; 159.5; 172.2; 181.4.
HRMS m/z: calcd for C15H16N3O2S+ [M + H]+: 302.0958; found: 302.0963.

N-((6-Methyl-2-oxo-4-(thiophen-2-yl)-1,2-dihydropyridin-3-yl)carbamothioyl)acetamide
(10c). Yield: 0.169 g (55%), light beige powder, M.p.: 252–254 ◦C. 1H NMR (500 MHz,
DMSO-d6) δ ppm (J, Hz): 2.16 (s 3H, CH3’); 2.20 (s, 3H, CH3); 6.46 (s, 1H, H-5); 7.14 (dd, 1H,
J = 5.0 Hz, J = 3.7 Hz, H-4 thiophene); 7.64 (dd, 1H, J = 3.8 Hz, J = 1.1 Hz, H-3 thiophene);
7.72 (dd, 1H, J = 5.1 Hz, J = 1.0 Hz, H-5 tiophene); 11.47 (br. s, 1H, NHCS); 11.56 (br. s,
1H, NHCO); 11.77 (br. s, 1H, NHCO). 13C NMR (125 MHz, DMSO-d6) δ ppm 18.5 (CH3);
23.7 (CH3); 102.6 (C-5); 120.2; 127.2 (C-3 thiophene); 129.00 (C-4 thiophene); 130.3 (C-5
thiophene); 136.8; 140.6; 143.6; 159.7; 172.5; 182.2. HRMS m/z: calcd for C13H14N3O2S2

+

[M+H]+: 308.0522; found: 308.0530.
N-((4,6-Dimethyl-2-oxo-1,2-dihydropyridin-3-yl)carbamothioyl)benzamide (11a). Yield:

0.682 g (76%), light-yellow, finely crystalline powder, M.p.: 230–232 ◦C. 1H NMR (400 MHz,
DMSO-d6) δ ppm (J, Hz): 2.07 (s, 3H, 4-CH3); 2.16 (s, 3H, 6-CH3); 5.92 (s, 1H, H-5); 7.53
(t, J = 7.6 Hz, 2H, H-3,5 Ph); 7.65 (t, J = 7.6 Hz, 1H, H-4 Ph); 7.98 (d, J = 7.8 Hz, 2H, H-2,6
Ph); 11.42 (br. s, 1H, NHCS); 11.62 (br. s, 1H, NHCO); 11.64 (br. s, 1H, NHCO). 13C NMR
(100 MHz, DMSO-d6) δ ppm 18.2 (4,6-CH3); 106.6 (C-5); 123.4 (C-4); 128.4 (C-2,6 Ph); 128.6
(C-3,5 Ph); 132.1 (C-1 Ph); 133.1 (C-4 Ph); 143.1 (C-3); 147.6 (C-6); 159.5 (C-2); 168.3 (CO);
180.9 (CS). HRMS m/z: calcd for C15H16N3O2S+ [M + H]+: 302.0958; found: 302.0963.

N-[(6-Methyl-2-oxo-4-phenyl-1,2-dihydropyridin-3-yl)carbamothioyl]benzamide (11b).
Yield: 0.244 g (67%), light-yellow, finely crystalline powder, M.p.: 218–220 ◦C. 1H NMR
(400 MHz, DMSO-d6) δ ppm (J, Hz): 2.24 (s, 3H, 6-CH3); 6.05 (s, 1H, H-5); 7.34–7.41 (m, 3H,
H-2,4,6 Ph); 7.47–7.51 (m, 4H, H-3,5 Ph, H-3,5 Ph’); 7.62 (t, J = 7.4 Hz, 1H, H-4 Ph’); 7.91 (d,
J = 7.2 Hz, 2H, H-2,6 Ph’); 11.41 (br. s, 1H, NHCS); 11.63 (br. s, 1H, NHCO); 11.92 (br. s,
1H, NHCO). 13C NMR (100 MHz, DMSO-d6) δ ppm 18.9 (6-CH3); 106.0 (C-5); 122.8 (C-1
Ph); 128.1 (C-2,6 Ph); 128.7 (C-3,5 Ph); 128.9 (C-4 Ph, C-2,6 Bz); 129.0 (C-3,5 Bz); 132.4 (C-1
Bz); 133.6 (C-4 Bz); 137.6 (C-4); 144.5 (C-3); 149.4 (C-6); 160.0 (C-2); 168.4 (CO); 182.0 (CS).
HRMS m/z: calcd for C20H18N3O2S+ [M + H]+: 364.1114; found: 364.1113.
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N-((6-Methyl-2-oxo-4-(thiophen-2-yl)-1,2-dihydropyridin-3-yl)carbamothioyl)benzamide
(11c). Yield: 0.314 g (85%), light beige powder, M.p.: 245–249 ◦C. 1H NMR (500 MHz,
DMSO-d6) δ ppm (J, Hz): 2.23 (s, 3H, CH3); 6.50 (s, 1H, H-5); 7.15 (dd, 1H, J = 4.9 Hz, J = 4.1
Hz, H-4 thiophene); 7.55 (t, 2H, H-3,5 Ph); 7.66 (m, 1H, H-4 Ph); 7.69 (d, 1H, H-3 thiophene);
7.72 (d, 1H, H-5 thiophene); 8.01 (d, 2H, H-2,6 Ph); 11.76 (br. s, 2H, NHCS, NHCO); 11.81
(br. s, 1H, NHCO). 13C NMR (125 MHz, DMSO-d6) δ ppm 18.5 (CH3); 102.7 (C-5); 120.4;
127.2; 128.5 (2C Ph); 128.7 (2C Ph); 129.0; 130.2; 132.0; 133.2; 136.8; 140.6; 143.6; 159.7; 168.2;
182.4. HRMS m/z: calcd for C18H15N3O2S2

+ [M + H]+: 370.0678; found: 370.0670.

3.3. Biological Tests
In Vitro Assay of α-Glucosidase Inhibitory Activity

Antidiabetic activity was assessed by the degree of inhibition of α-glucosidase activity
by the test substances. The α-glucosidase enzyme determines the extent to which glucose
enters the bloodstream from the gastrointestinal tract. The inhibition of this enzyme can
be useful for lowering postprandial glucose levels [39]. α-Glucosidase inhibitory activity
was assayed using 0.1 M phosphate buffer (pH 6.8) at 37 ◦C. The enzyme (α-glucosidase
from Saccharomyces cerevisiae, Sigma-Aldrich, St. Louis, MO, USA, 1.0 U/mL) in phosphate-
buffered saline was incubated with various concentrations of test compounds at 37 ◦C for
15 min. All the studied substances were dissolved in 40% DMSO. Then, 5 mM p-nitrophenyl
α-d-glucopyranoside was added to the mixture as a substrate. The mixture was incubated
at 3 ◦C for 20 min. The absorbance was measured spectrophotometrically at 405 nm. The
sample solution was replaced by 40% DMSO as a control. Acarbose was used as a positive
control. All samples were studied in triplets.

Inhibitory activity was expressed as a percentage (%) according to the degree of
inhibition of α-glucosidase in comparison with the negative control. It was calculated using
the following formula:

Inhibitory activity (%) = (1 − As/Ac) × 100%, where As is the optical density of the
test compound, and Ac is the optical density of control.

The IC50 was determined from the graph of enzyme activity changes depending on
the sample concentration.

The statistical processing of the results was carried out using the “Excel 2019” program.
The obtained results are presented as “mean ± standard error of the mean”.

4. Conclusions

Thus, based on 3-aminopyridine-2-(1H)-ones 7a-c, we obtained thioureide derivatives
8-11a-c and studied their inhibitory antidiabetic activity. According to the results of the
conducted studies, it was shown that alkyl and phenyl thiourea derivatives 8,9a-c show
high and moderate antidiabetic activity, in contrast to their acetyl and benzoyl derivatives
10, 11a-c.

Thus, compound 9a has the highest inhibitory activity against the enzymeα-glucosidase,
exceeding the activity of the comparison drug acarbose, inhibiting the activity of α-
glucosidase at a concentration of 15 mM by 56.6%; IC50 for 9a is 9.77 mM. While the
comparison drug acarbose inhibits the activity of α-glucosidase at a concentration of
15 mM by 46.1%, the IC50 for acarbose is 11.96 mM. Compound 9c has inhibitory ac-
tivity against the enzyme α-glucosidase, comparable to the comparison drug acarbose,
inhibiting the activity of α-glucosidase at a concentration of 15 mM by 41.2%, the IC50 of
compound 9c is 12.94 mM. Compounds 8a, 8b, and 9b showed inhibitory activity against
the enzyme α-glucosidase, inferior in activity to acarbose, inhibiting the activity of α-
glucosidase at a concentration of 15 mM by 23.3%, 26.9%, and 35.2%, respectively. The IC50
for α-glucosidase for compounds 8a, 8b, and 9b is 16.64 mM, 19.79 mM, and 21.79 mM,
respectively. The remaining compounds 8c, 10a, 10b, 10c, 11a, 11b, and 11c showed no
inhibitory activity against α-glucosidase.

The results of molecular docking show that the affinity of the interaction of the studied
compounds 8a-c, 9b,c, 10a-c, and 11b with the selected protein receptors (PDB ID: 3A4A,



Molecules 2024, 29, 3627 13 of 15

PDB ID: 5NN8) did not exceed the affinity of the interaction of these proteins with acarbose
used as a comparison.

The results of molecular docking show that the affinity of the interaction of some of
the studied compounds 8a-c, 9b,c, 10a-c, and 11b with selected protein receptors (PDB ID:
3A4A, PDB ID: 5NN8) was either lower or at the level of the affinity of the interaction of
these proteins with acarbose, used as a comparison and, was slightly higher than it for
compounds 9a, 11a, and 11c.

The lack of actual biological activity in the acyl derivatives of thioureas 10a-c and 11a-c,
despite the molecular docking showing very good docking results, can be explained by the
poor solubility of these compounds under the conditions of the biological experiment with
the enzyme α-glucosidase.

Taking into account all the data obtained, the new thiourea derivatives synthesized by
us based on 3-aminopyridine-2(1H)-ones are very promising objects for the further study
of their possible antidiabetic activity.

Supplementary Materials: The following supporting information can be downloaded at https://
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