Determination of Cotinine, 3′-Hydroxycotinine and Nicotine 1′-Oxide in Urine of Passive and Active Young Smokers by LC-Orbitrap-MS/MS Technique
Abstract
:1. Introduction
2. Results and Discussion
2.1. Determination of Nicotine Metabolites by LC-Orbitrap-MS/MS
2.2. Determination of Nicotine Metabolites in Urine Samples
3. Materials and Methods
3.1. Reagents and Standards
3.2. Urine Sample Collection and Extraction
3.3. Determination of Nicotine Metabolites by LC-Orbitrap-MS/MS
3.4. Calibration Graphs, Limits of Detection and Limits of Quantification, Repeatability and Reproducibility, and Recovery of Extraction
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Chen, C.-Y.; Jhou, Y.-T.; Lee, H.-L.; Lin, Y.-W. Simultaneous, Rapid, and Sensitive Quantification of 8-Hydroxy-2′-Deoxyguanosine and Cotinine in Human Urine by on-Line Solid-Phase Extraction LC-MS/MS: Correlation with Tobacco Exposure Biomarkers NNAL. Anal. Bioanal. Chem. 2016, 408, 6295–6306. [Google Scholar] [CrossRef]
- Habibagahi, A.; Alderman, N.; Kubwabo, C. A Review of the Analysis of Biomarkers of Exposure to Tobacco and Vaping Products. Anal. Methods 2020, 12, 4276–4302. [Google Scholar] [CrossRef] [PubMed]
- Torres, S.; Merino, C.; Paton, B.; Correig, X.; Ramírez, N. Biomarkers of Exposure to Secondhand and Thirdhand Tobacco Smoke: Recent Advances and Future Perspectives. Int. J. Environ. Res. Public Health 2018, 15, 2693. [Google Scholar] [CrossRef] [PubMed]
- Habibagahi, A.; Siddique, S.; Harris, S.A.; Alderman, N.; Aranda-Rodriguez, R.; Farhat, I.; Chevrier, J.; Kubwabo, C. Challenges Associated with Quantification of Selected Urinary Biomarkers of Exposure to Tobacco Products. J. Chromatogr. B 2021, 1162, 122490. [Google Scholar] [CrossRef] [PubMed]
- Dai, H.; Benowitz, N.L.; Achutan, C.; Farazi, P.A.; Degarege, A.; Khan, A.S. Exposure to Toxicants Associated with Use and Transitions Between Cigarettes, e-Cigarettes, and No Tobacco. JAMA 2022, 5, e2147891. [Google Scholar] [CrossRef]
- Baj, J.; Flieger, W.; Przygodzka, D.; Buszewicz, G.; Teresiński, G.; Pizoń, M.; Maciejewski, R.; Flieger, J. Application of HPLC-QQQ-MS/MS and New RP-HPLC-DAD System Utilizing the Chaotropic Effect for Determination of Nicotine and Its Major Metabolites Cotinine, and Trans-3′-Hydroxycotinine in Human Plasma Samples. Molecules 2022, 27, 682. [Google Scholar] [CrossRef] [PubMed]
- Abu-awwad, A.; Arafat, T.; Schmitz, O.J. Study the Influence of Licorice and Pomegranate Drinks on Nicotine Metabolism in Human Urine by LC-Orbitrap MS. J. Pharm. Biomed. Anal. 2017, 132, 60–65. [Google Scholar] [CrossRef] [PubMed]
- Gallart-Mateu, D.; Dualde, P.; Coscollà, C.; Soriano, J.M.; Garrigues, S.; de la Guardia, M. Biomarkers of Exposure in Urine of Active Smokers, Non-Smokers, and Vapers. Anal. Bioanal. Chem. 2023, 415, 6677–6688. [Google Scholar] [CrossRef]
- Murphy, S.E. Biochemistry of Nicotine Metabolism and Its Relevance to Lung Cancer. J. Biol. Chem. 2021, 296, 100722. [Google Scholar] [CrossRef]
- Esther, C.R.; O’Neal, W.K.; Alexis, N.E.; Koch, A.L.; Cooper, C.B.; Barjaktarevic, I.; Raffield, L.M.; Bowler, R.P.; Comellas, A.P.; Peters, S.P.; et al. Prolonged, Physiologically Relevant Nicotine Concentrations in the Airways of Smokers. Am. J. Physiol. Lung Cell. Mol. Physiol. 2023, 324, L32–L37. [Google Scholar] [CrossRef]
- Tomaz, P.R.X.; Gonçalves, T.S.; Santos, J.R.; Scholz, J.; Abe, T.O.; Gaya, P.V.; Figueiredo, E.C.; de Faria, H.D.; Martins, I.; Pego, A.M.F.; et al. Evaluation of the Nicotine Metabolite Ratio in Smoking Patients Treated with Varenicline and Bupropion. Front. Pharmacol. 2022, 13, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Siegel, S.D.; Lerman, C.; Flitter, A.; Schnoll, R.A. The Use of the Nicotine Metabolite Ratio as a Biomarker to Personalize Smoking Cessation Treatment: Current Evidence and Future Directions. Cancer Prevent. Res. 2020, 13, 261–272. [Google Scholar] [CrossRef] [PubMed]
- Piller, M.; Gilch, G.; Scherer, G.; Scherer, M. Simple, Fast and Sensitive LC–MS/MS Analysis for the Simultaneous Quantification of Nicotine and 10 of Its Major Metabolites. J. Chromatogr. B 2014, 951–952, 7–15. [Google Scholar] [CrossRef] [PubMed]
- Kataoka, H.; Kaji, S.; Moai, M. Risk Assessment of Passive Smoking Based on Analysis of Hair Nicotine and Cotinine as Exposure Biomarkers by In-Tube Solid-Phase Microextraction Coupled On-Line to LC-MS/MS. Molecules 2021, 26, 7356. [Google Scholar] [CrossRef] [PubMed]
- McGuffey, J.E.; Wei, B.; Bernert, J.T.; Morrow, J.C.; Xia, B.; Wang, L.; Blount, B.C. Validation of a LC-MS/MS Method for Quantifying Urinary Nicotine, Six Nicotine Metabolites and the Minor Tobacco Alkaloids—Anatabine and Anabasine—in Smokers’ Urine. PLoS ONE 2014, 9, e101816. [Google Scholar] [CrossRef] [PubMed]
- Fernandes, A.; Santos, L.; Pinheiro, G.; Vasconcellos, D.S.; Telles de Oliva, S.; Fernandes, B.; Couto, R. Urinary Cotinine as a Biomarker of Cigarette Smoke Exposure: A Method to Differentiate Among Active, Second-Hand, and Non-Smoker Circumstances. Open Biomark. J. 2020, 10, 60–68. [Google Scholar] [CrossRef]
- Wielkoszynski, T.; Tyrpien, K.; Szumska, M. The enzyme-linked immunosorbent assay (ELISA) method for nicotine metabolites determination in biological fluids. J. Pharmaceut. Biomed. 2009, 49, 1256–1260. [Google Scholar] [CrossRef] [PubMed]
- Malafatti, L.; Maia, P.; Martins, M.; Bastos de Siqueira, M.; Martins, I. Single gas chromatography method with nitrogen phosphorus detector for urinary cotinine determination in passive and active smokers. Brazilian J. Pharm. Sci. 2010, 46, 769–776. [Google Scholar] [CrossRef]
- Cunha, L.; Oliveira, F.; Santos, L.; Pucci, L.; Neto, J.; Rahal, R.; Freitas, R.J. A simplified method for the analysis of urinary cotinine by GC-MS. Rev. Ciênc. Farm. Básica Apl. 2013, 34, 177–182. [Google Scholar]
- Tyrpień, K.; Wielkoszynski, T.; Janoszka, B.; Dobosz, C.; Bodzek, D.; Stęplewski, Z. Application of liquid separation techniques to the determination of the main urinary nicotine metabolites. J. Chromatogr. A 2000, 870, 29–38. [Google Scholar] [CrossRef]
- Oh, J.; Park, M.-S.; Chun, M.-R.; Hwang, J.H.; Lee, J.-Y.; Jee, J.H.; Lee, S.-Y. A Simple and High-Throughput LC–MS-MS Method for Simultaneous Measurement of Nicotine, Cotinine, 3-OH Cotinine, Nornicotine and Anabasine in Urine and Its Application in the General Korean Population. J. Anal. Toxicol. 2022, 46, 25–36. [Google Scholar] [CrossRef] [PubMed]
- Jin, S.; Pang, W.; Zhao, L.; Zhao, Z.; Mei, S. Review of HPLC–MS Methods for the Analysis of Nicotine and Its Active Metabolite Cotinine in Various Biological Matrices. Biomed. Chromatogr. 2022, 36, e5351. [Google Scholar] [CrossRef] [PubMed]
- El Mubarak, M.A.; Danika, C.; Cachon, C.; Korovila, C.; Atsopardi, K.; Panagopoulos, N.; Margarity, M.; Poulas, K.; Sivolapenko, G.B. In Vivo Quantification and Pharmacokinetic Studies of Cotinine in Mice after Smoke Exposure by LC–MS/MS. Biomed. Chromatogr. 2020, 34, e4752. [Google Scholar] [CrossRef] [PubMed]
- Kaisar, M.A.; Kallem, R.R.; Sajja, R.K.; Sifat, A.E.; Cucullo, L. A Convenient UHPLC-MS/MS Method for Routine Monitoring of Plasma and Brain Levels of Nicotine and Cotinine as a Tool to Validate Newly Developed Preclinical Smoking Model in Mouse. BMC Neurosci. 2017, 18, 71. [Google Scholar] [CrossRef]
- Scheidweiler, K.; Shakleya, D.; Huestis, M. Simultaneous Quantification of Nicotine, Cotinine, trans-3′-Hydroxycotinine, Norcotinine and Mecamylamine in Human Urine by Liquid Chromatography-Tandem Mass Spectrometry. Clin. Chim. Acta 2012, 413, 978–984. [Google Scholar] [CrossRef] [PubMed]
- Mroczek, P.J.; Tyrpień-Golder, K.M.; Janoszka, B.M.; Szumska, M. Medical Students’ Awareness of e-Cigarette Use Addiction. Environ. Med. 2024, 26, 60–66. [Google Scholar] [CrossRef]
- Mallock, N.; Andrea Rabenstein, A.; Laux, P.; Rüther, T.; Hutzler, C.; Parr, M.K.; Luch, A. Rapid, sensitive, and reliable quantitation of nicotine and its main metabolites cotinine and trans-3′-hydroxycotinine by LC-MS/MS: Method development and validation for human plasma, J. Chromatogr. B 2021, 1179, 122736. [Google Scholar] [CrossRef]
- Weymarn, L.; Lu, X.; Thomson, N.; LeMarchand, L.; Park, S.; Murphy, S. Quantitation of Ten Urinary Nicotine Metabolites, Including 4-Hydroxy-4-(3-pyridyl) Butanoic Acid, a Product of Nicotine 2′- Oxidation, and CYP2A6 Activity in Japanese Americans, Native Hawaiians, and Whites. Chem. Res. Toxicol. 2023, 36, 313–321. [Google Scholar] [CrossRef] [PubMed]
- Rangiah, K.; Hwang, W.; Mesaros, C.; Vachani, A.; Blair, A. Nicotine exposure and metabolizer phenotypes from analysis of urinary nicotine and its 15 metabolites by LC–MS. Bioanalysis 2011, 3, 745–761. [Google Scholar] [CrossRef]
- Martínez-Sánchez, J.M.; González-Marrón, A.; Sánchez, J.; Sureda, X.; Fu, M.; Ortuno, R.; Moyano, C.; Galán, I.; Pascual, J.; Fernández, E. Validity of self-reported intensity of exposure to second-hand smoke at home against environmental and personal markers. Gac. Sanit. 2017, 32, 393–395. [Google Scholar] [CrossRef]
- Abu-awwad, A.; Arafat, T.; Schmitz, O.J. Simultaneous determination of nicotine, cotinine, and nicotine N-oxide in human plasma, semen, and sperm by LC-Orbitrap MS. Anal. Bioanal. Chem. 2016, 408, 6473–6481. [Google Scholar] [CrossRef] [PubMed]
- Kim, S. Overview of Cotinine Cutoff Values for Smoking Status Classification. Neurosci. Nicotine 2019, 13, 419–431. [Google Scholar] [CrossRef]
- Lee, H.S.; Chun, M.R.; Lee, S.Y. Simultaneous Measurement and Distribution Analysis of Urinary Nicotine, Cotinine, Trans-3’-Hydroxycotinine, Nornicotine, Anabasine, and Total Nicotine Equivalents in a Large Korean Population. Molecules 2023, 28, 7685. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.; Lee, S. Daily Cigarette Consumption and Urine Cotinine Level between Dual Users of Electronic and Conventional Cigarettes, and Cigarette-Only Users. J. Psychoact. Drugs 2020, 52, 20–26. [Google Scholar] [CrossRef]
- Feng, J.; Sosnoff, C.; Bernert, J.; Blount, B.; Li, Y.; Del Valle-Pinero, A.; Kimmel, H.; Bemmel, D.; Rutt, S.; Barreto, J.; et al. Urinary Nicotine Metabolites and Self-Reported Tobacco Use Among Adults in the Population Assessment of Tobacco and Health (PATH) Study, 2013–2014. Nicotine Tob. Res. 2022, 24, 768–777. [Google Scholar] [CrossRef] [PubMed]
- Górna, I.; Napierala, M.; Florek, E. Electronic Cigarette Use and Metabolic Syndrome Development. Critical Review. Toxics 2020, 8, 105. [Google Scholar] [CrossRef] [PubMed]
- Visser, W.F.; Klerx, W.N.; Cremers, H.; Ramlal, R.; Schwillens, P.; Talhout, R. The health risks of electronic cigarette use to bystanders. Int. J. Environ. Res. Public Health 2019, 16, 1525. [Google Scholar] [CrossRef]
- Kawasaki, Y.; Li, Y.; Ootsuyama, Y.; Nagata, K.; Yamato, H.; Kawai, K. Effects of smoking cessation on biological monitoring markers in urine. Genes Environ. 2020, 42, 26. [Google Scholar] [CrossRef] [PubMed]
- Kawasaki, Y.; Li, Y.; Watanabe, S.; Ootsuyama, Y.; Kawai, K. Urinary biomarkers for secondhand smoke and heated tobacco products exposure. J. Clin. Biochem. Nutr. 2021, 69, 37–43. [Google Scholar] [CrossRef]
- Awwad, A.; Schmitz, O.; Arafat, T. Determination of Nicotine and Cotinine in Human Blood by Dried Blood Spot-LC-Orbitrap MS Technique. J. Anal. Pharm. Res. 2016, 3, 00070. [Google Scholar] [CrossRef]
- Konieczka, P.; Namieśnik, J. Evaluation and Quality Control of Analytical Measurement Results, 1st ed.; PWN: Warsaw, Poland, 2019; pp. 225–300. [Google Scholar]
Name (Abbreviation) | Structure | Molecular Formula | Molecular Mass |
---|---|---|---|
(-)-Cotinine (Cot) | C10H12N2O | 176.09496 | |
trans-3′-Hydroxycotinine (3’-OH-Cot) | C10H12N2O2 | 192.08988 | |
(1′S,2′S)-nicotine 1′-oxide (2’S-Nic-Ox) | C10H14N2O | 178.110161 | |
DL-nicotine-(methyl-D3) (Nic-D3) | C10D3H11N2 | 165.134528 |
Compound | Retention Time [min] | Precursor Ion [M+H]+ → Product Ion (m/z) | Collision Energy (eV) |
---|---|---|---|
Cot | 1.85 | 177.10240 → 80.04999 | 20 |
3′-OH-Cot | 1.72 | 193.09727 → 80.04999 | 25 |
2′S-Nic-Ox | 1.68 | 179.11810 → 84.08128 | 15 |
Nic-D3 | 1.72 | 166.14189 → 130.06540 | 25 |
Nicotine Metabolite | Calibration Curve Concentration Range (µg/mL) | Regression Coefficients r | Recovery (%) and RSD 1 (%) for Spiking Level (µg/mL of Urine); n = 6 | ||
---|---|---|---|---|---|
0.05 | 0.5 | 1.0 | |||
Cot | 0.03–1.00 | 0.9980 | 101.4 (1.0) | 82.2 (1.0) | 81.1 (1.1) |
3′-OH-Cot | 0.03–1.00 | 0.9965 | 100.9 (2.0) | 85.6 (1.0) | 83.6 (1.0) |
2′S-Nic-Ox | 0.03–1.00 | 0.9979 | 82.8 (1.6) | 75.0 (3.1) | 72.2 (2.5) |
Nicotine Metabolite | Status of Smoking | ||
---|---|---|---|
Smokers (Min–Max) 1 | Passive Smokers (Min–Max) | Non-Smokers (Min–Max) | |
Cot | 3819.0 (639.0–12,540.0) | 54.6 (n.d.–94.1) | n.d. 2 |
3′-OH-Cot | 2967.0 (261.0–7080.0) | 51.1 (36.0–137.5) | 35.4 (0–36.0) |
2′S-Nic-Ox | 55.4 (n.d.–90.0) | 53.4 (n.d.–77.8) | 53.7 (0–54.0) |
Cot + 3′-OH-Cot | 6786.0 | 105.7 | 35.4 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Szumska, M.; Mroczek, P.; Tyrpień-Golder, K.; Pastuszka, B.; Janoszka, B. Determination of Cotinine, 3′-Hydroxycotinine and Nicotine 1′-Oxide in Urine of Passive and Active Young Smokers by LC-Orbitrap-MS/MS Technique. Molecules 2024, 29, 3643. https://doi.org/10.3390/molecules29153643
Szumska M, Mroczek P, Tyrpień-Golder K, Pastuszka B, Janoszka B. Determination of Cotinine, 3′-Hydroxycotinine and Nicotine 1′-Oxide in Urine of Passive and Active Young Smokers by LC-Orbitrap-MS/MS Technique. Molecules. 2024; 29(15):3643. https://doi.org/10.3390/molecules29153643
Chicago/Turabian StyleSzumska, Magdalena, Paweł Mroczek, Krystyna Tyrpień-Golder, Beata Pastuszka, and Beata Janoszka. 2024. "Determination of Cotinine, 3′-Hydroxycotinine and Nicotine 1′-Oxide in Urine of Passive and Active Young Smokers by LC-Orbitrap-MS/MS Technique" Molecules 29, no. 15: 3643. https://doi.org/10.3390/molecules29153643
APA StyleSzumska, M., Mroczek, P., Tyrpień-Golder, K., Pastuszka, B., & Janoszka, B. (2024). Determination of Cotinine, 3′-Hydroxycotinine and Nicotine 1′-Oxide in Urine of Passive and Active Young Smokers by LC-Orbitrap-MS/MS Technique. Molecules, 29(15), 3643. https://doi.org/10.3390/molecules29153643