[BMIM][X] Ionic Liquids Supported on a Pillared-Layered Metal–Organic Framework: Synthesis, Characterization, and Adsorption Properties
Abstract
:1. Introduction
2. Results and Discussion
2.1. Synthesis and Characterization
2.1.1. Structural Studies
2.1.2. CO2 Adsorption Studies
Compound | BET (m2 g−1) | CO2 Uptake (cm3 g−1) | T (K) | Qst (kJ/mol) | Ref |
---|---|---|---|---|---|
CIM91 | 378 | 48.18 | 298 | 23 | This work |
37.24 | 318 | ||||
[BMIM][Cl] (20 wt%) | non-porous | 21.43 | 298 | 34 | This work |
16.99 | 318 | ||||
[BMIM][Cl] (10 wt%) | non-porous | 40.95 | 298 | 36 | This work |
33.26 | 318 | ||||
[BMIM][Cl] (5 wt%) | 348 | 33.32 | 298 | 27 | This work |
33.60 | 318 | ||||
[BMIM][PF6] (40 wt%) | 15 | 31.32 | 298 | 27 | This work |
24.17 | 318 | ||||
[BMIM][PF6] (20 wt%) | 27 | 50.76 | 298 | 55 | This work |
39.23 | 318 | ||||
[BMIM][PF6] (10 wt%) | 86 | 38.26 | 298 | 39 | This work |
34.03 | 318 | ||||
Zn2(TRZ)2(BPDC) | 470 | 17.02 | 298 | 29.5 | [34] |
UiO67 | 2113 | 22.9 | 298 | 16 | [35] |
48.6 | 273 | ||||
UiO67-IL | 846 | 22.4 | 298 | 26 | [35] |
42,7 | 273 | ||||
[BMIM][BF4]/MIL-53(Al) | 28.26 | 70.6 | 293 | 31 | [36] |
MIL53(Al) | 472.7 | 161.3 | 293 | 27 | [36] |
ZIF-8 | 1768 | 10.32 | 298 | - | [37] |
[BMIM][Tf2N]8@ZIF-8 | 1639 | 15.30 | 298 | - | [37] |
[C4MIM]2[NiCl4]@ZIF-8 | 768 | 40 | 300 | - | [38] |
UiO66 | 838 | 79 | 273 | - | [39] |
45 | 303 |
2.1.3. Dye Adsorption
2.2. Remarks
3. Materials and Methods
3.1. Synthetic and Activation Procedures
3.2. Synthetic and Activation Procedures
3.3. Instrumentation
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Durak, O.; Zeeshan, M.; Habib, N.; Gulbalkan, H.C.; Alsuhile, A.A.M.; Pelin Caglayan, H.; Kurtoğlu-Öztulum, S.F.; Zhao, Y.; Haslak, Z.P.; Uzun, A.; et al. Composites of porous materials with ionic liquids: Synthesis, characterization, applications, and beyond. Microporous Mesoporous Mater. 2022, 322, 111703. [Google Scholar] [CrossRef]
- Fredlake, C.P.; Crosthwaite, J.M.; Hert, D.G.; Sudhir, N.V.K.A.; Brennecke, J.F. Thermophysical Properties of Imidazolium-Based Ionic Liquids. J. Chem. Eng. Data 2004, 49, 954–964. [Google Scholar] [CrossRef]
- Senkovska, I.; Bon, V.; Abylgazina, L.; Mendt, M.; Berger, J.; Kieslich, G.; Petkov, P.; Fiorio, J.L.; Joswig, J.-O.; Heine, T.; et al. Understanding MOF Flexibility: An Analysis Focused on Pillared Layer MOFs as a Model System. Angew. Chem. Int. Ed. 2023, 62, e202218076. [Google Scholar] [CrossRef] [PubMed]
- Henke, S.; Schneemann, A.; Wütscher, A.; Fischer, R.A. Directing the Breathing Behavior of Pillared-Layered Metal- Organic Frameworks via a Systematic Library or Functionalized Linkers Bearing Flexible Substituents. J. Am. Chem. Soc. 2012, 134, 9464–9474. [Google Scholar] [CrossRef]
- ZareKarizi, F.; Joharian, M.; Morsali, A. Pillar-layered MOFs: Functionality, interpenetration, flexibility and applications. J. Mater. Chem. A 2018, 6, 19288–19329. [Google Scholar] [CrossRef]
- Hu, X.L.; Gong, Q.H.; Zhong, R.-L.; Wang, X.L.; Qin, C.; Wang, H.; Li, J.; Shao, K.Z.; Su, Z.M. Evidence of Amine-CO2 Interactions in Two Pillared-Layer MOFs Probed by X-ray Crustallography. Eur. J. 2015, 21, 7238–7244. [Google Scholar] [CrossRef] [PubMed]
- González-Hernández, P.; Lago, A.; Pasán, J.; Ruiz-Pérez, C.; Ayala, J.H.; Afonso, A.M.; Pino, V. Application of a Pillared-Layer Zn-Triazolate Metal-Organic Framework in the Dispersive Miniaturized Solid-Phase Extraction of Personal Care Products from Wastewater Samples. Molecules 2019, 24, 690. [Google Scholar] [CrossRef] [PubMed]
- González-Hernández, P.; Gutiérrez Serpa, A.; Lago, A.; Estévez, L.; Ayala, J.H.; Pino, V.; Pasán, J. Insights into Paraben Adsorption by Metal-Organic Frameworks for Analytical Applications. ACS Appl. Mater. Interfaces 2021, 13, 45639–45650. [Google Scholar] [CrossRef] [PubMed]
- Chen, F.; Bai, D.; Wang, Y.; He, M.; Gao, X.; He, Y. A pair of polymorphous metal-organic frameworks based on an angular diisophthalate linker: Synthesis, characterization and gas adsorption properties. Dalton Trans. 2018, 47, 716–725. [Google Scholar] [CrossRef]
- Karmakar, A.; Paul, A.; Pombeiro, A.J.L. Recent advances on supramolecular isomerism in metal organic frameworks. CrystEngComm 2017, 19, 4666–4695. [Google Scholar] [CrossRef]
- Fromm, K.M.; Sagué Doimeadios, J.L.; Robin, A.Y. Concomitant crystallization of two polymorphs-a ring and helix: Concentration effect on supramolecular isomerism. Chem. Commun. 2005, 36, 4548–4550. [Google Scholar] [CrossRef] [PubMed]
- Dhumal, N.R.; Singh, M.P.; Anderson, J.A.; Kiefer, J.; Kim, H.J. Molecular Interactions of a Cu-Based Metal-Organic Framework with a Confined Imidazolium-Based Ionic Liquid: A Combined Density Functional Theory and Experimental Vibrational Spectroscopy Study. J. Phys. Chem. C 2016, 120, 3295–3304. [Google Scholar] [CrossRef]
- Lin, J.B.; Nguyen, T.T.; Vaidhyanathan, R.; Burner, J.; Taylor, J.M.; Durekova, H.; Akhtar, F.; Mah, R.K.; Ghaffari-Nik, O.; Marx, S.; et al. A scalable metal-organic framework as a durable physisorbent for carbon dioxide capture. Science 2021, 374, 1464–1469. [Google Scholar] [CrossRef] [PubMed]
- Xu, B.H.; Wang, J.Q.; Sun, J.; Huang, Y.; Zhang, J.P.; Zhang, X.P.; Zhang, S.J. Fixation of CO2 into cyclic carbonates catalyzed by ionic liquids:a multi-scale approach. Green Chem. 2015, 17, 108–122. [Google Scholar] [CrossRef]
- Sun, J.; Fujita, S.I.; Arai, M. Development in the green synthesis of cyclic carbonate from carbon dioxide using ionic liquids. J. Organomet. Chem. 2005, 609, 3490–3497. [Google Scholar] [CrossRef]
- Yang, Z.Z.; He, L.N.; Miao, C.X.; Chanfreau, S. Lewis Basis Ionic Liquids-Catalyzed Conversion of Carbon Dioxide to Cyclic Carbonates. Adv. Synth. Catal. 2010, 352, 2097–2320. [Google Scholar] [CrossRef]
- Yang, Z.Z.; Zhao, Y.N.; He, L.N. CO2 chemistry: Task-specific ionic liquids for CO2 capture/activation and subsequent conversion. RSC Adv. 2011, 1, 545–567. [Google Scholar] [CrossRef]
- Tharun, J.; Bhin, K.M.; Roshan, R.; Kim, D.W.; Kathalikkattil, A.C.; Babu, R.; Ahn, H.Y.; Won, Y.S.; Park, D.W. Ionic liquid tethered post functionalized ZIF-90 framework for the cycloaddition of propylene oxide and CO2. Green Chem. 2016, 18, 2479–2487. [Google Scholar] [CrossRef]
- Tzialla, O.; Veziri, C.; Papatryfon, X.; Beltsios, K.G.; Labropoulos, A.; Iliev, B.; Adamova, G.; Schubert, T.J.S.; Kroon, M.C.; Francisco, M.; et al. Zeolite Imidazolate Framework-Ionic Liquid Hybrid Membranes for Highly Selective CO2 Separation. J. Phys. Chem. 2013, 117, 18434–18440. [Google Scholar] [CrossRef]
- Kavak, S.; Kulak, H.; Polat, H.M.; Keskin, S.; Uzun, A. Fast and Selective Adsorption of Methylene Blue from Water Using [BMIM][PF6]− incorporated UiO-66 and NH2-UiO-66. Cryst. Growth Design. 2020, 20, 3590–3595. [Google Scholar] [CrossRef]
- Tyson, B.; Pask, C.M.; George, N.; Simone, E. Crystallization Behavior and Crystallographic Properties of dl-Arabinose and dl-Xylose Diastereomer Sugars. Cryst. Growth Des. 2022, 22, 1371–1383. [Google Scholar] [CrossRef] [PubMed]
- Costa-Gomes, M.; Pison, L.; Červinka, C.; Padua, A. Porous Ionic Liquids or Liquid Metal-Organic Frameworks? Angew. Chem. Int. Ed. 2018, 57, 11909–11912. [Google Scholar] [CrossRef] [PubMed]
- Yao, Q. 1-Butyl-3-methylimidazolium Hexafluorophosphate ([Bmim]PF6). In Encyclopedia of Reagents for Organic Synthesis; Wiley: Hoboken, NJ, USA, 2004. [Google Scholar] [CrossRef]
- Yao, Z.; Chen, Y.; Liu, L.; Wu, X.; Xiong, S.; Zhang, Z.; Xiang, S. Direct Evidence of CO2 Capture under Low Partial Pressure on a Pillared Metal–Organic Framework with Improved Stabilization through Intramolecular Hydrogen Bonding. Chem. Plus Chem. 2016, 81, 850–856. [Google Scholar] [CrossRef] [PubMed]
- Cao, Y.; Mu, T. Comprehensive Investigation on the Thermal Stability of 66 Ionic Liquids by Thermogravimetric Analysis. Ind. Eng. Chem. Res. 2014, 53, 8651–8664. [Google Scholar] [CrossRef]
- Babucci, M.; Akçay, A.; Balci, V.; Uzun, A. Thermal Stability Limits of Imidazolium Ionic Liquids Immobilized on Metal-Oxides. Langmuir 2015, 31, 9163–9176. [Google Scholar] [CrossRef] [PubMed]
- Sobota, M.; Nikiforidis, I.; Hieringer, W.; Paape, N.; Happel, M.; Steinrück, H.P.; Görling, A.; Wasserscheid, P.; Laurin, M.; Libuda, J. Toward Ionic-Liquid-Based Model Catalysis: Growth, Orientation, Conformation, and Interaction Mechanism of the [Tf2N]− Anion in [BMIM][Tf2N] Thin Films on a Well-Ordered Alumina Surface. Langmuir 2010, 26, 7199–7207. [Google Scholar] [CrossRef] [PubMed]
- Sezginel, K.B.; Keskin, S.; Uzun, A. Tuning the Gas Separation Performance of CuBTC by Ionic Liquid Incorporation. Langmuir 2016, 32, 1139–1147. [Google Scholar] [CrossRef] [PubMed]
- Nakamoto, K. Infrared and Raman Spectra of Inorganic and Coordination Compounds, Part B: Applications in Coordination, Organometallic, and Bioinorganic Chemistry; John Wiley & Sons: New York, NY, USA, 2009. [Google Scholar]
- Putz, A.M.; Len, A.; Trif, L.; Horváth, J.W.; Almásy, L. Imidazolium Ionic Liquids as Designer Solvents Confined in Silica Nanopores. Gels 2022, 8, 388. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.L.; Yan, Y.T.; Wang, W.J.; Hao, Z.Z.; Zhang, W.Y.; Huang, W.; Wang, Y.Y. A 2-Fold Interpenetrated Nitrogen-Rich Metal–Organic Framework: Dye Adsorption and CO2 Capture and Conversion. Inorg. Chem. 2021, 60, 3156–3164. [Google Scholar] [CrossRef]
- Kondo, A.; Kajiro, H.; Nakagawa, T.; Tanaka, H.; Kanoh, H. A flexible two-dimensional layered metal–organic framework functionalized with (trifluoromethyl)trifluoroborate: Synthesis, crystal structure, and adsorption/separation properties. Dakton Trans. 2020, 49, 3692–3699. [Google Scholar] [CrossRef]
- Gupta, K.M.; Chen, Y.; Hu, Z.; Jiang, J. Metal–organic framework supported ionic liquid membranes for CO2 capture: Anion effects. Phys. Chem. Chem. Phys. 2012, 14, 5785–5794. [Google Scholar] [CrossRef] [PubMed]
- Aki, S.N.V.K.; Mellein, B.R.; Saurer, E.M.; Brennecke, J.F. High-Pressure Phase Behavior of Carbon Dioxide with Imidazolium-Based Ionic Liquids. J. Phys. Chem. B 2004, 108, 20355–20365. [Google Scholar] [CrossRef]
- Ding, L.G.; Yao, B.J.; Jiang, W.L.; Li, J.T.; Fu, Q.J.; Li, Y.A.; Liu, Z.H.; Ma, J.P.; Dong, Y.B. Bifunctional Imidazolium-Based Ionic Liquid Decorated UiO-67 Type MOF for Selective CO2 Adsorption and Catalytic Property for CO2 Cycloaddition with Epoxides. Inorg. Chem. 2017, 56, 2337–2344. [Google Scholar] [CrossRef] [PubMed]
- Kavak, S.; Polat, H.M.; Kulak, H.; Keskin, S.; Uzun, A. MIL-53(Al) as a Versatile Platform for Ionic-Liquid/MOF Composites to Enhance CO2 Selectivity over CH4 and N2. Chem. Asian J. 2019, 14, 3655–3667. [Google Scholar] [CrossRef] [PubMed]
- Zheng, W.; Li, Z.; Dai, Y.; Li, X.; Ruan, X.; Jiang, X.; Zhang, X.; He, G. Mesopore engineering of ZIF-8 by [Bmim][Tf2N] positioning into nanocage for enhanced CO2 capture. Chem. Eng. Sci. 2023, 280, 118998. [Google Scholar] [CrossRef]
- Ferreira, T.J.; Vera, A.T.; de Moura, B.A.; Esteves, L.M.; Tariq, M.; Esperança, J.M.S.S.; Esteves, I.A. Paramagnetic Ionic Liquid/Metal Organic Framework Composites for CO2/CH4 and CO2/N2 Separations. Front. Chem. 2020, 8, 590191. [Google Scholar] [CrossRef]
- Rasool Abid, H.; Tian, H.; Ang, H.M.; Tade, M.O.; Buckley, C.E.; Wang, S. Nanosize Zr-metal organic framework (UiO-66) for hydrogen and carbon dioxide storage. Chem. Eng. J. 2012, 187, 415–420. [Google Scholar] [CrossRef]
- Duczinski, R.; Polesso, B.B.; Bernard, F.L.; Ferrari, H.Z.; Almeida, P.L.; Corvo, M.C.; Cabrita, E.J.; Menezes, S.; Einloft, S. Enhancement of CO2/N2 selectivity and CO2 uptake by tuning concentration and chemical structure of imidazolium-based ILs immobilized in mesoporous silica. J. Environ. Chem. Eng. 2020, 8, 103740. [Google Scholar] [CrossRef]
- Philip, F.A.; Henni, A. Incorporation of Amino Acid-Functionalized Ionic Liquids into Highly Porous MOF-177 to Improve the Post-Combustion CO2 Capture Capacity. Molecules 2023, 28, 7185. [Google Scholar] [CrossRef]
- Dogan, N.A.; Ozdemir, E.; Yavuz, C.T. Direct Access to Primary Amines and Particle Morphology Control in Nanoporous CO2 Sorbents. ChemSusChem 2017, 10, 2130–2134. [Google Scholar] [CrossRef]
- Patel, H.A.; Byun, J.; Yavuz, C.T. Carbon Dioxide Capture Adsorbents: Chemistry and Methods. ChemSusChem 2017, 10, 1303–1317. [Google Scholar] [CrossRef]
- Lupa, L.; Tolea, N.S.; Iosivoni, M.; Maranescu, B.; Plesu, N.; Visa, A. Performance of ionic liquid functionalized metal organic frameworks in the adsorption process of phenol derivatives. RSC Adv. 2024, 14, 4759–4777. [Google Scholar] [CrossRef] [PubMed]
- Fan, H.; Zhang, Z.; Chen, Y.; Wang, Z.; Wen, H.; Tian, S.; Chen, S.; Zhao, H.; He, Y.; Wang, Y. Post-synthetic modification (PSM) of MOFs with an ionic polymer for efficient adsorptive removal of methylene blue from water. Dalton Trans. 2023, 52, 5028–5033. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.-Q.; Sharifzadeh, Z.; Bigdeli, F.; Gholizadeh, S.; Li, Z.; Hu, M.-L.; Morsali, A. MOF composites as high potential materials for hazardous organic contaminants removal in aqueous environments. J. Environ. Chem. Eng. 2023, 11, 109469. [Google Scholar] [CrossRef]
- Li, H.; Fei, J.; Chen, S.; Jones, K.C.; Li, S.; Chen, W.; Liang, Y. An easily-synthesized low carbon ionic liquid functionalized metal-organic framework composite material to remove Congo red from water. Water Cycle 2023, 4, 127–134. [Google Scholar] [CrossRef]
- Kavak, S.; Durak, Ö.; Kulak, H.; Polat, H.M.; Keskin, S.; Uzun, A. Enhanced Water Purification Performance of Ionic Liquid Impregnated Metal–Organic Framework: Dye Removal by [BMIM][PF6]/MIL-53(Al) Composite. Front. Chem. 2021, 8, 622567. [Google Scholar] [CrossRef] [PubMed]
- Kinik, F.P.; Altintas, C.; Balci, V.; Koyuturk, B.; Uzun, A.; Keskin, S. [BMIM][PF6] Incorporation Doubles CO2 Selectivity of ZIF-8: Elucidation of Interactions and Their Consequences on Performance. ACS Appl. Mater. Interfaces 2016, 8, 30992–31005. [Google Scholar] [CrossRef] [PubMed]
- Lan, Y.; Yan, T.; Tong, M.; Zhong, C. Large-scale computational assembly of ionic liquid/MOF composites: Synergistic effect in the wire-tube conformation for efficient CO2/CH4 separation. J. Mater. Chem. A 2019, 7, 12556–12564. [Google Scholar] [CrossRef]
- Abroshan, H.; Kim, H.Y. On the structural stability of ionic liquid–IRMOF composites: A computational study. Phys. Chem. Chem. Phys. 2015, 17, 6248–6254. [Google Scholar] [CrossRef] [PubMed]
- Thomas, A.; Ahamed, R.; Prakash, M. Selection of a suitable ZIF-8/ionic liquid (IL) based composite for selective CO2 capture: The role of anions at the interface. RSC Adv. 2020, 10, 39160–39170. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Martín-García, Y.; Tapiador, J.; Orcajo, G.; Ayala, J.; Lago, A.B. [BMIM][X] Ionic Liquids Supported on a Pillared-Layered Metal–Organic Framework: Synthesis, Characterization, and Adsorption Properties. Molecules 2024, 29, 3644. https://doi.org/10.3390/molecules29153644
Martín-García Y, Tapiador J, Orcajo G, Ayala J, Lago AB. [BMIM][X] Ionic Liquids Supported on a Pillared-Layered Metal–Organic Framework: Synthesis, Characterization, and Adsorption Properties. Molecules. 2024; 29(15):3644. https://doi.org/10.3390/molecules29153644
Chicago/Turabian StyleMartín-García, Yaiza, Jesús Tapiador, Gisela Orcajo, Juan Ayala, and Ana B. Lago. 2024. "[BMIM][X] Ionic Liquids Supported on a Pillared-Layered Metal–Organic Framework: Synthesis, Characterization, and Adsorption Properties" Molecules 29, no. 15: 3644. https://doi.org/10.3390/molecules29153644
APA StyleMartín-García, Y., Tapiador, J., Orcajo, G., Ayala, J., & Lago, A. B. (2024). [BMIM][X] Ionic Liquids Supported on a Pillared-Layered Metal–Organic Framework: Synthesis, Characterization, and Adsorption Properties. Molecules, 29(15), 3644. https://doi.org/10.3390/molecules29153644