Preparation of High-Performance Polyethylene Nanocomposites with Oleic Acid–Siloxene-Supported Ziegler–Natta Catalysts
Abstract
:1. Introduction
2. Results and Discussion
3. Materials and Methods
3.1. Synthesis of OA–Siloxene
3.2. Preparation of OA–Siloxene–MgCl/TiCl4 Ziegler–Natta Catalyst
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ma, Z.; Chen, Y.; Zuo, W.; Zhu, M. Synthesis and Fabrication of a Betulin-Containing Polyolefin Electrospun Fibrous Mat for Antibacterial Applications. ACS Biomater. Sci. Eng. 2022, 8, 5110–5118. [Google Scholar] [CrossRef] [PubMed]
- Neidhart, E.K.; Hua, M.; Peng, Z.; Kearney, L.T.; Bhat, V.; Vashahi, F.; Alexanian, E.J.; Sheiko, S.S.; Wang, C.; Helms, B.A.; et al. C–H Functionalization of Polyolefins to Access Reprocessable Polyolefin Thermosets. J. Am. Chem. Soc. 2023, 145, 27450–27458. [Google Scholar] [CrossRef] [PubMed]
- Balzade, Z.; Sharif, F.; Anbaran, S.R.G. Tailor-Made Functional Polyolefins of Complex Architectures: Recent Advances, Applications, and Prospects. Macromolecules 2022, 55, 6938–6972. [Google Scholar] [CrossRef]
- Jasinska-Walc, L.; Bouyahyi, M.; Duchateau, R. Potential of Functionalized Polyolefins in a Sustainable Polymer Economy: Synthetic Strategies and Applications. Acc. Chem. Res. 2022, 55, 1985–1996. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.-Y.; Gao, Y.; Tang, Y. Sustainable developments in polyolefin chemistry: Progress, challenges, and outlook. Prog. Polym. Sci. 2023, 143, 101713. [Google Scholar] [CrossRef]
- Yang, C.; Li, Q.; Nie, M.; Wang, Q. Preferential alignment of two-dimensional montmorillonite in polyolefin elastomer tube via rotation extrusion featuring biaxial stress field. Compos. Sci. Technol. 2021, 215, 109034. [Google Scholar] [CrossRef]
- Xu, D.; Li, Z.; Li, L.; Wang, J. Insights into the Photothermal Conversion of 2D MXene Nanomaterials: Synthesis, Mechanism, and Applications. Adv. Funct. Mater. 2020, 30, 2000712. [Google Scholar] [CrossRef]
- Majumder, S.; Meher, A.; Moharana, S.; Kim, K.H. Graphene nanoribbon synthesis and properties in polymer composites: A review. Carbon 2024, 216, 118558. [Google Scholar] [CrossRef]
- Fu, X.; Lin, J.; Liang, Z.; Yao, R.; Wu, W.; Fang, Z.; Zou, W.; Wu, Z.; Ning, H.; Peng, J. Graphene oxide as a promising nanofiller for polymer composite. Surf. Interfaces 2023, 37, 102747. [Google Scholar] [CrossRef]
- Wang, J.; Song, F.; Ding, Y.; Shao, M. The incorporation of graphene to enhance mechanical properties of polypropylene self-reinforced polymer composites. Mater. Des. 2020, 195, 109073. [Google Scholar] [CrossRef]
- Li, H.; Xie, X.-M. Polyolefin-functionalized graphene oxide and its GO/HDPE nanocomposite with excellent mechanical properties. Chin. Chem. Lett. 2018, 29, 161–165. [Google Scholar] [CrossRef]
- Liu, G.; Zhang, X.; Yang, Z.; Wang, L.; Yang, F.; Wang, R. Effects of interfaces and ordered microstructures on thermal properties of graphene flakes/polyethylene composites. Polym. Compos. 2023, 44, 1371–1380. [Google Scholar] [CrossRef]
- Shi, Y.; Liu, C.; Liu, L.; Fu, L.; Yu, B.; Lv, Y.; Yang, F.; Song, P. Strengthening, toughing and thermally stable ultra-thin MXene nanosheets/polypropylene nanocomposites via nanoconfinement. Chem. Eng. J. 2019, 378, 122267. [Google Scholar] [CrossRef]
- Zhang, H.; Park, J.-H.; Yoon, K.-B. Excellent electrically conductive PE/rGO nanocomposites: In situ polymerization using rGO-Supported MAO cocatalysts. Compos. Sci. Technol. 2018, 154, 85–91. [Google Scholar] [CrossRef]
- Zhang, H.-X.; Ko, E.-B.; Park, J.-H.; Moon, Y.-K.; Zhang, X.-Q.; Yoon, K.-B. Fabrication of Polyethylene/MoS2 nanocomposites using a novel exfoliated-MoS2–MgCl Bi-supported Ziegler-Natta catalyst via in-situ polymerization. Compos. Sci. Technol. 2016, 137, 9–15. [Google Scholar] [CrossRef]
- Zhang, H.-X.; Ko, E.-B.; Park, J.-H.; Moon, Y.-K.; Zhang, X.-Q.; Yoon, K.-B. Preparation and properties of PE/MoS2 nanocomposites with an exfoliated-MoS2/MgCl2-supported Ziegler-Natta catalyst via an in situ polymerization. Compos. Part A Appl. Sci. Manuf. 2017, 93, 82–87. [Google Scholar] [CrossRef]
- Zhang, H.-X.; Ko, E.-B.; Park, J.-H.; Moon, Y.-K.; Park, B.-S.; Zhang, X.-Q.; Yoon, K.-B. Preparation and properties of polyethylene/dodecanethiol-MoS2 nanocomposites with dodecanethiol-MoS2/MgCl2-supported Ziegler–Natta catalyst via an in situ polymerization method. Polymer 2017, 108, 223–229. [Google Scholar] [CrossRef]
- Zhang, H.; Park, J.-H.; Moon, Y.-K.; Ko, E.-B.; Lee, D.; Hu, Y.; Zhang, X.; Yoon, K.-B. Preparation of graphene/MgCl2-supported Ti-based Ziegler-Natta catalysts by the coagglomeration method and their application in ethylene polymerization. Chin. J. Catal. 2017, 38, 131–137. [Google Scholar] [CrossRef]
- Ko, S.-B.; Sun, Y.; Park, G.; Choi, H.J.; Kim, J.G.; Kim, J.B.; Jung, H.J.; Lee, G.S.; Hong, S.; Sasikala, S.P.; et al. Scalable Solution Phase Synthesis of 2D Siloxene via a Two-Step Interlayer Expansion Process. ACS Appl. Mater. Interfaces 2023, 15, 32707–32716. [Google Scholar] [CrossRef]
- Ji, J.; Mazinani, S.; Ahmed, E.; Chew, Y.M.J.; Mattia, D. Hydrophobic poly(vinylidene fluoride) / siloxene nanofiltration membranes. J. Membr. Sci. 2021, 635, 119447. [Google Scholar] [CrossRef]
- Krishnamoorthy, K.; Pazhamalai, P.; Kim, S.-J. Two-dimensional siloxene nanosheets: Novel high-performance supercapacitor electrode materials. Energy Environ. Sci. 2018, 11, 1595–1602. [Google Scholar] [CrossRef]
- Wang, Y.; Zhou, L.; Huang, J.; Wang, X.; Xu, X.; Lu, J.; Tian, Y.; Ye, Z.; Tang, H.; Lee, S.; et al. Highly Stable Lithium−Sulfur Batteries Promised by Siloxene: An Effective Cathode Material to Regulate the Adsorption and Conversion of Polysulfides. Adv. Funct. Mater. 2020, 30, 1910331. [Google Scholar] [CrossRef]
- Imagawa, H.; Takahashi, N.; Nonaka, T.; Kato, Y.; Nishikawa, K.; Itahara, H. Synthesis of a calcium-bridged siloxene by a solid state reaction for optical and electrochemical properties. J. Mater. Chem. A 2015, 3, 9411–9414. [Google Scholar] [CrossRef]
- Liu, J.; Yang, Y.; Lyu, P.; Nachtigall, P.; Xu, Y. Few-Layer Silicene Nanosheets with Superior Lithium-Storage Properties. Adv. Mater. 2018, 30, 1800838. [Google Scholar] [CrossRef]
- Pazhamalai, P.; Krishnamoorthy, K.; Sahoo, S.; Mariappan, V.K.; Kim, S.-J. Carbothermal conversion of siloxene sheets into silicon-oxy-carbide lamellae for high-performance supercapacitors. Chem. Eng. J. 2020, 387, 123886. [Google Scholar] [CrossRef]
- Zapata, P.; Palza, H.; Díaz, B.; Armijo, A.; Sepúlveda, F.; Ortiz, J.; Ramírez, M.; Oyarzún, C. Effect of CaCO3 Nanoparticles on the Mechanical and Photo-Degradation Properties of LDPE. Molecules 2018, 24, 126. [Google Scholar] [CrossRef]
- Liu, R.; Xia, W.; Otitoju, T.A.; Wu, W.; Wang, S.; Li, S.; Zhang, A.; Chen, X.; Tang, T.; Liu, J. Effect of oleic acid on improving flame retardancy of brucite in low-density polyethylene composite. J. Appl. Polym. Sci. 2022, 139, 51862. [Google Scholar] [CrossRef]
- Liu, P.; Feng, C.; Wang, F.; Gao, Y.; Yang, J.; Zhang, W.; Yang, L. Hydrophobic and water-resisting behavior of Portland cement incorporated by oleic acid modified fly ash. Mater. Struct. 2018, 51, 38. [Google Scholar] [CrossRef]
- Li, C.; Liao, H.; Gao, H.; Zhang, H.; Cheng, F. A facile green and cost-effective manufacturing process from coal gangue-reinforced composites. Compos. Sci. Technol. 2023, 233, 109908. [Google Scholar] [CrossRef]
- Cecílio, D.M.; Cerrada, M.L.; Pérez, E.; Fernandes, A.; Lourenço, J.P.; McKenna, T.F.L.; Ribeiro, M.R. A novel approach for preparation of nanocomposites with an excellent rigidity/deformability balance based on reinforced HDPE with halloysite. Eur. Polym. J. 2023, 184, 111765. [Google Scholar] [CrossRef]
- Joy, J.; George, E.; Haritha, P.; Thomas, S.; Anas, S. An overview of boron nitride based polymer nanocomposites. J. Polym. Sci. 2020, 58, 3115–3141. [Google Scholar] [CrossRef]
- Liu, S.; Yan, H.; Fang, Z.; Wang, H. Effect of graphene nanosheets on morphology, thermal stability and flame retardancy of epoxy resin. Compos. Sci. Technol. 2014, 90, 40–47. [Google Scholar] [CrossRef]
- Pour, R.H.; Soheilmoghaddam, M.; Hassan, A.; Bourbigot, S. Flammability and thermal properties of polycarbonate /acrylonitrile-butadiene-styrene nanocomposites reinforced with multilayer graphene. Polym. Degrad. Stab. 2015, 120, 88–97. [Google Scholar] [CrossRef]
- Li, M.; Ramachandran, R.; Sakthivel, T.; Wang, F.; Xu, Z.-X. Siloxene: An advanced metal-free catalyst for efficient photocatalytic reduction of aqueous Cr(VI) under visible light. Chem. Eng. J. 2021, 421, 129728. [Google Scholar] [CrossRef]
- Oral, E.; Greenbaum, E.S.; Malhi, A.S.; Harris, W.H.; Muratoglu, O.K. Characterization of irradiated blends of α-tocopherol and UHMWPE. Biomaterials 2005, 26, 6657–6663. [Google Scholar] [CrossRef]
- Oral, E.; Godleski Beckos, C.A.; Lozynsky, A.J.; Malhi, A.S.; Muratoglu, O.K. Improved resistance to wear and fatigue fracture in high pressure crystallized vitamin E-containing ultra-high molecular weight polyethylene. Biomaterials 2009, 30, 1870–1880. [Google Scholar] [CrossRef]
- Oral, E.; Malhi, A.; Muratoglu, O. Mechanisms of decrease in fatigue crack propagation resistance in irradiated and melted UHMWPE. Biomaterials 2006, 27, 917–925. [Google Scholar] [CrossRef]
Catalyst | Mg (wt%) | Ti (wt%) | [Ti]/[Mg] (mole/mole) |
---|---|---|---|
MgCl2/TiCl4 | 25.2 | 7.1 | 0.14 |
OA–siloxene–MgCl/TiCl4 | 5.4 | 7.3 | 0.67 |
Entry | Cat. | Cat. (mg) | [Al]/[Ti] b | Yield (g) | Activity (kg/mol-Ti•h) | OA–Siloxene (wt%) |
---|---|---|---|---|---|---|
1 | MgCl2/TiCl4 | 100 | 90 | 4.7 | 64 | 0 |
2 | OA–siloxene–MgCl/TiCl4 | 15 | 18 | 0.7 | 57 | 1.99 |
3 | 15 | 36 | 1.2 | 103 | 1.11 | |
4 | 15 | 54 | 1.8 | 155 | 0.73 | |
5 | 15 | 90 | 2.4 | 212 | 0.54 | |
6 | 15 | 140 | 2.7 | 239 | 0.47 | |
7 | 30 | 90 | 3.3 | 144 | 0.79 | |
8 | 45 | 90 | 4.0 | 118 | 0.96 | |
9 | 60 | 90 | 4.9 | 108 | 1.05 | |
10 | 100 | 90 | 7.6 | 100 | 1.13 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yue, H.; Yan, X.; Huang, C.; Zhang, H.; Yang, J.; Fang, L.; Kim, H.-S. Preparation of High-Performance Polyethylene Nanocomposites with Oleic Acid–Siloxene-Supported Ziegler–Natta Catalysts. Molecules 2024, 29, 3662. https://doi.org/10.3390/molecules29153662
Yue H, Yan X, Huang C, Zhang H, Yang J, Fang L, Kim H-S. Preparation of High-Performance Polyethylene Nanocomposites with Oleic Acid–Siloxene-Supported Ziegler–Natta Catalysts. Molecules. 2024; 29(15):3662. https://doi.org/10.3390/molecules29153662
Chicago/Turabian StyleYue, Huan, Xin Yan, Chenghan Huang, Hexin Zhang, Jianming Yang, Liang Fang, and Hee-Seon Kim. 2024. "Preparation of High-Performance Polyethylene Nanocomposites with Oleic Acid–Siloxene-Supported Ziegler–Natta Catalysts" Molecules 29, no. 15: 3662. https://doi.org/10.3390/molecules29153662
APA StyleYue, H., Yan, X., Huang, C., Zhang, H., Yang, J., Fang, L., & Kim, H. -S. (2024). Preparation of High-Performance Polyethylene Nanocomposites with Oleic Acid–Siloxene-Supported Ziegler–Natta Catalysts. Molecules, 29(15), 3662. https://doi.org/10.3390/molecules29153662