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Abstract: Photocatalytic H2 evolution has been regarded as a promising technology to alleviate the
energy crisis. Designing graphitic carbon nitride materials with a large surface area, short diffusion
paths for electrons, and more exposed reactive sites are beneficial for hydrogen evolution. In this
study, a facile method was proposed to dope P into a graphitic carbon nitride framework by calcining
melamine with 2-aminoethylphosphonic acid. Meanwhile, PCN nanosheets (PCNSs) were obtained
through a thermal exfoliation strategy. Under visible light, the PCNS sample displayed a hydrogen
evolution rate of 700 µmol·g−1·h−1, which was 43.8-fold higher than that of pure g-C3N4. In addition,
the PCNS photocatalyst also displayed good photostability for four consecutive cycles, with a total
reaction time of 12 h. Its outstanding photocatalytic performance was attributed to the higher surface
area exposing more reactive sites and the enlarged band edge for photoreduction potentials. This
work provides a facile strategy to regulate catalytic structures, which may attract great research
interest in the field of catalysis.

Keywords: graphitic carbon nitride; P doped; hydrogen evolution; thermal exfoliation

1. Introduction

Solar energy is regarded as the most promising candidate for renewable green energy
to avoid environmental pollution and address the global severe energy crisis [1,2]. As an
attractive strategy to utilize solar energy, photocatalytic water splitting has been considered
a sustainable method for generating clean hydrogen [3,4]. To date, graphitic carbon nitride
has been regarded as a promising semiconductor photocatalytic material in the field of pho-
tocatalysis. Importantly, graphitic carbon nitride possesses an excellent electronic structure,
outstanding physiochemical properties, and a suitable band gap (2.7 eV) [5,6]. Therefore,
graphitic carbon nitride has gradually become a competitive nano-semiconductor material
for hydrogen energy production.

Nevertheless, pristine g-C3N4 suffers from several drawbacks, including poor electric
conductivity, a low specific surface area, and the rapid recombination of photogenerated
electron–hole pairs [7]. These drawbacks result in the inferior photocatalytic activity of
g-C3N4. To address these drawbacks, several kinds of strategies have been developed
to engineer the chemical composition and structure of g-C3N4, for example, cocatalyst
loading [8,9], elemental doping [10,11], controlling its morphology [12,13], the construction
of heterojunctions with other semiconductors [14,15], molecule incorporation [16], defect
engineering [17,18], and nanostructure design [19]. Among these, element doping offers an
effective strategy to regulate its electronic structure and extend its light absorption, further
enhancing the photocatalytic activity of g-C3N4. Currently, non-metal elements (Br, B, S, O,
and P) with different electronegativities can be doped into the g-C3N4 framework to tune
the band gap structure, further accelerating the photogenerated carriers’ separation [20].
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Phosphorus is the most earth-abundant non-metal element rich in electrons that can serve
as an electron donor. Chen et al. reported doping P into a g-C3N4 framework to form
P–N bands, which can accelerate the charge separation and transfer efficiency and further
improve the hydrogen evolution [21]. P doping into g-C3N4 (PCN) has achieved remark-
able enhancements of its photocatalytic activities, but it still fails to satisfy the practical
requirement of synthesis tuning the band gap structure of the photocatalyst. Therefore, it is
urgent to seek a new method to prepare a large-surface area photocatalyst to create more
reactive sites and further enhance the photocatalytic activity of g-C3N4.

A two-dimensional (2D) g-C3N4 nanosheet exhibits a large specific surface area, more
reactive sites, a short charge transfer distance, and quantum effects. Various strategies
have been developed to prepare large-specific surface area g-C3N4 nanosheets, such as
water steam exfoliation, sonification exfoliation, and ball milling. However, these strategies
use solvents for the exfoliation process, which is time-consuming and inefficient. Qiu
et al. reported a thermal exfoliation method to prepare single- or few-layered nanosheets
with strengthened surfaces and semiconductor properties. Therefore, combining element
doping and a thermal exfoliation method to prepare g-C3N4 with a large specific surface
area improves its photocatalytic performance.

In this work, we successfully developed a green and facile method to prepare PCNSs
with a large specific surface area. As expected, thermal exfoliation could effectively exfoliate
the bulk PCN into few-layered nanosheets. The PCNS sample exhibited the highest
photocatalytic hydrogen evolution rate of 700 µmol·g−1·h−1, which was 43.8-fold higher
than that of g-C3N4. Its apparent quantum efficiency reached 0.49% under visible light of
420 nm. Meanwhile, the photocatalyst was subjected to four successive cycles and exhibited
excellent photostability. This outstanding photocatalytic performance was attributed to
its large surface area, which could afford more reactive sites for hydrogen evolution.
Meanwhile, the introduction of P–N bonds could accelerate the charge carrier separation
and transfer efficiency, leading to more efficient photocatalytic hydrogen production. This
work paves a new way to construct high-surface area PCNSs by integrating element doping
and thermal exfoliation.

2. Results

The synthesized materials were investigated by X-ray diffraction (XRD) to measure
their crystal phases and compositions. As shown in Figure 1a, the diffraction peaks located
at 13◦ and 27◦ were ascribed to the (100) and (002) crystal planes [22], respectively. The
former (100) plane was ascribed to the in-plane structure stacking pattern [23], while the
latter (002) plane corresponded to the interlayer stacking [24,25]. Through the thermal
exfoliation reaction process, the CNS photocatalyst maintained the original structure of the
bulk g-C3N4 (Figure 1b). Compared with g-C3N4, the intensities of the two peaks of PCN
were reduced. The diffraction peak in the (002) plane was slightly shifted to a small angle
(Figure 1c). The reduction in the diffraction angle revealed the increased (002) interplane
distance, which was ascribed to the radius of P being much bigger than that of C or N.
As presented in Figure 1d, the PCNS sample maintained the original structure of the bulk
g-C3N4. Meanwhile, the characteristic peak intensity became weaker and broader.

The morphologies and microscopic structures of all the samples were examined by
SEM and TEM. As shown in Figure 2a, the pristine g-C3N4 consisted of two-dimensional
nanosheets with curling edges, which was attributed to the multilayer structure of the
graphitic properties of carbon nitride. As presented in Figure S1a, the CNS maintained the
two-dimensional nanosheet structure after the thermal exfoliation reaction process. After
doping with the P element, the SEM image of PCN exhibited nearly no changes, revealing
that the structure remained intact after the elemental doping (Figure S1b). Moreover, the
PCNS sample still retained the two-dimensional structure after the thermal exfoliation reac-
tion process (Figure 2b). In addition, the PCNS’s specific surface area reached 76.99 m2·g−1,
which was 8, 1.35, and 9.4 times higher than that of PCN, CNS, and g-C3N4 (Figure S2).
The above results further confirm that thermal exfoliation can enlarge the surface area,
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afford more reactive sites, and reduce the carriers’ diffusion distance, further improving
the photocatalytic performance of g-C3N4.
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The chemical states and compositions of g-C3N4 and the PCNS were studied by
XPS. The XPS survey spectra in Figure 3a reveal that the two samples contained C and N
elements. Moreover, the element of P was observed in the PCNS. As presented in Figure 3b,
it can be observed that g-C3N4 exhibited three typical C 1s peaks located at 284.78, 286.38,
and 288.08 eV, attributed to the physically absorbed carbon species or sp2 C–C bonds,
C–NH2 species, and sp2–bond carbon (N–C=N) in the g-C3N4 aromatic ring [26]. The
high-resolution spectrum of N 1s in g-C3N4 was divided into three peaks located at 398.48,
400.38, and 404.28, eV. The peak centered at 398.48 eV was attributed to the sp2-hybridized
nitrogen (C–N=C group) [27,28]. The peak located at 400.38 eV was assigned to the tertiary
N (C3–N or C2–N–H) [29,30]. The peak at 404.28 eV was related to the amino functional
group (C–N–H) [8,31–33]. Compared with pristine g-C3N4, the C 1s and N 1s spectra of
the PCNS were downshifted to low binding energies, which was ascribed to the P-doped
change in the surface charge distribution. In addition, the characteristic peak of P 2p at
133.38 eV corresponded to the P–N bond in the PCNS [34–37].
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To gain insight into their molecular structures, all the photocatalysts were investi-
gated by FTIR. As presented in Figure 4, the peak located at 810 cm−1 was assigned to
the out-of-plane bending mode of the heptazine units [38]. The peak in the range of
880–1640 cm−1 could correspond to the N–C=N heteroaromatic rings [39–41]. A charac-
teristic peak for the aromatic C–N and C=N stretching vibrational model was shown at
1200–1700 cm−1 [42]. The peak centered at 3160–3440 cm−1 was attributed to the N–H
stretching vibrations [43–45]. After the P-doping and thermal exfoliation reaction processes,
the CNS, PCN, and PCNS photocatalysts maintained the original molecular structure
of g-C3N4.
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The optical properties of all samples were measured by UV–vis absorption spec-
troscopy. As displayed in Figure 5a, the absorption edge of g-C3N4 was mainly located
at 460 nm. In comparison, the absorption of CNS exhibited an obvious blueshift, which
was ascribed to the quantum size effect. After P doping, the PCN sample absorption
band edge had a minor redshift, expanding to the visible-light region. After the thermal
exfoliation reaction process, the PCNS featured a blueshift, which corresponded to the
quantum size effect. In addition, according to the Tauc method, the band gaps of g-C3N4
and the PCNS were 2.72 and 2.75 eV, respectively. As presented in Figure 5c, the VB
potentials of g-C3N4 and the PCNS were 2.05 and 1.95 eV, respectively. Thus, the VB values
of g-C3N4 and the PCNS were calculated to be 2.15 and 2.05 eV, respectively, according to
the following equation:

EVB-NHE = Ψ + EVB-XPS − 4.44 (1)
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Ψ: the electron work function of the XPS analyzer; EVB-XPS: the VB value tested by the
VB-XPS plots; and EVB-NHE: the standard hydrogen electrode potential. Then, the valence
band position was measured by the following equation:

ECB = EVB − Eg (2)

The results exhibit that the EVB values of g-C3N4 and the PCNS were −0.57 and
−0.7 eV, respectively. The energy band positions of g-C3N4 and the PCNS are schematically
displayed in Figure 5d. The shifted CB and VB position of the PCNS led to a larger
thermodynamic driving force for photocatalytic redox reactions.

Photoelectrochemical analysis was conducted to gain further insight into the charge
separation and transfer efficiency. Figure 6a presents the periodic on/off photocurrent
responses of the CN and PCNS electrodes at 0.2 V (vs. Ag/AgCl) with a 1.0 M Na2SO4 elec-
trolyte under visible-light illumination (λ > 420 nm). The photocurrent density of the PCNS
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was higher than that of CN, indicating the fast separation and transfer efficiency of the
photogenerated electron–hole pairs after the P-doping and thermal exfoliation strategies.
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Meanwhile, the electrochemical impedance spectra of the CN and PCNS electrodes
using 10 mM K3[Fe(CN)6]/K4[Fe(CN)6] as the electrolyte in the dark are shown in Figure 6b.
The PCNS shows a smaller arc radius than pristine CN, revealing its lower charge transfer
resistance and fast charge separation (Figure 6b). Subsequently, the CN sample shows a
strong PL emission peak intensity. The PL intensity of the PCNS significantly decreased,
confirming that the recombination of photogenerated electron–hole pairs was effectively
suppressed (Figure S3). Based on the above results, the P-doping and thermal exfoliation
reaction processes can promote the separation and transfer efficiency of photogenerated
hole–electron pairs.

The photocatalytic activity of all samples was tested under visible-light irradiation
using 100 mL of an aqueous solution containing 10% TEOA as a sacrificial agent. No
hydrogen gas was detected without irradiation or a photocatalyst. As depicted in Fig-
ure 7a, the hydrogen evolution rate of pristine g-C3N4 was negligible (16 µmol·g−1·h−1).
Then, after the thermal exfoliation reaction process, the CNS exhibited a high value of
55 µmol·g−1·h−1. After P doping, PCN showed that its photocatalytic performance was
81.4 µmol·g−1·h−1, which was 5.1 and 1.5 times higher than that of g-C3N4 and CNS.
Meanwhile, the PCNS exhibited a high photocatalytic activity of 700 µmol·g−1·h−1, which
was 43.8 times higher than that of CN. To further prove that the P-doping and thermal
exfoliation reaction processes can enhance the photocatalytic performance of g-C3N4, com-
parisons between the photocatalytic abilities of the photocatalysts in the related reports and
the as-prepared photocatalysts are listed in Table S1. Our work exhibited an improved H2
evolution rate compared with other reported photocatalysts. The remarkable photocatalytic
performance of the PCNS was ascribed to its higher surface area affording more reactive
sites. In addition, the AQE reached 0.49% under 420 nm light irradiation for the PCNS.
Photostability is an important parameter for a photocatalyst’s application. As depicted in
Figure 7b, the H2 evolution rate almost kept the same value during the four-cycle reaction,
revealing excellent photocatalytic stability. Moreover, the XRD and FTIR patterns of the
PCNS before and after the reaction did not change, confirming the favorable stability of the
PCNS (Figure 7c,d).
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3. Materials and Methods
3.1. Materials

Melamine, H2PtCl6·6H2O (37.5 wt% Pt), and 2-aminoethylphosphonic acid (AEP)
were purchased from Sinopharm Chemical Reagent Co., Ltd. (Shanghai, China).

3.2. Preparation of g-C3N4

An amount of 10 g of melamine was placed into an alumina crucible with a cover.
Then, the powder was calcined at 550 ◦C for 4 h with a ramp rate of 5 ◦C/min in a muffle
furnace under an Ar atmosphere (50 mL/min). After cooling to room temperature, the
obtained sample was denoted as g-C3N4 (CN).

3.3. Preparation of PCN

In a typical process, 10 g of melamine was added to 30 mL of deionized water. Next,
0.28 g of 2-aminoethylphosphonic acid was added to the mixed solution. Then, the mixed
solution was kept at 100 ◦C under magnetic stirring at 100 rpm overnight. Finally, the
obtained powder was calcined at 550 ◦C for 4 h under an Ar atmosphere (50 mL/min). The
obtained brown powder was denoted as PCN.

3.4. Preparation of PCNS

An amount of 600 mg of PCN was placed into a porcelain boat and then sent into a
tube furnace and calcined at 550 ◦C for 4 h under an Ar atmosphere (50 mL/min). After
cooling to room temperature, the obtained powder was labeled as PCNS. The CNS sample
was obtained through the same method.

3.5. Characterizations

The crystal structures and phase compositions of the photocatalysts were recorded by
a Bruker XRD advance X-ray diffractometer (Salbruken, Germany) system using a Cu Kα

X-ray source (λ = 0.15406 nm). The morphologies and microstructures were characterized
by SEM (FE-SEM, JSM-6701F, JEOL, Tokyo, Japan ) and TEM (Tecnai Model G2 F20 S-TWIN,
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Peabody, MA, USA). The chemical states of the elements were analyzed by XPS (XPS, VG
ESCALAB 250, Thermo Fisher Scientific, East. Grinstead, UK) with 150 W Al Ka X-ray
radiation. C 1s (284.8 eV) was calibrated as the binding energy. The UV–vis diffusion spec-
tra of all the photocatalysts were obtained with a Cary500 spectrophotometer with BaSO4
powder as the reflectance standard in the range of 800–4000 cm−1. The photoluminescence
spectra (PL) were measured with a fluorophotometer (Edinburgh FL/FS900, Livingston,
Scotland, UK) with an excitation wavelength of 400 nm. The functional groups of all sam-
ples were characterized by the FTIR spectra using a Nicolet 670 (Salbruken, Germany). The
nitrogen adsorption–desorption isotherms were obtained using a nitrogen adsorber (ASAP
2020, Norcross, GA, USA). The photoelectrochemical values were measured in a standard
three-electrode system using a CHI660E electrochemical workstation (CHI-660, Shanghai,
China). A Pt wire and Ag/AgCl were the counter electrode and reference electrode. The
working electrode was prepared by dropping 10 uL of a 5 mg/mL photocatalyst suspension
onto the conductive surface of ITO glass and then dried in air. The transient photocurrent
response was tested in a 1.0 M Na2SO4 aqueous solution irradiated by a 300 W xenon
lamp. The electrochemical impedance spectra (EIS) were obtained over a frequency range
from 0.01 to 105 at an applied potential of 0.2 V using a 10 mM K3[Fe(CN)6]/K4[Fe(CN)6]
aqueous solution.

3.6. Evaluation of Photocatalytic Activity

Photocatalytic hydrogen production was performed in a vacuum-closed gas circulation
system (Lab-solar 6A, perfectlight, Beijing, China). In a typical photocatalytic process,
10 mg of each photocatalyst was dispersed into 100 mL of an aqueous solution containing
10% TEOA as a sacrificial agent. Pt of 3 wt% (theoretical amount) was loaded onto the
photocatalysts as a cocatalyst by in situ photo-deposition. Before illumination, the reaction
system was evacuated for 30 min to remove air, and the hydrogen yield was measured by
online gas chromatography (PANNA, A91, Changzhou, China) using Ar as a carrier gas.

The apparent quantum efficiency (AQE) was measured under the same conditions.
The light irradiation area was 19 cm2. The amount of hydrogen evolution was obtained
using a 300 W Xe lamp (CEL-HXF300-T3, Beijing, China) as a light source and a 420 nm
band-pass filter to allow the corresponding wavelength photons to pass through. The AQE
was calculated by the following equation:

AQE (%) =
Number of reacted electrons
Number of incident photons

× 100% =
Number of evolved H2 molecules × 2

Number of incident photons
(3)

4. Conclusions

In conclusion, we designed a PCNS photocatalyst with a large specific surface area
through P-doping and thermal exfoliation reaction processes. The hydrogen evolution rate
of 700 µmol·g−1·h−1 of the PCNS was 43.8 times higher than that of g-C3N4. Its apparent
quantum efficiency reached up to 0.49%. The PCNS displayed excellent cycling and
hydrogen evolution stability. Its outstanding photocatalytic performance was ascribed to
its thin 2D structure and large surface area affording more reactive sites, further promoting
the photogenerated hole–electron pairs’ separation and transfer. This work provides a
facile and effective method to prepare PCNSs with excellent photocatalytic activity for
hydrogen evolution, and this method confirms the potential of using non-metal doping
and thermal exfoliation for the future optimization of high-performance solar-driven water-
splitting catalysts.

Supplementary Materials: The following materials are available online at https://www.mdpi.com/
article/10.3390/molecules29153666/s1. Figure S1: SEM images of (a) CNS and (b) PCN; Figure
S2: N2 adsorption–desorption isotherm curves of four photocatalysts; Figure S3: PL spectra of CN
and PCNS; Table S1: Comparison of the H2 evolution rates between the current work and other
reports [46–50].
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