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Abstract: The synthesis and application of organoselenium compounds have developed rapidly, and
chiral organoselenium compounds have become an important intermediate in the field of medicine,
materials, organic synthesis. The strategy of developing a green economy is still a challenge in the
synthesis of chiral organoselenium compounds with enantioselective properties. This review covers
in detail the synthesis of chiral organoselenium compounds from 1979 to 2024 and their application
in the fields of asymmetric synthesis and catalysis.
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1. Introduction

Selenium is a non-metal element, that was discovered by Swedish chemist Berzelius
in 1818 [1]. It is generally found in different inorganic forms in the soil as Se (Se0), selenide
(Se2+), selenate (SeO4

2−), or selenite (SeO3
2−) [2]. Selenium is important to human health

and exists in the human body as a trace element in the form of selenocysteine [3]. In recent
decades [4], studies have found that organoselenium has antiviral, anti-inflammatory,
antitumor, antidepressant, antioxidant, and anticonvulsant activities (Figure 1).

Research in the field of organoselenium began in 1836 with the synthesis of diethyl
selenide by Löwig [5–7], which was isolated and purified by Rathke 33 years later [8,9].
Because organoselenium compounds are highly malodorous and difficult to purify, the
development of organoselenium was slow during this period [10]. During this time only a
few simple aliphatic organoselenium compounds were identified such as selenol (RSeH),
selenide (RSeR) and diselenide (RSeSeR). From the 1970s, the discovery and identification
of different types of organoselenium compounds has increased and has attracted the
attention of scientists [11–14]. Organoselenium compounds has become an emerging field
of research.

Organoselenium compounds are used in supramolecular chemistry. Supramolecular
chemistry integrates the four fundamental disciplines of chemistry (organic, inorganic,
analytical, and physical) into one. Supramolecular behavior is exhibited through electro-
static action between anions and cations or via hydrogen bonding [15–18]. Selenium’s
unique reactivity ensures regioselectivity and stereoselectivity is achieved. Selenium is
often used in organic synthesis as nucleophilic selenophiles, electrophilic selenophilic
reagents and free radical selenium reagent [19–22]. Selenium has a lower bond energy and
electronegativity than sulfur, which belongs to the same group in the periodic table. Due to
its redox properties, it is easy to remove as well as substitute selenium atoms in a reaction.
Hence, current research is mostly focused on the synthesis of non-chiral organic selenium
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compounds. The main reason is the rapid racemization of intermediates, which hinder the
formation of chiral organic selenium compounds.
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Figure 1. Application of organoselenium compounds.

In the past decade, the importance of organoselenium compounds, especially chiral
organoselenium compounds has been the focus and several groups are committed to devel-
oping new strategies for the synthesis of chiral organoselenium compounds. Organose-
lenium compounds are important building blocks in materials chemistry [23–27]. Chiral
organoselenium compounds are indispensable intermediates [28] that can serve as the
core backbone of a drug [29–32]. They also play an important role in organic asymmetric
synthesis, for example, chiral catalysts and chiral ligands are used to regulate enantios-
electivity, as shown in (Figure 2). Although extensive research has been conducted on
various preparation methods and applications of chiral organoselenium compounds, there
are few reviews related to the study of chiral organoselenium compounds. As early as
2007, Zhu [33] reported in detail the synthesis strategy of asymmetric organoselenium
compounds. However, with the rapid development of asymmetric synthesis in recent years,
the synthetic strategy of asymmetric organoselenium compounds has also grown. The
review of asymmetric organic selenium compounds needs updating, and the classification
should be more comprehensive. Zeng [34] and Back [35] have recently collated literature
in this topic, which includes asymmetric processes catalyzed by chiral selenium-based
reagents, auxiliaries, and catalysts Selenium-containing catalysts play an important part in
numerous reactions. Examples include selenium-ligated palladium (II) complexes as Heck
reaction catalysts, organoselenium catalysis in Michael-Type reactions, and organoselenium
compounds that catalyze organic asymmetric synthesis. Rodríguez [36] discussed the use
of selenium in catalysis and proposed reaction mechanisms.
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Figure 2. Chiral organoselenium compounds.

There are three general methods (Figure 3) for the synthesis of chiral organic selenium
compounds: (a) chiral substrate-controlled methods; (b) chiral ligand-controlled methods, a
chiral auxiliary primarily controls enantioselectivity through complex interactions between
chiral ligands and metals [37,38]; (c) chiral catalyst-controlled methods: enantioselectivity
is controlled through electronic effects and steric hindrance [39–41]. However, no visible
boundaries exist, such as asymmetric olefin addition and cyclization, which are frequently
aided by chiral ligands or chiral catalysts.

Some chiral auxiliaries, for example, can be utilized as chiral catalysts in asymmetric
synthesis as well. Our goal is to summarize progress in the synthesis of enantioselec-
tive organoselenium compounds based on their reaction type, which is divided into the
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following groups: asymmetric cycloaddition, seleniolactonizations, selenioaminations
and amides, asymmetric addition reaction, asymmetric selenizing of aldehydes/ketones,
asymmetric ring-opening reaction, asymmetric substitution reaction, and asymmetric de-
carboxylation reaction. The first section of this review covers the synthesis of chiral organic
selenium compounds, while the second section discusses the use of chiral organic com-
pounds as catalysts in organic asymmetric synthesis. Enantioselective synthesis of chiral
selenium compounds is a rapidly growing topic in modern organic synthesis. Further-
more, chiral selenium compounds have gained considerable attention because to their high
potential in catalytic asymmetric synthesis.

Our research group has focused on asymmetric catalytic processes, including asymmet-
ric hydrogenation [42–46], asymmetric radical reaction, and asymmetric C–H activation [47].
Organoselenium compounds have been used in a variety of applications and industries.
We began our research on organoselenium compounds in 2020 and published the first
example of a selenium-directed C-H borylation procedure for the synthesis of diverse
organoselenium compounds [22]. Later in 2022, we reported the first example of radical
cyclization and ring-opening of oxime esters using diselenides to synthesize a variety of
functionalized organoselenium compounds [21]. To the best of our knowledge, there have
been no reports of asymmetric hydrogenation to create chiral organoselenium compounds.
Based on our previous research findings, we are focusing on asymmetric hydrogenation
and an asymmetric radical strategy for the simple synthesis of organoselenium compounds.
So far, we’ve made good progress in the lab.
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2. Asymmetric Synthesis of Organoselenium Compounds

Stereoselective processes involving C-Se, Se-Se, Se-O, and Se-N bonds have grown
in diversity, efficiency, and applicability [19,48–50]. In general, chiral organoselenium
compounds are synthesized via three routes. In this section, we describe the asymmetric
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synthesis of organoselenium compounds using substrate manipulation, chiral additives,
and chiral catalysts, that result in a series of optically active organoselenium derivatives.

2.1. Chiral Catalyst or Ligand-Controlled Method
2.1.1. Asymmetric Cycloaddition

In 1996, Yamazaki and coworkers [51] reported the reaction of (E)-1-(phenylseleno)-2-
(trimethylsilyl)ethene 1 and α-unsaturated ketone 2 in the presence of TiCl4, Ti(OiPr)4, (R)-
(BINOL) Cat.1 chiral Lewis acids. The result was a cis-cyclopropane product 3 (Scheme 1)
with moderate enantioselectivity (40–57% ee) and yields of 4–45%.

Scheme 1 depicts a probable reaction mechanism for the asymmetric [2 + 1] cycloaddi-
tion reaction. The first step is to combine vinyl ketone 2 with chiral titanium to generate a
chiral titanium-vinyl ketone complex (I), which will be attacked by selenosilyl nucleophile
1. The titanium-vinyl ketone complex (I) can take either s-cis or s-trans configuration.
Because of the stable secondary orbital interaction (Se---C=O), synclinal stereoselective
addition may have an effect on face selectivity. The succeeding 1,2-silicon migration gener-
ates selenium-bridged intermediate (IV) by minimum motion and ring closure, yielding
cyclopropane 3.
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2.1.2. Selenolactonizations

In 2010, Denmark and coworkers [52] used Lewis base to catalyze the asymmet-
ric intramolecular selenoetherification of unsaturated alcohols 4. An extensive study of
chiral Lewis bases showed that 1,1′-binaphthalene-2,2′-diamine (BINAM)-derived thio-
phosphoramides catalyzed cyclization of unsaturated alcohols 4 in the presence of N-(2-
nitrophenylselenenyl) succinimide 5 and methanesulfonic acid (Scheme 2). A variety of
cyclization products 6 were synthesized with good chemical yield (97%) and moderate to
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good enantioselectivity (70% ee). The catalytic and enantioselective selenium functionaliza-
tion of unactivated olefins were achieved for the first time. The authors investigated the
reaction mechanism, revealed that the cycle begins with the reversible binding of Lewis
bases to selenimide to create adducts (I). Succinimidyl protonation in (I) generated the
intermediate (II). This was followed by the formation of cyclic selenium ions (III), which
underwent nucleophilic trapping, releasing the product and regenerating the Lewis base
catalyst. A mechanism for inhibiting the racemization of selenium ion intermediates (II)
was discovered. When aryl selenium cation transfer cyclization (III) occurs quicker than
substrate racemization, high enantioselectivity might be expected.
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Scheme 2. Lewis bases catalyzed asymmetric intramolecular selenium cyclization of unsaturated alcohols.

In 2014, Jacobsen and coworkers [53] reported a novel chiral squaramide catalyst Cat.3
in combination with mineral acids and achiral Lewis bases capable of high enantioselective
selenocyclization (Scheme 3). The authors selected o-allyl-substituted phenol 7 as the
substrate because it can form a chroman-type product with two contiguous stereogenic
centers; N-p-anisylselenyl succinimide (NPASS) as the selenium donor; and hydrogen
chloride as a co-catalyst. Activating the electrophilic selenium reagent with Lewis bases
and Brønsted acids gave a reactive ion pair that may be linked to the squaramide catalyst.
Tris-(dimethylamino)phosphorus sulfide (HMPA(S)) promoted selenocyclization and the
products 8 were obtained in excellent enantioselectivity (up to 92% ee). The enantiose-
lectivity of recrystallized products increased to 99% ee. The strategy had good substrate
applicability, and most of the substrates yielded the target products with good to excellent
yields and high enantioselectivity. The mechanistic studies revealed that the enantioselectiv-
ity of selenium ions was caused by dynamic kinetic resolution via anion-binding catalysis.
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In 2015, Yeung and coworkers [54] reported a catalytic and highly enantioselective
selenolactonization of olefinic acids using (DHQD)2PHAL Cat.4 as a bifunctional organocat-
alyst (Scheme 4). Treatment of olefinic acids 9 and N-phenylselenophthalimide(N-PSP)
10, used as the electrophilic selenium reagent, gave the corresponding selenolactones 11
with up to 96% ee. The substrates scope was extended to include different skeletons 12
under the standard conditions, and gave 13 in 74% ee. This catalytic system was applied to
diene carboxylic acid 14 where desymmetrization-asymmetric selenolactonization occurred,
affording 15 in 90% ee with 12:1 dr.
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Scheme 4. Asymmetric selenolactonization of olefinic acids.

In 2018, Yeung, Wong and Ke [55] developed asymmetric selenocyclization and desym-
metrization of olefinic 1,3-diol, This is promoted by a unique chiral pairing between a
C2-symmetric cyclic selenide Cat.5 catalyst as the Lewis base and a chiral BINOL-derived
phosphoric acid Cat.6 as the Brønsted acid cocatalyst (Scheme 5). In this study olefinic
1,3-diol 16 was the substrate and N-phenylselenophthalimide (N-PSP) 10 was the elec-
trophilic selenium reagent. A range of phenylseleno-functionalized tetrahydrofuran 17
were synthesized with good to excellent diastereo- and enantioselectivity (up to 98% yield;
up to 98:2 er and >99:1 dr). The tetrahydrofuran products 17 contained a phenylselenoether
moiety, that was further transferred to useful synthetic compounds, such as aldehydes.
Mechanistic studies and theoretical calculations show that chiral Cat.5/(R)-Cat.6 pairs form
a supramolecular catalytic system via hydrogen bonds in the selenocyclization reaction.
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2.1.3. Selenoaminations and Amidations

In 2013, Gong and coworkers [56] reported selenofunctionalization of tryptamine
derivatives catalyzed by chiral phosphoric acid to afford 3a-(phenylselenyl)-1,2,3,3a,8,8a-
hexahydropyrrolo[2,3-b]indole derivatives (Scheme 6). Treatment of tryptamine derivatives
18 and N-(phenylseleno)phthalimide (N-PSP) 10 in the presence of chiral phosphoric acid
Cat.6 yielded 3a-(phenylselenyl)-1,2,3,3a,8,8a-hexahydropyrrolo[2,3-b]indole derivatives
19 in good yield (up to 85%) and with good enantioselectivity (up to 89% ee). Furthermore
under alkaline conditions, the oxidative deselenation of 19-a with m-CPBA produced the
corresponding alcohol 20 in 95% yield, which could be subsequently converted to the chiral
precursor (+)-alline. The alcohols exhibited the same stereochemistry as the parent selenide.
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In 2022, Chen and coworkers [57] reported the first enantioselective selenocyclization
of 1,1-disubstituted alkenes 21. They achieved this by combining chiral BINAM-derived
sulfides Cat.7 and achiral Lewis acids BF3■THF to produce chiral oxaquaternary stereo-
centers (Scheme 7). Various selenium-containing 4H-3,1-benzoxazine derivatives 21 were
obtained in moderate to good yields (up to 93%) and good to excellent enantioselectivities
(up to 96% ee). Product 22-a was oxidised to selenoxide 22-b with m-chloroperbenzoic acid
with excellent yield (>99%). Product 22-b generated product 23 (77% yield and 93% ee) via
reductive deselenenylation using AIBN/Bu3SnH. The Seleno−Pummerer reaction with
TFAA and TMSN3 gave product 24 (67% yield, >25:1 dr, 94% ee).
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Scheme 7. Asymmetric synthesis of selenium-containing 4H-3,1-benzoxazines.

2.1.4. Asymmetric Addition Reaction

In 1979, Wynberg and Pluim [58] reported the first enantioselective synthesis of
organoselenium compounds using (−) cinchonidine Cat.8 (Scheme 8). The asymmetric
catalytic addition between aryl selenol 26 and 2-cyclohexen-1-ketone 25 was achieved.
The target products 27 were generated in excellent yields (>95%) and enantioselectivity
(11–43% ee).
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Scheme 8. Asymmetric catalytic addition of aryl selenol with 2-cyclohexen-1 one.

In 2000, Uemura and coworkers [59] reported aryl benzyl selenide 28 reacted with
N-(p-toluenesulfonyl)imino]phenyliodinane [TSN = IPH] in toluene or acetonitrile to
give the corresponding N-p-toluene selenimide 29 in yields of 31–64% and 20–36% ee
(Scheme 9). Enantioselective imidation was used in the presence of chiral bis (oxazoline)
ligands Lig.1 and molecular sieve to produce N-p-toluene selenimide, with best being
2-naphthylbenzylselenimide (64% yield, 36% ee). The addition of molecular sieves remove
water in the reaction. This stops the equilibrium between selenimide and selenium oxide,
which is known to racemize rapidly [60–63]. Hence, removing water is a key step to control
the enantioselectivity of the reaction.
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Scheme 9. Asymmetric imidation of aryl selenides.

In 2011, Alemán and Marini [64] described a new strategy for the synthesis of a variety
of α-alkyl, α-phenylselenyl ketones as well as their corresponding esters and amides 32.
Addition of α-selenocarbonyl derivatives 30 and catalyzed by thiourea or squaramide
cinchona catalysts gave nitroalkenes 31 (Scheme 10). This reaction was carried out at low
catalyst loading with excellent chemoselectivity (up to >99% ee, up to >98:2 dr).
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Scheme 10. Asymmetric synthesis of α-alkyl α-selenocarbonyl compounds catalyzed by bifunctional
organocatalysts.

In 2012, Shi and coworkers [65] used N-triflyl phosphoramide Cat.11 via Brønsted
acid catalysis for enantioselective oxyselenenylation of olefins (Scheme 11). Olefins 33 were
enantioselectively desymmetrized with N-phenylselenophthalimide 10 and benzoic acid 34
in the presence of Cat.11, generating the chiral selenide target product 35 with moderate to
good enantioselectivities (25–84% ee). Surprisingly, when compared to sulfenamide, the Se
reagent displayed higher reactivity toward olefins.
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Scheme 11. Catalytic asymmetric oxyselenenylation of olefins by chiral Brønsted acid.

In 2018, Yan and coworkers [66] reported the first organo-catalyzed enantioselective
addition of selenosulfonate 36 to α, β-unsaturated ketones 2 (Scheme 12). A chiral bifunc-
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tional squaramide produced from quinine Cat.12 are an efficient catalyst. The desired
α-selenylated ketones 37 were obtained in good yield with high enantioselectivity (up to
87% yield and 89% ee). They can be efficiently transformed into useful building blocks with
a propenylic stereocenter.
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Scheme 12. Enantioselective addition of selenosulfonates to α, β-unsaturated ketones.

Later, Qin and Mao [67] also reported the use of chiral squaramide Cat.13 in the
enantioselective catalysis of selenosulfonate 38 to α, β-unsaturated ketones 39 in saturated
NaCl solution (Scheme 13). High yields and enantioselectivity were achieved for a series
of α-selenyl and β-sulfonyl ketones, with two contiguous stereogenic centers, (up to 85%
yield, 90% ee and dr > 20:1). Furthermore, they demonstrated effective stereocontrol in
transforming chiral α-selenyl and β-sulfonyl ketones 40 into their corresponding alcohols.
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Scheme 13. Organocatalytic enantioselective addition of selenosulfonates to α, β-unsaturated ketones.

In 2020, Wang and Bian [68] developed the Rh(I)/(S)-Xyl-Binap catalytic system
for the asymmetric hydroselenation of various nonpolar olefins 41 with diselenides 42
to produce selenol-incorporated adducts 43 (Scheme 14). By overcoming self-promoted
racemic hydroselenation, a number of heterobicyclic alkenes produced selenol-incorporated
adducts with high yields (up to 96%) and exceptional enantioselectivities (up to 97% ee).
The approach was also used for kinetic resolution of unsymmetric oxabenzonorbornadiene.
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Scheme 14. Rh-catalyzed enantioselective hydroselenation of heterobicyclic alkenes.

In 2021, Peregrina and coworkers [69] reported the first entirely chemo- and diastere-
oselective 1,4 conjugate additions of various Se-nucleophiles. These were generated in
situ from diselenide derivatives by the action of sodium borohydride, to chiral bicyclic
dehydroalanine (Dha) 44 (Scheme 15). Only single diastereomers 45 were formed in the
Se-Michael addition reaction on Dha 44. The results proved that the reaction was completely
diastereoselectivity controlled. Acidic hydrolysis of Se-Michael adduct 45 resulted in the
formation of enantiopure selenocysteine (Sec) derivatives 46, that have significant potential
for chemical biology applications [70].
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Scheme 15. Stereoselective Se-Michael addition preparation of enantiomerically pure β-selenium-α-
amino acids.

In 2022, Huang and Chen [71] reported a chiral bifunctional N-heterocyclic car-
bine (NHC)/thiourea catalyzed Se-Michael conjugate addition reaction between α, β-
unsaturated ketones 39 and alkyl selenol 26 (Scheme 16). Synthesis of various chiral
β-selenol carbonyl derivatives 48 were achieved with excellent yields (up to 98%) and
enantioselectivities (up to 99% ee). The (NHC)/thiourea catalyst addresses the issue of
reversibility due to the high nucleophilicity and leaving group ability of selenols, which
was the main challenge in the development of asymmetric Se-Michael addition reactions.
Both the NHC and thiourea moiety were required to achieve high enantioselectivity.



Molecules 2024, 29, 3685 13 of 37

Molecules 2024, 29, x FOR PEER REVIEW 13 of 40 
 

 

 

Scheme 15. Stereoselective Se-Michael addition preparation of enantiomerically pure β-selenium-

α-amino acids. 

In 2022, Huang and Chen [71] reported a chiral bifunctional N-heterocyclic carbine 

(NHC)/thiourea catalyzed Se-Michael conjugate addition reaction between α, β-

unsaturated ketones 39 and alkyl selenol 26 (Scheme 16). Synthesis of various chiral β-

selenol carbonyl derivatives 48 were achieved with excellent yields (up to 98%) and 

enantioselectivities (up to 99% ee). The (NHC)/thiourea catalyst addresses the issue of 

reversibility due to the high nucleophilicity and leaving group ability of selenols, which 

was the main challenge in the development of asymmetric Se-Michael addition reactions. 

Both the NHC and thiourea moiety were required to achieve high enantioselectivity. 

 

Scheme 16. NHC catalyzed enantioselective Se-Michael addition reactions. 

In 2022, Yang and Dong [72] reported the first Rh(cod)2BF4/MeO-BIPHEP Lig.3 

catalyzed enantioselective Markovnikov hydroselenation of selenols 26 with styrene 49 

(Scheme 17). The desired chiral selenides were obtained in moderate to high yield (up to 

91%) with good enantioselectivities (up to 98:2 er) and excellent regioselectivity (>20:1 rr). 

Based on their previous mechanistic studies, it was speculated that the reaction forms C-

Se bonds with excellent regio- and enantiocontrol via a Rh-hydride pathway. Rh(I) 

catalysts can undergo oxidative addition to Se−H bonds to form Rh hydrides [73]. Here 

Rh(I) catalysts are added to ArSeH 26 to generate the Rh complex (I) to yield Rh−H (II), a 

resting state of the catalytic cycle validated by NMR studies. The olefin coordinates to 

intermediate (II) and provides (III). Olefin migration to the Rh−H bond, providing 

intermediate (IV). Intermediate (IV) is reductively eliminated to yield intermediate (V), 

which is subsequently dissociated with product 50 to regenerate the Rh catalyst (I). 

Scheme 16. NHC catalyzed enantioselective Se-Michael addition reactions.

In 2022, Yang and Dong [72] reported the first Rh(cod)2BF4/MeO-BIPHEP Lig.3
catalyzed enantioselective Markovnikov hydroselenation of selenols 26 with styrene 49
(Scheme 17). The desired chiral selenides were obtained in moderate to high yield (up to
91%) with good enantioselectivities (up to 98:2 er) and excellent regioselectivity (>20:1 rr).
Based on their previous mechanistic studies, it was speculated that the reaction forms C-Se
bonds with excellent regio- and enantiocontrol via a Rh-hydride pathway. Rh(I) catalysts
can undergo oxidative addition to Se−H bonds to form Rh hydrides [73]. Here Rh(I)
catalysts are added to ArSeH 26 to generate the Rh complex (I) to yield Rh−H (II), a resting
state of the catalytic cycle validated by NMR studies. The olefin coordinates to intermediate
(II) and provides (III). Olefin migration to the Rh−H bond, providing intermediate (IV).
Intermediate (IV) is reductively eliminated to yield intermediate (V), which is subsequently
dissociated with product 50 to regenerate the Rh catalyst (I).
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In 2022, Feng and Liu [74] reported a novel asymmetric [2,3]-sigmatropic rearrange-
ment of allylic selenides 52 with α-diazo pyrazoleamides 51 catalyzed by chiral N,N′-
dioxide cobalt(II) complex. It is an efficient synthetic method for the preparation of optically
active selenide with a quaternary C-Se stereocenter (Scheme 18). The reactions were done
with 0.5–5 mol% catalyst loading and afforded chiral selenides 53 in up to 99% yield and
97% ee. The control experiments revealed that allyl selenide had high reactivity. Chiral
N, N′-cobalt dioxide ligands and α-diazo pyrazoleamide had obvious superiority in the
[2,3]-sigmatropic rearrangement reaction. The mechanistic studies have shown that the key
to asymmetric rearrangement of allyl selenium ylides involves the transfer of chirality from
the stable chiral selenium to the carbon of the product.
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Scheme 18. Asymmetric synthesis of selenium-containing 4H-3,1-benzoxazines.

In 2023, Yin and coworkers [75] reported a Cu(CH3CN)4PF6/(R,Rp)-TANIAPHOS Lig.5
catalyzed asymmetric conjugation/protonation withα -substitutedα,β-unsaturated thioamide
54 and selenols 26 (Scheme 19). More than 40 examples of α-chiral β-selenothioamide 55
were generated in high to excellent yields (up to 99%) and enantioselectivities (up to >99%
ee). The catalytic system was also successfully applied to the asymmetric selenization of
β-substituted α, β-unsaturated thioamides (2 examples) with high yields (up to 86%) and
excellent enantioselectivities (up to 99% ee).
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2.1.5. Asymmetric Selenization of Aldehydes/Ketones

In 2004, Toru and colleagues [76] reported that α-seleno carbanions derived from bis
(phenylseleno) acetal 56 and bis (2-pyridylseleno) acetal 56 react enantioselectively in the
presence of chiral bioxazoline Lig.6 with electrophiles giving products 57 with excellent
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reactivity and high enantioselectivity (Scheme 20). The authors evaluated the reactivity
of several electrophiles and found good enantioselectivity (95% ee), demonstrating the
method’s viability.
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In 2007, Melchiorre and Marini [77] reported the application of an enamine activation
strategy in the first highly enantioselective α-selenenylation of aldehydes 58 using a chi-
ral secondary amine as catalyst and N-(phenylseleno)phthalimide 10 as the electrophilic
selenium source (Scheme 21). Diarylprolinol silyl ethers salt (Cat.15·p-NO2PhCOOH) ex-
hibited excellent selectivity and had higher catalytic activity. Various aldehydes, including
alkyl, alkenyl, and hetero-substituted groups were tolerated in the reaction and afforded
α-seleno aldehyde 59, which was further reduced, in situ with NaBH4, to the corresponding
chiral alcohol 60 (up to 99% yields, up to 99% ee) without loss of optical purity. Later, a
similar approach was undertaken by Córdova and coworkers [78] who reported a highly
enantioselective α-selenenylation between aldehydes 58 and N-(phenylseleno)phthalimide
10. The reaction was directed using diarylprolinol silyl ethers (Cat. 16) as catalyst and gave
the desired product α-selenoaldehydes and β-selenoalcohols in 63–93% yield with up to
96% ee.

In 2010, Posner and coworkers [79] reported the application of α-seleno aldehyde 59 for
the synthesis of α-hydroxy-(E)-β,γ-unsaturated esters 63 in a two-step method (Scheme 21).
The highly enantioselective α- seleno aldehyde 59, synthesized in one step by asymmetric
organocatalytic α-selenylation of aldehydes, was directly subjected to in situ Wittig reaction
to give allylic selenide 61. This was oxidized to selenoxide 62 using H2O2 which resulted in
the spontaneous [2,3]-sigmatropic rearrangement, giving the target compound 63 in 43–65%
overall yield and in 94–97% ee. Posner and coworkers [80] soon reported the application
of α-seleno aldehyde 59 for the synthesis γ-substituted-α, β-ethylenic esters. Chiral γ-
seleno-α, β-ethylenic esters 61, were, prepared using the Wittig reaction, and treated with
sulfonyl chloride and ethyl vinyl ether in hexane to give α-chloro-β, γ-ethylenic esters 64 in
65–75% yield and with 95–97% ee. These allyl chloride compounds react with Me2-CuMgBr
and sodium azide to yield γ-substituted-α, β-ethylenic esters 65. The allylic chlorides 64
were treated with sodium azide to produce the azide-substituted product 66, which was
then reduced in situ using stannous chloride to the amine. This was then treated with
di-tert-butyl dicarbonate affording the N-Boc-γ-amino-α, β-ethylenic tert-butyl esters 67.
Chiral racemic allyl chloride is a multifunctional, stereochemically stable electrophilic chiral
compound with good chiral control and that can perform various nucleophilic substitution
and olefin addition reactions.
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Scheme 21. Organocatalytic asymmetric α-selenenylation of aldehydes and its application.

In 2011, Armstrong and his coworker [81] developed a method to synthesize chiral
α-alkyl, α-vinyl amino acids 70 and 71(quaternary vinyl glycine derivatives) using allylic
selenimides as the raw material via [2,3]-sigmatropic rearrangement (Scheme 22) with
excellent enantioselectivity (90–97% ee). The trisubstituted allylic selenides 68 and 69 were
prepared by asymmetric organocatalytic α-selenenylation reaction of aldehydes 58 and
Horner-Wadsworth-Emmons (HWE) olefination. Both enantiomers 70 and 71, which were
obtained after rearrangement of the (E)- and (Z)- geometric isomers 68 and 69, exhibit
excellent enantioselectivity.
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Scheme 22. Synthesis of highly enantioselective α-alkyl, α-vinyl amino acids.

In 2014, Armstrong and coworkers [82] then developed the NCS-mediated amination/[2,3]-
sigmatropic rearrangement of enantioenriched allylic selenides 68, and provided a novel
strategy that uses N-protected amino acid amides to synthesize a series of peptides con-
taining unnatural vinyl glycine amino acids resides 70-a (Scheme 23). This strategy was
applied to N-unprotected amino acid esters to generate N, N-dicarboxymethylamines
70-b, which is a motif found in several pharmaceuticals. Furthermore, it was modified
for the aromatic amines to provide a pathway to obtain a variety of high-enantioenriched
N-arylamino acids 70-c. These three product categories highlights the versatility of the
amination of allyl selenide [2,3]-sigmatropic rearrangement as a method for synthesizing
enantioenriched allyl amine derivatives and broadens the substrate range to previously
unreported carbamates, alkyl amines, and aromatic amines.
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Scheme 23. [2,3]-Sigmatropic Rearrangement of Allylic Selenimides.

In 2022, Wang and coworkers [83] developed a CrCl2/(S,R)-Lig.7 catalyzed three-
component reaction, for the preparation of valuable chiral β-hydroxy selenides 74 having
adjacent stereocenters from vinyl selenide 72, iodide 73, aldehydes 58 (Scheme 24). A series
of chiral β-hydroxy selenides 74 had good functional compatibility and were obtained
in moderate to good yields (up to 86%), high diastereoselectivity (up to > 20:1 dr) and
enantioselectivity (up to 96% ee). Mechanistic investigations suggest that the reaction may
occur through a secondary alkyl Cr intermediate stabilized by α-selenide groups.
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Scheme 24. Cr-catalyzed diastereo-and enantioselective synthesis of β-hydroxy selenides.

2.1.6. Asymmetric Ring-Opening Reaction

In 2005, Zhu and coworkers [84] used a novel chiral TiIV-GaIII-Salen heterometallic
catalytic system 77 and obtained the optically active β-arylseleno alcohols 76 via an asym-
metric ring-opening reaction with meso-epoxides 75 and aryl selenols 26 (up to 97% ee)
(Scheme 25). The catalytic process revealed a strong synergistic effect of different Lewis
acids in the system. The method has a good substrate scope, and a series of β-arylseleno
alcohols derivatives was obtained in good to excellent enantioselectivities for both cyclic
and acyclic meso-epoxides. However, the reaction mechanism remains unclear. Epoxides are
likely to coordinate and activate the hard Lewis acid titanium, while nucleophilic reagent
selenophenol coordinates with the relatively soft Lewis acid gallium, thereby effectively
and selectively directing the attack of the selenophenol to the epoxide.
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2.1.7. Asymmetric Substitution Reaction

In 2015, Yuan and coworkers [85] used commercial cinchonidine Cat.8 under mild
conditions to synthesize 3,3-disubstituted oxindoles 79 via asymmetric selenenylation of
3-pyrrole-oxyindole 78 with good to excellent enantioselectivity (up to 93% ee) (Scheme 26).
Various optically active 3-seleno-3-pyrrole-oxindoles 79 were successfully obtained. Sub-
strate expansion experiments showed that the electronic and steric hindrance effect had
little effect on the reactivity and enantioselectivity.
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Scheme 26. Asymmetric catalytic synthesis of 3,3-disubstituted oxyindole.

In 2020, Chen and coworkers [86] reported Ni(OTf)2 as a Lewis acid catalyzed asymmetric
selenocyanation ofβ-ketoesters 80 using a new selenocyanation reagent N-selenocyanatosaccharin
81 in the presence Lig.8 (R,R)-DBFOX/Ph (Scheme 27). A series of α-selenocyanato-β-
keto esters 82 were synthesized with good yields (up to 99%) and good ees values (up to
92%). This approach is straightforward, highly enantioselective, and appropriate for the
synthesis of chiral selenocyanates. This is the first report on the asymmetric formation of
the C(sp3)-SeCN bond.
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Scheme 27. Lewis acid-catalyzed asymmetric selenocyanation of β-ketoesters with N-
selenocyanatosaccharin.

In 2024, You and coworkers [87] achieved rhodium(III)-catalyzed Cat.18 atropose-
lective C−H selenylation of 1-aryl isoquinolines 83 (Scheme 28). The C−H selenylation
reaction between 1-aryl isoquinolines 84 and 2- (phenylselanyl)isoindoline-1,3-dione in
10 the presence of the chiral SCpRh(III) complex afforded a series of axial chiral 1-aryl
isoquinoline selenides 84 in up to 95% yield and 96% ee. DFT calculations show that the
C-Se bond formation step is via the SN2 pathway.
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2.1.8. Asymmetric Decarboxylation Reaction

In 2008, Tunge and coworkers [88] reported the Pd2dba3/Np-Trost Lig.9 catalyzed
decarboxylation of selenocarbonates which afforded enantioenriched allyl selenides 86
(Scheme 29) in good yields (44–46%) and excellent enantioselectivities (89–96% ee). The
remaining unreacted selenocarbonate 87-a/b were also isolated with excellent enantioselec-
tivities (92–99% ee). The allyl selenide 86-b underwent a [2,3]-sigmatropic rearrangement
to form allylic amine 88 with high enantioselectivity (92% ee), or was converted to allyl
chloride 90 by treatment with NCS in CH2Cl2 under mild conditions.
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2.2. Substrate Control Enantioselectivity

In 2012, García Ruano and Degl’Innocenti [89] reported the synthesis of enantiomerically
pure 1,2-selenoamines with two stereocenters using (S)-α-(phenylselenyl)-2-(p-tolylsulfiny)
toluene 91 and (S)-N-(p-tolylsulfiny) imide 92 (Scheme 30). The character of the aliphatic
or aromatic N-sulfinylimines 92 that are obtained is closely related to the syn or anti stereo-
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chemistry of the 1,2-Selenoamines (up to >98% ee, up to >98% dr, up to 80% yield). LDA
was added to a THF solution of (S)-91, forming a delocalized benzylcarbanion. Then (S)-92
was added to afford diastereomerically enriched 93-a and 93-b. To synthesize enantiomeri-
cally pure 1,2-selenoamines compounds 94-a and 94-b should be desulfinylated without
affecting the C−Se bond nor their configurational integrity. This synthetic transformation
was carried out for 94-a and 94-b, derived from aryl- and alkyl imines 93-a and 93-b, using
a two-step sequence consisting of initial C-desulfinylation with t-BuLi and subsequent
N-desulfinylation with TFA.
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Scheme 30. Strategy for asymmetric synthesis of enantiomerically pure 1,2-selenoamines.

In 2015, Liao and coworkers [90] reported a novel asymmetric synthesis of dihy-
dronaphthoquinone incorporating adjacent quaternary and tertiary stereocenters via a
Se-Michael addition triggered ring-expansion method (Scheme 31). Treatment of chiral
phthalide 95 with lithium selenophenolate (PhSeLi), which was generated in situ from
selenophenol and n-butyllithium, gave the desired chiral organoselenium 96 in good yield
(64%), excellent enantioselectivity (96% ee) and diastereoselectivity (>19:1 dr). Although
the precise mechanism by which magnesium cations control the reaction’s selectivity is
not well understood, we could refer to the mechanism for the sulfonamide-Michael addi-
tion/nucleophilic addition tandem reaction [91–93]. The assumption is: the magnesium
cation coordinates favorably to both the oxygen atom of the lactone and the enolate units
of intermediate (I) to form a chelating structure which may contribute the current high
diastereoselectivity in this tandem process.
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Scheme 31. Se-Michael addition triggered ring-expansion synthesis of chiral organoselenium dihy-
dronaphthoquinone.

In 2016, Fu and coworkers [94] developed an efficient method for the synthesis of chiral
α-selenoamino acids 98 using visible light photoredox (Scheme 32). N-Acetoxyphthalimide
derivatives of two genetically coded proteinogenic amino acids, including L-aspartic acid
and glutamic acid, where the carboxyls on the side chains of N-Bis(Boc)-Asp(OPht)-OMe
(97, n = 1) and N-Bis(Boc)-Glu(OPht)-OMe (97, n = 2), were reacted with various diorganyl
diselenides 42. The reaction was carried out in the presence of diisopropylethylamine
(DIPEA), Hantzsch ester (HE) and irradiation of 40 W compact fluorescent light (CFL)
under argon atmosphere at room temperature using [Ru(bpy)3]Cl2 as the photocatalyst to
afford chiral α-selenoamino acids 98. They also proved that the visible-light photoredox
decarboxylative coupling maintained the chirality of the desired products α-selenoamino
acids 98 (n = 1, R = Ph, >99% ee).
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Scheme 32. Visible-light photoredox synthesis of chiral α-selenoamino acid.

In 2018, Punniyamurthy and coworkers [95] described a new approach that involved
Al-catalyzed stereospecific tandem C-N/C-Se bond formation of chiral aziridines 100 with
isoselenocyanates 101 giving 90–99% ee and 77–91% yields (Scheme 33). The energy profile
diagram for the reaction (Scheme 33, bottom right) clearly shows that it is a one-step
SN2-type reaction. The observed experimental and DFT studies indicate that chelation
of isoselenocyanate 99 with Al-salen may result in the formation of an Al-complex (I),
which can couple with aziridine 100 via a concerted SN2 pathway b to produce the target
products 101.
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Scheme 33. Stereospecific Al-catalysed tandem C-N/C-Se bond formation of isoselenocyanates with
aziridines.

In 2020, Zeng and coworkers [96] developed a new method to synthesize (enan-
tioenriched) selenoethers 103 from (chiral) benzylic trimethylammonium salts 102 and
di(hetero)aryl diselenides 42 (Scheme 34). Benzyl selenyl ether was synthesized under
weak basic conditions without transition metal catalysis with good to excellent yields
(up to 93%) and high enantiomeric purity (up to 99% ee). Later in 2021 they developed a
novel approach for the synthesis of (enantio-enriched) dibenzyl diselenides 105 via SN2
nucleophilic substitution of (enantiomerically enriched) benzyl quaternary ammonium salt
104 and diselenide dianion (Se2−) [97].
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3. Application of Chiral Organoselenium Compounds in the Asymmetric Catalysis

Organoselenium compounds exhibit a wide range of chemical properties. Their use
in catalysis is very relevant and well documented. Furthermore, a number of synthetic
approaches to access diverse chiral organoselenium are reported. A number of chiral
selenide compounds were produced and employed as catalysts in a variety of asymmetric
reactions (Scheme 35).
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Scheme 35. Chiral selenide catalysts.

In 2003, Braga and coworkers [98] synthesized a series of chiral aliphatic aminodise-
lenide Cat.21 by the ring-opening reaction of azidine 107 which was then used as a catalyst
for the enantioselective addition of diethylzinc to aldehydes (Scheme 36). The chiral sec-
ondary alcohol derivatives 109 were produced in good to excellent yields (up to 93%)
and enantioselectivities (up to >99% ee). In substrate expansion experiments, the effect
of alkyl substituents and aryl substituted aldehydes on stereoselectivity was examined,
and the results showed moderate to excellent enantioselectivities (45 - > 99% ee). Notably,
alkyl chains have a greater effect on enantioselectivity, resulting in a significant decrease in
enantioselectivity from hexanal (>99% ee) to decanal (45% ee).
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Scheme 36. Chiral aminodiselenide compounds catalyze the synthesis of enantioselective secondary
alcohols.

In 2013, Yeung and coworkers [39] used a C2-symmetric mannitol-derived cyclic
selenium to catalyze asymmetric bromocyclization of trisubstituted olefinic amides 110
(Scheme 37, up to 95% ee). The resulting enantioenriched pyrrolidine derivatives, with two
stereogenic centers, can undergo rearrangement to yield 2,3-disubstituted piperidines 111
with good diastereoselectivity and enantiospecificity. It is hypothesized that the mechanism
of this cyclic-selenium-catalyzed bromocyclization reaction (Scheme 37) is as follows: coor-
dination of Lewis basic selenium Cat. 20 to NBP forms activated electrophilic brominating
species (I). Subsequent interaction between (I) and the olefinic substrate 110 would give
selenium coordinated bromonium intermediate species (II).
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Scheme 37. C2-symmetric cyclic selenium-catalyzed enantioselective bromoaminocyclization.

In 2017, Zhao and coworkers [99] developed a new bifunctional chiral selenide Cat.22-
a for catalyzing the enantioselective CF3S aminocyclization of olefins 112 to construct a
series of saturated azaheterocycles 114-a/b in good yields (up to 99%) high diastereo-and
enantioselectivities (Scheme 38, up to 97% ee, >99:1 dr). This method provides a new ap-
proach for the synthesis of chiral saturated pyrrolidines and piperidines. The indane-based
chiral amino aryl chalcogenide catalysts can give acceptable H-bonding by varying the
amino protecting groups. They can also produce good Lewis basicity and steric hindrance
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by modifying the substituents on the aryl chalcogenide motifs. These features allow them
to produce a chiral environment while also meeting the reactivity requirements. Notably,
they have been effectively applied to several asymmetric electrophilic reactions involving
alkenes, alkynes, and arenes, thus broadening the field of electrophilic reactions [100].
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Scheme 38. Enantioselective trifluoromethylthiolating aminocyclization.

In 2018, Zhao and coworkers [101] again reported the use of chiral selenide Cat.22-
a for oxytrifluoromethylthiolation of aliphatic internal alkenes 115, for the synthesis of
CF3S-substituted 1,3-amino alcohol 116 (up to 98% yield and up to 94% ee) and 1,3-diol
derivatives 117 (86% yield, and 95% ee) with high regio-, enantio-, and diastereoselective
(Scheme 39, up to >99:1 dr). In this approach, the alkenes were functionalized regioselective,
with the surrounding imide or ester group providing a functional group.
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Scheme 39. Enantioselective oxytrifluoromethylthiolation of aliphatic internal alkenes.

In another investigation in 2018, Zhao and coworkers [102] reported the use of chiral
selenide Cat.22-a for allylic trifluoromethylthiolation of alkenes 118, affording the chiral
allylic CF3S-substituted products 119 in good to excellent yields (up to 95%) and excellent
enantioselectivities (Scheme 40, up to 95% ee). The unactivated alkenes 118 also achieved
intermolecular difunctionalization in the presence of a nucleophile reagent, generating the
corresponding difunctionalized chiral CF3S-substituted products 120 in moderate to good
yields (up to 80%) with excellent enantio- and diastereoselectivities (up to 93% ee, >99:1 dr).
This method provided a new approach for the synthesis of C-SCF3 stereogenic compounds,
where alkenes do not require directing group assistance for enantiocontrol.
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Scheme 40. Allyl enantioselective reaction and intermolecular difunctionalization of olefins.

In the same year, Zhao and coworkers [103] reported the use of efficient chiral bifunc-
tional selenide Cat.22-a for enantioselective desymmetrization and trifluoromethylthiolation of
gem-diaryl tethered alkenes 121, which gave the corresponding CF3S-tetrahydronaphthalene
derivatives 122 in good to excellent yields (up to >99%) with excellent enantio- and diastere-
oselectivities (Scheme 41, up to >99% ee, >99:1 dr). Remarkably, diphenyl-tethered alkynes
123 also worked well in the reaction and gave the desired chiral dihydronaphthalenes
compounds 124 in good yields (68% and 73%) with excellent enantioselectivities (up to
95% ee).
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Scheme 41. Enantioselective desymmetrization and trifluoromethylthiolation of gem-diaryl tethered
alkenes/alkynes.

In 2019, Zhao and coworkers [104] discovered a new application for chiral bifunc-
tional selenide Cat.22-b, which was used for enantioselective trifluoromethyl thiolation
of 1,1-disubstituted olefins 125 (Scheme 42). Various chiral trifluoromethylthiolated 2,5-
disubstituted oxazoles 126 were synthesized in good yields (up to 76% yield) with good to
excellent enantioselectivities (up to 94% ee), providing a new approach for the synthesis of
chiral oxazolines.
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Scheme 42. Chiral selenide-catalyzed enantioselective synthesis of trifluoromethylthiolated 2,5-
disubstituted oxazolines.

In 2019, Zhao and his coworker [105] reported the use of new chiral bifunctional
selenide Cat.22-c for electrophilic azidothiolation and oxythiolation of N-allyl sulfonamides
127, to construct chiral vicinal azidosulfides and oxysulfides 129 in good yields (up to
95%) with excellent enantio- and diastereoselectivities (Scheme 43, up to 97% ee, up to
>99:1 dr). This is the first example of chiral bifunctional selenide-catalyzed enantioselective
electrophilic azidothiolation and long-chain-alkylthiolation of alkenes, which indicates
the possible application of this method to other alkenes. The key arylthiiranium ion
intermediate in the reaction is depicted as an anion bridge Tf2NH which binds to the
substrate and the catalyst (Scheme 42).
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Scheme 43. Enantioselective construction of chiral sulfides via chiral selenide-catalytic electrophilic
azidothiolation and oxythiolation of N-allyl sulfonamides.

In 2020, Zhao and coworkers [106] reported the use of chiral bifunctional selenide
Cat.22-d or Cat.22-a for desymmetrizing enantioselective electrophilic aromatic halogena-
tion of 130 (Scheme 44), to construct P-chirogenic triaryl phosphine oxide compounds 132
or 133 in high yields (up to 98%) with excellent enantioselectivities (up to >99% ee). Interest-
ingly, chlorination switches from ortho to para positions, when the substrates were changed
from triaryl phosphine oxides to alkyl diaryl phosphine oxides and diaryl phosphinates,
depending on the structure of the phenols. Control experiments were carried out and the
results showed that H-binding could strengthen the interaction between the catalyst and
substrate to control the reactivities and racemization.

In 2021,Chein and coworkers [107] reported the use of a new type of chiral tetrahy-
droselenophene Cat.23-a or Cat.23-d (Scheme 45), which were synthesized from (R)-3-(3-
bromopropyl)-2,2-diphenyloxirane, for asymmetric cyclopropanations of (E)-chalcones 134,
giving the cyclopropanes 136 with moderate to excellent yields (up to 95%) and excellent
enantioselectivities (up to 99% ee). This is the first example of chiral selenide-catalyzed
enantioselective cyclopropanation reaction. The proposed catalytic cycle (Scheme 45) shows
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selenide catalyst I is initially converted into selenonium salt II, and then transformed into
the corresponding ylide III-b under basic conditions. The ylide carbanion’s unshared
electrons are delocalized in the selenium atom’s 4d orbitals, forming the benzene system.
Thus, the resonance structure of betaine adopts a conformation [108–111], in which the
lone electron pair on the selenium remains orthogonal to the π-system of ylene III-a, while
the phenyl group occupies a sterically relaxed pseudoequatorial position. The bulky side
chain in III is positioned so that it blocks the si face of the ylide carbon, forcing the Michael
receptor to be approached from the re face resulting in intermediate (V) with a preferred
anti-anti-conformation.
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In 2022, Zhao and coworkers [112] reported the use of chiral bifunctional selenide, in-
cluding Cat.22-a, Cat.22-c, Cat.22-e, and Cat.22-f, for enantioselective electrophilic hydroth-
iolation of alkenes, which was a new approach for constructing chiral sulfides (Scheme 46).
In the presence of electrophilic sulfur reagents 128 and silanes, the cyclic and acyclic unac-
tivated alkenes 137 or 138 efficiently provided various chiral sulfide products 139 or 140
with good to excellent yields (up to 92% and 89%) and excellent enantioselectivities (up to
97% ee and 95% ee). Mechanistic studies indicated a relatively stable chiral thiiranium ion is
considered the key reactive intermediate.
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In 2023, Breder and coworkers [41] developed a new catalyst, which was chiral and
nonracemic spirobiindane selenium-π-acid catalysts Cat.24, for asymmetric, photoaer-
obic lactonization and cycloamination of non-directing alkenes 141 (Scheme 47). 2,4,6-
Tris(p-anisyl)pyrylium tetrafluoroborate was worked as photoredox catalyst and 4,4′-
Dichlorodiphenyldisulfide was worked as cocatalyst. Enoic acids 141a or unsaturated
sulfonamides 141b were exposed to photoredox catalyst in combination with Se-π-acid
catalysts Cat.24 and sulfur cocatalyst under air and 465 nm irradiation for 5–24 h. Buteno-
lides 142a and 3-pyrrolines 142b were obtained in good to excellent yields (up to 97%) and
high enantioselectivities (up to 97:3 er). The authors investigated the impact of structural
modifications on the catalysts 24. The electronic effect of the benzylic Se-protecting groups
(7/7′position, Scheme 46) did not show a specific trend with regards to the er values (Cat.24
a-f). However, changing the Se-protecting group from benzylic to aliphatic protecting group
had a significant effect (Cat.24 g-i). Modifications at position 6/6′ indicated that the oxygen
atoms may play an important role in stereoinduction (Cat.24 j-p). The results were consis-
tent with that reported by Wirth and Tomoda et al. They demonstrated that nonbonding
interactions between n → σ* O···Se typically lead in rigid catalyst−substrate conformations,
resulting in higher levels of stereoinduction [113,114]. Continuing with modification at the
distal 5/5′ position had no significant effect on the reaction outcome (Cat.24 q-r). Making
the catalyst skeleton more rigid by adding substituents (1s/t) led to weaker stereoinduc-
tion (Cat.24 s-t). For Cat.24-s, the author interpreted this as a result of conformational
restrictions at the 6/6′O atoms, which potentially prevents n → σ* O···Se overlap.
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In 2024, Zhao and coworkers [115] reported an efficient strategy of enantioselective
thiolative azidation of sulfone-tethered alkenes 143 or 144 via a chiral chalcogenide Cat.22-g
catalyzed electrophilic reaction (Scheme 48). A series of enantioenriched sulfones 146 or
147 bearing remote stereogenic centers was synthesized with good to excellent yields (up
to 99%) and high enantioselectivities (up to 98% ee) with linear unsaturated sulfones and
cyclic unsaturated sulfones.
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4. Conclusions

In conclusion, the synthesis of chiral organoselenium compounds and their application
as a catalyst in asymmetric synthesis over the past decade was summarized in this review.
The common approach is to use chiral catalysts or chiral ligands to regulate enantiose-
lectivity for asymmetric synthesis. Another method is to use the chiral structure of the
raw material to control the stereoselectivity of the reaction process. In recent years, chiral
organoselenium compounds have been developed as catalysts in asymmetric synthesis,
facilitating the synthesis of a variety of target products with high enantioselectivity.

Although the synthesis of chiral organoselenium compounds has achieved significant
progress, there are limited reactions for the use of chiral catalysts or chiral ligands. The
synthetic route for these reactions is complex or not commercialized, which represents a
further limitation of this method. Currently, controlling enantioselectivity through chiral
catalysts or chiral ligands is still the principal method in asymmetric synthesis. Therefore,
the development of a green and economical method [75] for the preparation and synthesis
of chiral selenium compounds has a bright prospect.
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