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Abstract: In response to the suboptimal electrochemical performance of low-valence vanadium
oxides, Ganoderma lucidum biomass-derived carbon@V2O3 (V2O3@CGL) composites were prepared
by evaporative self-assembly technology and high-temperature calcination. In the prepared com-
posites, V2O3 effectively encapsulates CGL, serving as a support for V2O3 and enhancing electrical
conductivity and structural stability. This results in improved overall performance for the composites.
They revealed satisfactory electrochemical properties when assembled in aqueous zinc-ion batteries
(AZIBs). The preliminary discharge specific capacity of the V2O3@CGL-2 (VOCG-2) composite
electrode reached 407.87 mAh g−1 at 0.05 A g−1. After 1000 cycles, the capacity retention is 93.69%
at 3 A g−1. This research underscores the feasibility of employing V2O3 and abundantly available
biomass for high-performance AZIB cathodes.
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1. Introduction

Severe environmental pollution and energy shortages have compelled us to develop
inexpensive and renewable storage devices for energy [1,2]. Lithium-ion batteries, as a type
of secondary battery, are currently one of the most widely used energy storage devices on
account of their satisfactory energy density and long cycle life [3,4]. Nonetheless, concerns
about safety and limited resources, such as lithium metal, have driven the exploration of
new battery systems. In recent years, water-based metal-ion batteries (e.g., zinc, sodium,
potassium, magnesium, and calcium) have shown enormous possibilities in energy storage,
considering the abundant reserves of metal resources on earth and their inherent safety [5].

Among these options, AZIBs have garnered significant curiosity from researchers
worldwide because of their rich sources, non-toxicity, high safety, low REDOX potential
(−0.76 V), and excellent theoretical capacity (approximately 820 mAh g−1) [6–9]. How-
ever, research on AZIBs is still in its early stages, and it is challenging to find positive
electrode materials suitable for reversible Zn2+ embedding or de-embedding, restricting the
development of AZIB systems. Previous studies on AZIB cathode materials have focused
on Prussian blue analogues with a cubic open frame structure [10]. However, this has a
limited capacity (about 60 mAh g−1), which hinders further development. Manganese
oxides, such as MnO2, α-Mn2O3, and Mn3O4, have considerable voltage and desirable
capacity. Nonetheless, the dissolution of manganese in the electrolyte leads to poor cycling
performance [11–13].

Among AZIB cathode materials, vanadium-based materials have been extensively re-
searched for their high specific capacity, vast resources, and excellent cycle
stability [14–17]. For instance, Hu et al. [18] obtained porous V2O5 material (P-V2O5)
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by pyrolyzing V-MOF. As the cathode for AZIBs, the P-V2O5 electrode manifested a ca-
pacity of 120 mAh g−1 at 2 A g−1. They also demonstrated that the formation of V2O5
nanoflakes and the reorganization with carbon can increase cycle stability. Mai et al. [19]
successfully developed Na2V6O16·1.63H2O material that is highly suitable for Zn2+ embed-
ding and removal, demonstrating a noteworthy specific capacity of 352 mAh g−1 and a
desirable long-cycle stability with a capacity retention of 90% for 6000 cycles at 0.05 A g−1.

Although well developed in small-scale production, the above synthesis methods are
still far from commercialization due to their complexity, the high cost of electrolyte and
electrode materials, and unsustainable carbon sources [20,21]. Therefore, the search for
cheap, abundant, and renewable raw materials gradually gains popularity. Biomass, a
carbon-rich precursor, has been extensively researched in various applications because of
its inherent benefits, such as environmental friendliness, abundant renewable resources,
and economic benefits [22–24].

In this study, the Ganoderma lucidum biomass was first activated using KOH ul-
trasonic solvent and calcination. The observed V2O3@CGL composites exhibited a large
specific surface area and numerous mesopores, which furnished abundant active sites
and efficient channels for reversible storage of Zn2+. Three Ganoderma lucidum biomass-
derived carbon/V2O3 composites were prepared as positive electrodes for AZIBs, with
the economical 3M ZnSO4 serving as the electrolyte. The VOCG-2 composite electrode
displayed outstanding durability with a satisfactory capacity retention of 93.69% after
1000 cycles at 3 A g−1. SEM analysis confirmed that the VOCG-2 composite electrode
maintained a steady morphology during circulation. These findings suggest VOCG-2
composites offer promising potential for fast and long-lasting storage of Zn2+.

2. Results

Through XRD investigations, detailed information regarding the crystal structure of
the V2O3@CGL composites was obtained. Figure 1a illustrates the XRD patterns of the
V2O3@CGL composites, displaying a broad diffraction peak at approximately 2θ = 24.5◦,
which is consistent with the (002) plane of amorphous carbon [25]. The peak intensity
of this diffraction peak diminishes with the reduction of carbon in the composites. No
additional noteworthy residual phases were detected, implying that there is no noticeable
impact of CGL on the crystal structure of V2O3. In addition, the diffraction peaks centered
at 65.2◦, 53.9◦, 41.3◦, 36.3◦, 33.0◦, and 24.3◦, correspond to the (300), (116), (113), (110),
(104), and (012) diffraction planes, respectively, of the rhombic crystalline phase of V2O3
(PDF#84-0316), evidencing the successful synthesis of the V2O3 phase.

Figure 1b reveals a typical FT-IR spectrum of the V2O3@CGL composites. The peaks
situated at 2853 and 2922 cm−1 denote the presence of residual C-H groups [26]. The peak
observed at 2367 cm−1 corresponds to an asymmetric stretching vibration of C-O, which
is attributed to CO2 adsorption on KBr and is negligible [27]. The H-O bending vibration
and H-O stretching vibration can be identified at 1625 and 3423 cm−1, respectively, which
may be because of certain water molecules adsorbed on the surface and embedded in the
composite interlayers [28]. Furthermore, the peaks located at 801 and 584 cm−1 are ascribed
to the symmetric and asymmetric stretching vibrations of the V-O-V bond [29–31]. The
signal at 987 cm−1 is related to the symmetric stretching of V3+=O, suggesting the presence
of V2O3 [32,33]. Based on the above analysis, the synthesized V2O3@CGL composites
consist of V2O3 and biomass-derived carbon, which coincides with the results of the XRD.

The porosity and specific surface area of electrode materials are critical for ion diffusion.
Therefore, N2 adsorption/desorption isotherm experiments were carried out. As depicted
in Figure 1c,d, the three V2O3@CGL composites exhibit typical IV isotherms followed by
H3-type hysteresis loops, suggesting that the materials include a significant number of
mesoporous pores in the samples. The average pore diameter, pore volume, and specific
surface area of the three V2O3@CGL composites are summarized in Table 1. Among them,
the specific surface area of VOCG-3 composite is as high as 174.2683 cm2 g−1, which is
significantly larger than VOCG-1 (154.9935 cm2 g−1) and VOCG-2 (164.5602 cm2 g−1),
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suggesting that with a higher content of V2O3, the specific surface area will increase.
Additionally, the pore sizes of the three V2O3@CGL composites range from 2 to 43 nm (see
Figure 2d). The abundant mesoporous structure and large specific surface area facilitate
rapid storage of Zn2+. Furthermore, a suitable pore size distribution promotes ion diffusion,
thereby enhancing the magnification performance of V2O3@CGL composites [34].
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Table 1. Pore volume, specific surface area, and average pore size of the V2O3@CGL composites.

Sample Pore Volume (cm3 g−1)
Specific Surface Area

(m2 g−1) Average Pore Size (Å)

VOCG-1 0.1424 154.9935 3.6760
VOCG-2 0.1647 164.5602 4.0040
VOCG-3 0.1589 174.2683 3.6465
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To ascertain the weight percentage of every ingredient in the V2O3@CGL composites,
a TGA test was carried out at 25–800 ◦C in nitrogen, as illustrated in Figure 2. The three
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TGA curves exhibit three distinct weightlessness stages. The first two stages occur at room
temperature to about 136 ◦C and 400 ◦C, respectively, which are associated with the release
of structural water and adsorbed water in the V2O3@CGL composites. The mass loss
in the first two stages of VOCG-1, VOCG-2, and VOCG-3 was 6.96%, 7.31%, and 7.28%,
respectively. The third stage of weightlessness occurs at about 400–580 ◦C, which is related
to the combustion of CGL in the V2O3@CGL composites. The weightlessness in the third
stage for VOCG-1, VOCG-2, and VOCG-3 composites was 18.68%, 16.18%, and 14.5%,
respectively. According to the data obtained from the TGA, the mass content of CGL and
V2O3 in VOCG-1, VOCG-2, and VOCG-3 was 18.68% and 74.36%, 16.18% and 76.51%, and
14.5% and 78.22%, respectively.

The surface elemental composition, electronic states, and bonding states of the
V2O3@CGL composites were studied by means of XPS spectroscopy. As depicted in
Figure 3a, V, O, and C elements were detected in the XPS measurement spectra. The
bonding state of V, C, and O was further evaluated by the V 2p, C 1s, and O 1s peaks. As
displayed in Figure 3b, the peaks are located at 288.58, 285.76, and 284.77 eV, respectively,
matching the O=C-O−, C-O, and C-C bonds of C 1s, which are derived from CGL [35–37].
Figure 3c exhibits three contributions from the fitted O 1s peaks, with binding energies of
533.06, 531.6, and 530.33 eV, attributed to the O=C-O−, C-OH, and V-O bonds [22,38,39],
respectively. The V 2p peak of the V2O3@CGL composites (Figure 3d) is decomposed
into two peaks at 523.78 and 516.8 eV, corresponding to V 2p1/2 and V 2p3/2, proving the
presence of V2O3 [40–42].
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Figure 4 illustrates the SEM pictures of the V2O3@CGL composites. The CGL in the
V2O3@CGL composites reveals an irregular three-dimensional porous structure with diam-
eters ranging from 30 to 300 µm. V2O3 is observed to be encapsulated on the surface of the
CGL or entering its pores. The surface of VOCG-1 composite is relatively smooth, with the
exposed Ganoderma lucidum biomass-derived carbon visible, while the surfaces of VOCG-
2 and VOCG-3 composites are relatively rough. Notably, VOCG-3 is completely covered
by V2O3, with the bare Ganoderma lucidum biomass-derived carbon barely discernible.
This indicates that VOCG-1 composite contains the least amount of V2O3, while VOCG-3
composite contains the greatest amount of V2O3. Furthermore, CGL can provide a carbon
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skeleton for V2O3, effectively overcoming the adverse effects of V2O3 aggregation and
volume expansion during charging and discharging, thus enhancing the zinc storage perfor-
mance [43]. Moreover, the elemental mapping of the V2O3@CGL composites is presented
in Figure 5, which reveals that the C, O, and V elements are homogeneously dispersed in
the V2O3@CGL composites. This, together with the XRD and XPS data presented above,
provides evidence that the synthesis of the V2O3@CGL composites was successful. It is
notable that a comparison of the brightness of the elemental maps of the three composites
reveals that the VOCG-1 composite has the highest concentration of carbon and the lowest
concentration of vanadium, while the VOCG-3 composite has the lowest concentration
of carbon and the highest concentration of vanadium. This indicates that the VOCG-1
composite has the lowest vanadium pentoxide content, while the VOCG-3 composite has
the highest V2O3 content.
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The HRTEM map and the corresponding selected area electron diffraction (SAED)
diagram of the V2O3@CGL composites are presented in Figure 6. The majority of the
lattice fringes of the V2O3@CGL composites are more pronounced. The corresponding
crystallographic spacing is approximately 2.18 Å, which is consistent with the (113) crys-
tallographic plane of V2O3, thereby confirming the presence of V2O3 in the V2O3@CGL
composites. Furthermore, the SAED diagram of the V2O3@CGL composites is presented in
Figure 6b. The presence of significant diffraction rings at the (012), (104), (110), and (113)
facets of V2O3 was observed, which was in accordance with the XRD results. This once
again demonstrates that V2O3 exhibits excellent crystallinity.
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3. Discussion

GCD measurements were performed on the V2O3@CGL composite electrodes within
the range 0.2–1.8 V at 0.05 A g−1. The resulting GCD profiles for the first five turns are
presented in Figure 7a–c. The two pairs of redox voltage plateaus observed at 0.58/0.88
and 0.98/1.21 V on both the charge and discharge curves correspond to the CV curves
below. The initial discharge specific capacity of the VOCG-2 composite electrode can be
observed to reach 407.88 mAh g−1, which is considerably greater than that of VOCG-
1 (307.64 mAh g−1) and VOCG-3 (357.43 mAh g−1). Although only V2O3 provides the
specific capacity in the composites, a high proportion of V2O3 does not necessarily exhibit
the highest specific capacity. This is due to the poor structural stability and intrinsic lack of
electrical conductivity of V2O3. Therefore, the discharge specific capacity of V2O3 can be
effectively optimized by the addition of an appropriate amount of CGL.

Figure 7d illustrates the rate capability of the V2O3@CGL composite electrodes at
varying current densities. The current density is incrementally raised from 0.05 C to 3 C
and subsequently decreased to 0.05 C (specific multiplicity values are listed in Figure 7d).
The discharge specific capacity exhibited a gradual decline as the current density increased.
The average discharge specific capacities of VOCG-2 were 344.48, 316.61, 302.85, 290.84,
279.03, and 272.00 mAh g−1, respectively, which were significantly higher than those of
VOCG-1 and VOCG-2. This indicates that VOCG-2 is superior in multiplicity performance.
Upon the return of the current density to 0.05 C, the discharge specific capacity of VOCG-2
also recovered to 356.23 mAh g−1, which was 91.21% of the initial value. In contrast, the
discharge specific capacity of VOCG-1 was only 81.33% (235.17 mAh g−1) and that of VOCG-
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3 was 86.55% (293.50 mAh g−1) of the initial value. The VOCG-1 and VOCG-2 electrodes
exhibited a capacity of only 81.33% (235.17 mAh g−1) and 86.55% (293.50 mAh g−1) of the
initial value, respectively. The aforementioned outcomes demonstrate that the VOCG-2
electrode exhibits excellent reversibility. Moreover, the crystal structure of the VOCG-2
electrode exhibits enhanced stability. The exceptional multiplicity performance of VOCG-2
may be attributed to the incorporation of CGL, which enhances the structural stability and
conductivity of the electrode, facilitating the rapid (de)intercalation of carriers.
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Figure 7e illustrates the cycling properties of the three V2O3@CGL composites at
3 A g−1. The capacities of all three composite electrodes exhibited a gradual increase over
the initial 60 cycles, in agreement with vanadium-based materials reported in the literature,
and may be related to the gradual electrochemical activation. The first discharge specific
capacity of the VOCG-2 composite electrode was 222.41 mAh g−1, which was considerably
superior to that of the VOCG-1 (158.32 mAh g−1) and VOCG-3 (192.55 mAh g−1) com-
posite electrodes. After 56 cycles, the specific capacity of the VOCG-2 electrode reached
a maximum of 236.71 mAh g−1. However, the maximum discharge specific capacities of
the VOCG-1 and VOCG-3 composite electrodes were only 171.69 and 207.68 mAh g−1,
respectively, after 53 and 58 cycles, which were significantly lower than that of the VOCG-2
electrode. Moreover, the reversible specific capacity of the VOCG-2 electrode was obtained
at 208.38 mAh g−1 after 1000 cycles, with a capacity retention of 93.69%. In contrast,
the specific capacities of the VOCG-1 and VOCG-3 electrodes were somewhat lower, at
143.51 mAh g−1 and 178.46 mAh g−1, respectively. Moreover, the capacity retentions were
not as good as those of VOCG-2, at 90.65% and 92.67%, respectively. Consequently, the
VOCG-2 electrode exhibits superior cycling stability. The exceptional electrochemical
property of the VOCG-2 electrode is attributed to the CGL, which not only improves the
electrode’s conductivity but also provides a well-developed pore structure that facilitates
the diffusion of ions, thereby ensuring an optimal ion diffusion rate.

The CV curves were utilized to evaluate the electrochemical process kinetics of the
V2O3@CGL electrode within the range 0.2–1.8 V, as depicted in Figure 8a. The three CV
curves possess similar shapes, with two pairs of distinct coupled REDOX peaks placed
at about 0.58/0.88 V and 0.98/1.21 V, respectively, indicating that the insertion of Zn2+ in
the V2O3@CGL electrode undergoes a two-step reversible reaction, akin to the previously
reported vanadium-based cathodes [6,16,34]. It has been reported that the area and current
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depicted in the CV curve are closely linked to the obtained capacity [44]. It is easily
observed that the area of the VOCG-2 electrode is the largest, while the VOCG-1 electrode
has the smallest area. Consequently, the VOCG-2 electrode has the largest specific capacity
among them, while the VOCG-1 capacity is relatively lower.
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To further evaluate the charge transfer state of the V2O3@CGL composite electrodes,
EIS measurements were carried out, and the corresponding Nyquist and EIS plots are
depicted in Figure 8b. The three EIS curves exhibit a semicircle at medium-high frequencies
and a straight line at low frequencies. The semicircle reflects charge transfer resistance
(Rct), while the straight line is related to the ion diffusion process (Rs) within the elec-
trode [45,46]. The equivalent circuit presented in Figure 8b was utilized for fitting, and
the detailed fitting data are summarized in Table 2. Notably, the Rct values of the VOCG-2
composite electrode pre- and post-cycling were significantly lower than those of VOCG-
1 and VOCG-3, indicating the superior electrical conductivity of the VOCG-2 electrode.
Furthermore, the Rct values for all three V2O3@CGL electrodes after cycling are notably
smaller compared to those before cycling, suggesting improved charge transfer kinetics
following multiple cycles.

Table 2. Electrochemical impedance spectra of the three V2O3@CGL composites before and after
cycling.

Sample VOCG-1 VOCG-2 VOCG-3

Rct (before cycling) 180.8 Ω 129.8 Ω 141 Ω
Rct (after cycling) 63.47 Ω 40.92 Ω 55.29 Ω
Rs (before cycling) 4.04 Ω 2.56 Ω 3.73 Ω
Rs (after cycling) 7.72 Ω 3.72 Ω 4.48 Ω

To accurately investigate the diffusion kinetics of Zn2+ (DZn
2+) in the VOCG-2 com-

posite electrode, GITT measurements were performed, and DZn
2+ was calculated using

Formula (1):

D =
4L2

πτ

(
∆Es

∆Et

)2
. (1)

where ∆Et is the change in voltage during the continuous current pulse after the iR drop
has been removed and ∆Es is the change in steady-state potential owing to the current
pulse. The electrode thickness is denoted as L, while the relaxation time is represented by τ.
The GITT profile and the calculated DZn

2+ values of the VOCG-2 composite electrode are
depicted in Figure 8c. It can be observed that the DZn

2+ values of the VOCG-2 composite
electrode are in the range of 10−10.5 and 10−8 cm2 s−1 during cycling, which is a relatively
good level. This indicates that Zn2+ has satisfactory diffusion kinetics in the VOCG-2
electrode, which is mainly associated with the natural porous structure of CGL, which can
shorten the diffusion path for Zn2+ transport and promote its effective transport.
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The morphological evolution of the VOCG-2 composite electrode in the pristine state
and at different stages was investigated by SEM, as revealed in Figure 9a–f, respectively.
The nanoparticles were evenly arranged on the stainless steel foil without agglomerating in
their pristine state. After 200 and 400 cycles, the VOCG-2 composite electrode presented
little morphological change, suggesting excellent structural stability during cycling. After
600 cycles, slight pulverization and agglomeration appeared on the surface of the VOCG-2
electrode. As charging and discharging continued, the pulverization and agglomeration
were more pronounced (see Figure 9e,f), corresponding to the decrease in capacity in
Figure 8e. Notably, no cracks or obvious dendrites appeared from the initial state to
1000 cycles (see Figure 9a–f), disclosing the protective mechanism of the array structure of
the CGL. Therefore, the resulting VOCG-2 composite has good structural stability, which is
advantageous for enhancing the cycle lifetime of AZIBs.
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Table 3 summarizes the electrochemical properties of several previously reported
vanadium-based cathodes utilized for AZIB applications. The results reveal that the
VOCG-2 composite proposed in this paper has certain advantages, and the desirable
electrochemical properties of the VOCG-2 composite electrode can be correlated with the
appropriate CGL content to increase the structural stability and electrical conductivity.
Furthermore, the plentifully mesoporous structure and large specific surface area of CGL
can facilitate the rapid storage of Zn2+.
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Table 3. Comparison of the electrochemical properties of the V2O3@CGL composite with other
vanadium-based AZIB cathode materials that have been previously reported in the literature.

Sample Cycle Number Capacity
Retention Current Density (A g−1) Specific Capacity

(mAh g−1) Ref.

VOCG-2 1000 93.69% 3 208.38 This work
V2O3@carbonized Dictyophora 1000 89.24% 1 151.9 [47]

V2O3/carbonized chestnut needle 1000 94.26% 3 213.66 [48]
V2O3 100 76.9% 0.1 161 [34]

Polyaniline-intercalated
V2O5@nH2O 100 57% 0.1 196 [7]

Mn0.31V3O7@1.40H2O 500 54% 1 164 [49]
(NH4)xV2O5@nH2O 50 63% 0.1 235 [50]

V2Ox@V2CTx 200 81.6% 1 87.3 [51]
V2O3@carbon nanofibers 1000 80% 0.2 120 [39]

V6O13@hollow carbon microspheres 1000 76% 1 162.1 [52]
Carbon-coated NaVPO4F 400 94.5% 0.1 87.4 [53]
V2O3@amorphous carbon 1600 90.7% 1 116 [6]

V2O3@rGO 1000 114% 5 195 [54]
VO2 hollow nanospheres 860 47.6% 1 143 [15]

δ-NaxV2O5/VO2(B) 200 94% 4 253 [55]
FeVO4·nH2O@rGO 1000 43.8% 1 92 [12]

Values are estimated from the graphs.

4. Experimental Section
4.1. Preparation of V2O3@CGL Composites

The Ganoderma lucidum was repeatedly cleaned with distilled water to remove soil,
and placed in a drying oven at 60 ◦C until it was completely dry. The dried Ganoderma
lucidum and KOH were mixed according to the mass ratio of 1:4 with deionized water
as the ultrasonic solvent for two hours. It was then transferred to a blast drying oven
maintained at 80 ◦C for the purpose of complete drying, followed by calcination at 600 ◦C
for 2 h in argon to acquire Ganoderma lucidum biomass-derived carbon (CGL).

The detailed synthesis procedure for the V2O3@CGL composites is displayed in
Figure 10. Firstly, 5.05 g CH4NO2 and 7.4 g NH4VO3 were dissolved in 100 mL of distilled
water, followed by stirring in a water bath at 60 ◦C for 0.5 h. Subsequently, 40 mL of
C2H6O2 solution and 0.3 g of CGL were mixed into the above solution, sealed, and left for a
week. In order to completely evaporate the water, the mixture was dried in an oven at 80 ◦C
for 48 h. The final stage of the process involved the transfer of the resulting precursors to a
corundum crucible and their placement in a tubular furnace. Subsequently, the furnace
was heated to 350 ◦C for 4 h and then heated to 800 ◦C for 8 h at a rate of 5 ◦C min−1

in an argon environment. This procedure yielded the desired VOCG-3 composite. The
mass ratio of NH4VO3 to chestnut needle was adjusted in order to prepare the VOCG-1
and VOCG-2 composites by the same method. Table 4 illustrates the quality of the raw
materials produced for each sample.
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Table 4. Summary of the dosage of raw materials synthesized from each sample.

Sample CGL NH4VO3 CH4NO2 C2H6O2 H2O

VOCG-1 0.3 g 5.04 g 3.43 g 40 mL 100 mL
VOCG-2 0.3 g 6.24 g 4.26 g 40 mL 100 mL
VOCG-3 0.3 g 7.40 g 5.05 g 40 mL 100 mL

4.2. Material Characterization

Detailed information on XRD, TGA, XPS, SEM, HRTEM, and FT-IR testing can be
found in our previous paper: 10.3390/molecules28052147 [47]. The isothermal nitrogen
adsorption/desorption test was conducted on the samples using an ASAP 2020 tester from
Micromeritics, Norcross, GA, USA, maintained at 77 K beneath liquid nitrogen.

4.3. Electrochemical Measurements

In order to prepare the cathode, PVDF (10 w.t.%), acetylene black (20 w.t.%) and active
material (70 w.t.%) were successively dispersed in N-methyl-2-pyrrolidone. The resulting
mixed slurry was evenly coated on stainless steel foil and dried in a vacuum at 60 ◦C for
12 h. A CR2025 coin battery was assembled in air with glass fiber adopted as the diaphragm,
3 M ZnSO4 aqueous solution employed as the electrolyte, and commercial zinc foil utilized
as the anode. For detailed information on partial electrochemical testing, please refer to
our previous paper [47]. The galvanostatic intermittence titration technique (GITT) was
carried out using the NETWARE test instrument within the range 0.2–1.8 V.

5. Conclusions

In this study, the V2O3@CGL composites were prepared using evaporation self-
assembly technology with Ganoderma lucidum as the carbon source and NH4VO3 as
the metal source. In these V2O3@CGL composites, CGL exhibits a porous structure and
V2O3 provides large capacity, which can increase the electrolytic/cathodic contact area
and provide incremental active sites. Moreover, the introduction of CGL increases the
mechanical properties, while also making up for V2O3’s inadequate electrical conductivity.
Thus, the V2O3@CGL composites possess the ideal electrochemical properties. Specifi-
cally, the VOCG-2 composite demonstrated superior initial discharge specific capacity and
excellent cycle stability. Furthermore, SEM testing revealed that the VOCG-2 electrode
microstructure remained stable without obvious cracks or zinc dendrites during cycling,
which contributes to its excellent zinc storage properties. This research introduces an
innovative strategy for the enhancement of the electrochemical properties of V2O3 and
these results will assist in creating affordable high-performance vanadium-based AZlBs.
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