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Abstract: Photothermal, photodynamic and sonodynamic cancer therapies offer opportunities for
precise tumor ablation and reduce side effects. The cyclic guanylate adenylate synthase-stimulator
of interferon genes (cGAS-STING) pathway has been considered a potential target to stimulate the
immune system in patients and achieve a sustained immune response. Combining photothermal,
photodynamic and sonodynamic therapies with cGAS-STING agonists represents a newly developed
cancer treatment demonstrating noticeable innovation in its impact on the immune system. Recent
reviews have concentrated on diverse materials and their function in cancer therapy. In this review,
we focus on the molecular mechanism of photothermal, photodynamic and sonodynamic cancer
therapies and the connected role of cGAS-STING agonists in treating cancer.

Keywords: photothermal therapy; photodynamic therapy; sonodynamic therapy; cGAS-STING;
cancer therapy; synergistic therapy; immunotherapy

1. Introduction

Photothermal, photodynamic and sonodynamic cancer therapies are physical strate-
gies that have demonstrated prominent anticancer efficacy [1–3]. These cancer therapy
methods integrate light, thermal and acoustic modalities in a single platform to reinforce
their therapeutic effects. Photothermal therapy (PTT) uses photothermal agents (PTAs) to
convert light into heat. The heat generated by PTAs can induce hyperthermia, leading to
cell death and stimulating the immune system. Favorable results in experiments concerning
tumors such as breast cancer [4] and cervical cancer [5] showed their potential to be an
adjuvant therapy in the clinic. Clinical trials also showed that PTT-induced hyperthermia
has great potential in cancer therapy [6]. Like PTT, photodynamic therapy (PDT) uses
photosensitizers (PS) to mediate energy transmission and generate toxic residues, such
as reactive oxygen species (ROS). ROS can disrupt DNA and protein structure in cells,
leading to organelle destruction and cell death [7]. This process can stimulate the immune
system and lead to immunogenic cell death (ICD) [8]. PDT can be used in treating many
superficial diseases including but not limited to premalignant conditions and tumors in the
skin, digestive system and urinary system [9]. It is an important non-invasive therapy in
the clinic. Due to the limited penetration ability of light, sonodynamic therapy (SDT) offers
an alternative to PTT and has been demonstrated to have a wide range of applications in
different solid tumors such as hepatocarcinoma, glioma and melanoma [10,11]. SDT utilizes
sonosensitizers and ultrasound to produce ROS which lead to cancer cell destruction [12,13]
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{Das, 2024 #181}. SDT plays a vital role in the therapy of deep tumors, as ultrasound can
penetrate into deeper tissues. Radiotherapy, chemotherapy and immune therapy are also
extensively used to prevent tumor recurrence after surgical removal [14–16]. In recent years,
immune therapy has flourished as it aims at reactivating patients’ innate immune system
against cancer [17,18]. When combined with other therapeutic interventions, immune
therapy may provide a silver line against cancer.

The cGAS-STING pathway is considered a potential target for stimulating immune
system in patients and achieving a sustained immune response. With intracytoplasmic
DNA, cGAS-STING agonist can increase the production of interleukin 6 (IL-6), tumor
necrosis factor (TNF) and interferon (IFN) [19] and play a regulatory role in inflammation
and tumor treatment [20–22]. Deng et al. found that injecting cyclic dinucleotide (CDN)
intratumorally after radiotherapy can suppress tumor growth [23]. The cGAS-STING sig-
naling pathway has been extensively studied and adopted for tumor immune therapy [24].
However, administrating a cGAS-STING agonist at a high concentration can lead to sig-
nificant side effects [25]. It is necessary to find a method to precisely control cGAS-STING
activation. Moreover, the effectiveness of cGAS-STING agonists depends on the level of
STING expression [26]. When myeloid cells are depleted, the activity of cGAS-STING
agonists can be attenuated [27]. In addition, cytokine induced by cGAS-STING can elicit a
carcinogenetic impact on epithelial cells [28], and the prolonged overexpression of STING
can disrupt the homeostasis in the endoplasmic reticulum (ER), causing ER stress in T
cells and leading T-cell death [29]. Recently, Chen et al. reported the use of chitosan
hydrogels in photothermal therapy to precisely control the release of a STING agonist in
the tumor microenvironment (TME), inducing stable tumor immunity [30]. Yu et al. used
a photosensitizer, MHI148, and a STING agonist, 2′3′-cGAMP, to achieve diagnosis and
therapeutic effects [31]. Jiang et al. designed a material that used ultrasound to produce
singlet oxygen and release a STING agonist to activate tumor immunity [32]. By combining
PTT, PDT and SDT, the intrinsic drawbacks of cGAS-STING apoptosis can be mitigated.
These synergistic therapies cover a variety of tumors and have the possibility of long-term
immunity. The synergistic therapy of non-invasive therapy and immunotherapy is in line
with the future direction of tumor therapy. Especially the cGAS-STING pathway holds
great promise for immune therapy by mobilizing the patients’ innate immune system to
inhibit and eliminate tumors [33]. Some of the STING agonists have reached clinical trials
and we list them in Table 1. The reported trials are all in phase I or a combination of phase
I and phase II. In five trials, two have been terminated. Three trials are recruiting. The
results of E7766 showed dose-limiting toxicities and serious adverse events when the dose
escalation came to 600 mcg.

Table 1. Summary of clinical trials of a STING agonist published on the NIH website (https://
clinicaltrials.gov/ by 13 July 2024).

Clinical Trials ID Study Start Drug Sponsor Study Status Study Phase

NCT04144140 2020-02 E7766 Eisai Inc. (Tokyo, Japan) Terminated Phase I/Ib
NCT04609579 2020-11 SNX281 Stingthera, Inc. (Boston, MA, USA) Terminated Phase I
NCT05070247 2022-04 TAK-500 Takeda (Tokyo, Japan) Recruiting Phase I/II

NCT05387928 2022-06 KL340399
Sichuan Kelun Pharmaceutical

Research Institute Co., Ltd.
(Chengdu, China)

Recruiting Phase I

NCT06021626 2023-08 CRD3874-SI Memorial Sloan Kettering Cancer
Center (New York, NY, USA) Recruiting Phase I

Previous reviews focused on development in photothermal, photodynamic and sono-
dynamic cancer therapies. For PTT and PDT, most reviews were oriented from a material
perspective. Liu’s review provided a general overview of the characteristics of different
nanomaterials used in phototherapy and the methods scientists developed to enhance the
outcomes [34]. Yang et al. reported on nanomaterials used in SDT and their combination

https://clinicaltrials.gov/
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with immune therapies targeting the PD-1/PD-L1 pathway [35]. Moreover, there were
limited reviews that concentrated on the application of the cGAS-STING pathway in son-
odynamic therapy. Regarding the cGAS-STING pathway, most reviews concentrated on
the drug development, different ways to regulate it and its clinical prospects in various
diseases [36–38]. In this review, we illustrate the combination of the cGAS-STING pathway
with photothermal, photodynamic and sonodynamic physical methods in cancer therapy.
Relationship and current development of the cGAS-STING pathway to individual cancer
therapy method will be discussed in the following sections. We hope this review will
provide new insights into the synergistic effects of cGAS-STING agonists and new leads
for clinical cancer therapy.

2. cGAS-STING Signaling Pathway with Photothermal Therapy

Photothermal therapy (PTT) is a strategy that transfers photoenergy into heat to
ablate tumors through hyperthermal effects. Hyperthermia can inhibit tumor repair and
facilitate tumor immunity. Song et al. reported that hyperthermia could downregulate
oxygenation in tumors, leading to a suppressive environment for the tumor to repair. For
normal tissues, the hyperthermia effects were negligible [39,40]. Azocar et al. reported
that hyperthermia increased the sensitivity of human natural killer cells [41]. In 2007 and
2021, Ostberg et al. and Pan et al. reported that hyperthermia can promote the anti-tumor
effects of NK cells [42,43]. Burd et al. reported that steady heat could cause vascular
changes and induce tumor apoptosis [44]. Hyperthermia generated in PTT is mediated by
PTAs. PTAs are usually introduced into cells through nanoparticles, as nano PTAs have
a higher permeability and can be combined with other therapeutic materials [45]. The
surface of PTAs can be modified to control tissue persistence and toxicity [46]. Poursalehi
et al. designed chemically modified gold nanoparticles loaded with Doxorubicin, which
demonstrated 99% cellular uptake after 3 h [47]. Huilgol et al. reported that the combination
of hyperthermia with radiation can significantly improve the response rate of patients and
extend median survival [48]. Tang et al. reported using a photosensitive dimer to target
the tumor membrane and achieve a synergistic therapy of PTT and PDT [49]. Cell death
is followed by the release of tumor-associated antigens (TAAs) and damage-associated
molecular patterns (DAMPs). However, TAAs and DAMPs may not be effectively taken up
by dendritic cells (DCs) nor induce a T-cell response, as these processes are inhibited in the
TME [50].

Adding immune therapy can enhance the anti-tumor effects of photothermal therapy
(PTT) through activating immune system within the TME. The STING pathway is one of
the promising options for such a combination. By combining PTT with a STING agonist, the
maturation of DCs can be strengthened and cytotoxic T cells can be activated. Cyclic-GMP-
AMP (cGAMP) can directly bind to STING and activate the STING pathway [51]. Ishikawa
et al. demonstrated that STING is located in the upstream of TBK1/IRF3 and plays an
important role in IFN-β expression and innate immune activation [52]. Jiang et al. reported
that cGAMP-mediated STING/STAT3 can inhibit the activity, proliferation and invasion of
tumor cells and inhibit tumor progression through upregulating IL-2, TNF-α and IFN-γ by
cGAMP and downregulating CXCL8, BCL-2 and VEGFA to inhibit angiogenesis [53]. Koshy
et al. used liposomes as a delivery vehicle for cGAMP to improve the immune response
and achieve immune memory in mice. The injection of liposome-delivered cGAMP could
inhibit the growth of metastatic tumors while free drug displayed a limited effect [54]. The
theragnostic thermosensitive liposome (PLDD) also demonstrated great potential. Long
et al. developed a theragnostic thermosensitive liposome (PLDD) using a D-A-D conjugated
oligomer (DTTB) and 5,6-dimethylxanthenone-4-acetic acid (DMXAA)Long [55]. In this
combination, DTTB is a newly developed photothermal agent that has demonstrated a high
quantum yield and is being evaluated for the pharmaceutical properties of nanomedicine.
The PEGylation of DTTB can dramatically improve its blood circulation time and tumor
accumulation [56]. Demonstrated by Corrales et al., DMXAA, as a STING agonist, can lead
to tumor regression and stimulate strong anti-tumor immunity [57]. However, it showed a
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limited effect in clinical trials because it turned out to be agonist to mouse STING but not
human STING [58,59]. The combination of the photothermal agent DTTB with the STING
agonist DMXAA constituted a nanoplatform. When exposed to second near-infrared (NIR-
II) fluorescence, it could generate heat and lead to ICD, subsequently releasing DMXAA
from the thermosensitive liposome. This approach has shown considerable anti-tumor
efficiency and biosafety in tumor therapy [55]. Apart from liposomes, Chen et al. used
hydrogel to combine the STING agonist DMXAA and the PTA indocyanine green (ICD)
(Figure 1A). This hydrogel improved the intensity of ICD (Figure 1B). Combining with
DMXAA further improved the anti-tumor effect (Figure 1C) [30]. Ma et al. used the
STING agonist diABZIs and the PTA Croconaine dye IR1024 to develop a nanomedicine
named STING agonist-based photo-immuno-thernostic nanomedicine (SAPTN) (Figure 1D).
SAPTN could stimulate the tumor compared to normal tissue (Figure 1E) and lead to
sustained anti-tumor immunity when rechallenged by the same tumor cells (Figure 1F) [60].
In addition, metal ions are reported to stimulate the cGAS-STING pathway; for instance,
Mn2+ has been demonstrated to activate the immune system through this pathway. Wang’s
team found that Mn2+ can enhance the sensitivity of cGAS, thereby improving the ability to
respond to dsDNA in the cytoplasm. Their study showed that even at low concentration of
dsDNA, Mn2+ could promote the synthesis of the second messenger cGAMP and enhance
the affinity between cGAMP and STING [61]. Mn2+ and MoO4

2+ were reported to form a
nanoparticle named MMP NDs. MMP NDs could induce tumor cell ferroptosis directly or
through reducing the glutathione accumulated in tumor cells as well as activating the cGAS-
STING pathway. Furthermore, MMP NDs could stimulate IFN-γ secretion by CD8+ T cells
and inhibit the expression of GPX4 which promotes ferroptosis [62]. Lin et al. developed
a polydopamine-manganese-based nanomaterial [63]. In this report, polydopamine acts
as a photothermal agent, and Mn2+ can be released with glutathione to produce hydroxyl
radicals (·OH) and stimulate the cGAS-STING pathway. This results in the suppression of
86.7% of tumor cells and the production of more cytotoxic T cells compared to the negative
immune regulator Treg cells. Moreover, in the experiments of Xia et al. and Zheng et al.,
another PTA—Prussian blue—was combined with manganese and proved to be effective in
colon and breast tumor models [64,65]. These experiments represent that the combination
of PTT and STING agonists is a potential strategy for future cancer treatment. Synergistic
therapies of photothermal therapy and cGAS-STING agonists in recent studies are listed
Table 2 [30,55–57,60,63–71].

Before photothermal therapy (PTT) can be used clinically, several obstacles must be
addressed. First, light attenuation restricts the usage of PTT, especially for internal tumors,
where the therapeutic effect of PPT is limited. Additionally, the photosensitizers’ pharma-
cologic processes, for example, toxicity or metabolism, still require further study. Third,
Cherukula et al. reported that the effect of PTT might be limited to 7 days, accompanied
by side effects of increased immune tolerance in the tumor microenvironment. But they
also found possible therapeutic targets to solve this question [72]. In the experiment of Yue
et al., they use an agent named TMP195 to repolarize immunosuppressive tumor-associated
macrophages, which also provides a novel way to solve this question [73].
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Figure 1. The principles and results of two synergistic therapies of photothermal therapy and STING
agonist and their effect on tumor in vivo. (A) Schematic illustration of a synergistic therapy of the
photothermal transduction agent Indocyanine green (ICG) with the STING agonist DMXAA [30].
(B) Temperature development after the injection of ICG of different forms in vivo, the color represents
different temperature, and have been shown in the legend [30]. (C) Tumor growth in vivo after
photothermal therapy and a STING agonist alone and synergistic therapy. * p < 0.05 vs. control,
*** p < 0.001 vs. control [30]. Copyright 2023 American Chemical Society. (D) Schematic illustration
of a synergistic therapy of the photothermal transduction agent croconaine dye with the STING
agonist diABZIs using SAPTNs [60]. (E) The images of drug distribution in vivo after the injection of
SAPTNs with irradiation alone or with irradiation and the myeloperoxidase inhibitor PF1355, the
color represents different temperature and the connection can be seen in the legend [60]. (F) Average
volume of tumor reinjected in vivo after no treatment in the untreated group and SAPTNs plus PTT
group treated by a synergistic therapy of PTT and a STING agonist using SAPTNs. *** p < 0.001 vs.
control [60]. Copyright 2024 John Wiley and Sons.

3. cGAS-STING Signaling Pathway with Photodynamic Therapy

Photodynamic therapy (PDT) has been clinically approved for over 200 years, com-
monly used for superficial cancers and in situ cancers such as esophageal cancer [74], skin
cancer [75] and gynecologic malignant diseases [76]. For instance, Barrette’s esophagus
(BE) is known to progress to high-grade dysplasia (HGD) and adenocarcinoma [77]. In
Japan, PTT is applied for esophageal squamous cell carcinoma (ESCC) treatment. The
American College of Gastroenterology strongly recommends ablative therapy for residual
BE in patients with EMR specimens demonstrating HGD or intramucosal carcinoma. A
randomized phase III trial held by 30 centers and 485 patients reported that PDT, when
combined with chemotherapy, increases the complete ablation of HGD and reduces the
likelihood of adenocarcinoma development [78]. PDT utilizes a specific wavelength of
light to generate toxic production through photosensitizers (PS) with tolerable pain. Two
pathways contribute to cytotoxicity: the Type I pathway directly transfers electrons from
the PS to the oxygen molecule, producing superoxide anions such as free radicals and
reactive oxygen species; the Type II pathway involves energy transfer from the PS for
singlet oxygen generation [79,80]. Singlet oxygen can penetrate cellular membranes, dis-
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rupting protein and DNA. It can also generate damage-associated molecular patterns and
mediate the immune response [81]. PDT primarily affects tumor cells, vasculature and
the immune system [82]. Shi et al. reported the use of a light-emitting diode for conve-
nient, cost-effective and accurate PDT in gastrointestinal cancer treatment. Their point
LED-PDT can offer sufficient light density and induce tumor apoptosis and necrosis [83].
Zhang et al. reported a nano delivery system named R6RGD-CMβCD-se-se-Ce6/LND
(RCC/LND NPS), comprising the photosensitizer chlorin e6 (Ce6) and the chemothera-
peutic lonidamine (LND). This nanomaterial can disrupt the tumor extracellular matrix
(ECM), weaken anoikis resistance in triple-negative breast cancer and activate apoptotic
pathways [84]. After injection, the developed photosensitizers accumulate in vasculature
tissue [85]. The PS vasculature accumulation and damage can lead to an oxygen-deficient
environment, inhibiting the growth of the tumor. The photodynamic reaction can ablate the
tumor as well as strengthen tumor immunity [86]. This process includes innate immunity
and adaptive immunity. Immune cells, for example, neutrophils, macrophages, NK cells,
dendritic cells and T cells, are involved in the immune response [87]. The destruction
of tumor tissues creates an inflammatory environment and releases cytokines, leading to
dendritic cell (DC) accumulation and maturation. Mature DCs then phagocytose tumor
cells, return to lymph nodes, present antigens to CD8+ T cells and activate T-cell migration
to the tumor [88].

Studies have found that a synergistic therapy of photodynamic therapy (PDT) and
a STING agonist is viable. The cGAS-STING signaling pathway, activated during DNA
damage from ultraviolet irradiation or cisplatin treatment, induces cell apoptosis and is
associated with inflammation and cell senescence [89,90]. Jiang et al. further illuminated
the connection between cGAS and cell apoptosis, showing that cGAS inhibits the DNA
damage repair process. After DNA damage, cGAS is recruited to double-strand breaks,
interacting with PARP1 to hinder the formation of the PARP1–Timeless complex. This
inhibits homologous recombination, promotes tumor occurrence, accelerates genomic
instability and micronucleus formation and eventually leads to cell death [32,91]. Since
PDT can cause DNA damage, adding a STING activator can promote apoptosis in tumor
cells. ADU-S100 is a potent synthetic cyclic dinucleotide STING agonist [92]. But a recent
study showed its limited clinical effect [93]. Hao et al. reported that using PDT and the
STING agonist ADU-S100 can amplify the immune reaction then obtain a systemic immune
response and immune memory [94]. Increasing antigen presentation and the repolarization
of bone marrow-derived macrophages from the M1 to M2 phenotype have been observed.
Both in vivo and in vitro experiments show that this combination can hugely increase the
anti-tumor effects compared to monotherapy and demonstrates tumor resistance when
rechallenged with tumor cells. SR-717 is a non-nucleotide STING agonist mimicking
the structure of cGAMP and can induce a conformation change of STING to activate
it [95]. Zhou et al. developed a nanoparticle using a polymeric metal−organic framework
(PMOF) containing the photosensitizer Meso-tetra(carboxyphenyl) porphyrin (TCPP). The
formulated nanoparticle SR@PMOF combined PMOF and the STING agonist SR-717. After
irradiation, 1O2 produced by PDT can destroy the structure and release SR-717 into the
tumor (Figure 2A). The synergistic effect of photodynamic therapy and a STING agonist
can strengthen antigen presentation and the infiltration of CD8+ T cells and suppress
the growth of primary tumors (Figure 2B) and distant tumors (Figure 2C) [96]. Yu et al.
further demonstrated that a synergistic therapy of photodynamic therapy and a STING
agonist can promote an inflammatory response and tumor suppression (Figure 2D–F) [31].
In Table 2, we list the agents used in the synergistic therapy of photodynamic therapy and
a cGAS-STING agonist in recent studies [31,90,93–99].

Although photodynamic therapy (PDT) has been used in the clinic for a long time, it
is still not widely utilized. Issues still needs to be handled. As oxygen is important in the
therapy, the destruction of the vasculature can cause oxygen-deficiency in tumor tissues
and influence the therapeutic effect [85]. In addition, in clinical settings, adverse effects of
PDT are reported in the majority of people [78].
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Figure 2. The principle and result of two synergistic therapies of photodynamic therapy and STING
agonist on primary tumors and distant tumors in vivo. (A) Schematic illustration of a synergistic therapy
of the photosensitizer Meso-tetra(carboxyphenyl) porphyrin (TCPP) and STING agonist SR-717 [96].
Volume growth of a primary tumor (B) and distant tumor (C) when treated with a photodynamic material
polymeric metal−organic framework (PMOF) and SR-717 alone and a synergistic therapy of PDT and
a STING agonist by using a nanoparticles called SR@PMOF combining PMOF and a STING agonist
(SR-717), without light irradiation (-L) or with light irradiation (+L). ** p < 0.01 vs. control, *** p < 0.001 vs.
control [96]. Copyright 2023 American Chemical Society. (D) Schematic illustration of a synergistic therapy
of a nanoparticle named GM@P, consisting of a hydrophobic shell encapsulating the photosensitizer
MHI148 and the STING agonist 2′3′-cGAMP [31]. Tumor growth of primary tumors (E) and distant
tumors (F) after photothermal therapy using a nanoparticle with MHI148 (M@P) alone without irradiation
(Group B: M@P), with irradiation (Group D: M@P + light irradiation), with a free STING agonist and
irradiation (group E: M@P + light irradiation + 2′3′-cGAMP), a STING agonist alone (Group C: 2′3′-
cGAMP), and a synergistic therapy of GM@P (Group F: GM@P + light irradiation) and a control group
(Group A). * p < 0.05 vs. control, ** p < 0.01 vs. control [31]. Copyright 2024 American Chemical Society.

4. cGAS-STING Signaling Pathway with Sonodynamic Therapy

Ultrasound is widely used in the clinic for diagnosis and therapy due to its excellent
tissue penetration and ability to accumulate sufficient energy for thermal effects [100]. For
tumor treatment, sonodynamic therapy (SDT) has more advantages over PDT as light has a
limited penetration for deeper tissue. SDT can be categorized based on the intensity of the
ultrasound. Low-intensity ultrasound, for instance, can be employed in physiotherapy to heat
specific structures. Low-intensity ultrasound (0.51 W/cm2, 1.0 MHz, 10 min) was reported
for use on mouse squamous cell carcinoma (SCC), showing an anti-tumor effect [101]. High-
intensity ultrasound (ranging from 103 to 104 W cm−2 with frequencies from 0.5 to 10.0 MHz)
of 1.5 MHz is most commonly used for cancer treatment. Similar to photosensitizers, sonosen-
sitizers can be activated by ultrasound to produce reactive intermediates that release free
radicals. In addition, cavitation is also the main theory regarded as the mechanism of SDT. In
the process of cavitation, bubbles are created when irradiated by ultrasound. These bubbles
can expand and collapse at different phases. When these bubbles collapse, the temperature
and pressure increase and oxidants are formed [102]. The resulting oxidants can induce the
generation of ROS and the leakage of mitochondrial DNA in cytosol, damaging tumor tissues
and vasculature [103]. In addition, cavitation can produce shock waves and shear stress to
directly cause mechanical damage to cancer cells [104]. Wood et al. reported that low-intensity
SDT could cause an antivascular effect in tumor tissues, creating an ischemic environment
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and leading to cell death [105,106]. SDT has been used to ablate tumors at a high temperature
from 60 ◦C to about 95 ◦C in prostate cancer, hepatic cancer and esophageal cancer [105]. SDT
uses sonosensitizers that harness ultrasound energy to eliminate the biofilm of cancer cells.
These sonosensitizers also possess imaging capabilities, aiding in the precise delineation of
target areas [107]. Wang et al. combined SDT with photodynamic therapy in a clinical trial for
patients with advanced breast cancer, observing cancer degradation [108].

In sonodynamic therapy (SDT), cell apoptosis triggers the release of tumor-derived
DNA. However, the immune system in TME is suppressive. This issue can be addressed
by synergistic therapy with cGAS-STING agonists. cGAMP and other STING agonists
can directly activate DC and enhance the presentation of related antigens to CD8+ T cells
in vitro, thus promoting the activation of CD8+ T cells and their killing effect on tumor cells.
cGAMP and other STING agonists can directly activate DCs and enhance the presentation of
related antigens to CD8+ T cells in vitro [54], thus promoting the activation of CD8+ T cells
and their killing effect on tumor cells. The use of a STING agonist can enhance the activation,
cytotoxicity and anti-tumor effects of natural killer (NK) cells independently of CD8+ T
cells, thus improving the clearance of tumors resistant to CD8+ T cells [109]. Using a STING
agonist can revive the silenced immune system in “cold” tumors, turning them into “hot” tumors
by inducing the infiltration of CD8+ T cells to activate anti-tumor immunity, thereby improving
tumor clearance [110]. Reported by Lei et al., a cobalt-based nanoagonist was combined with
the mitochondria-targeting ligand triphenyl phosphonium (TPP). TPP can target mitochondria
and induce the leakage of mitochondrial DNA with the involvement of SDT. In the presence of
cobalt, STING activation is more effective. And controllable activation of the immune system can
be achieved, even in bone and metastatic tumors [111] (Figure 3). Jiang et al. and Yu et al. used
a semiconducting polymer to combine with an orally available agonist agent MSA-2 [112–114].
Yu et al. designed polymeric STING pro-agonists to target the tumor microenvironment
with elevated glutathione expression and the improved release of MSA-2 [113]. Lu et al.
use the clinically approved sonosensitizer and STING agonist SR-717 [95,115]. An anaerobic
microorganism of Bifidobacteria Longum (BiL) was designed, demonstrated sono-sensitivity in
anaerobic environments and was named HMME@BiL. HMME@BiL demonstrated high efficacy
and selectivity and good biocompatibility against malignant tumors [116]. Tian et al. used zinc
oxide, zinc ions as sonosensitizer and a STING agonist (PZnO@DOX) [117–119]. PZnO@DOX
was proved to modulate the immunogenic cell death induced by chemotherapy [119]. We
summarize the synergistic therapy of sonodynamic therapy and cGAS-STING agonists of recent
studies in Table 2 [95,112–120].

While scientists have reported cases using sonodynamic therapy (SDT) with other therapies,
a systemic analysis of the therapeutic effects of SDT on cancer and the immune system is still
required. Pain could occur in patients when energy accumulates in deep organs especially in the
bones [108]. Moreover, no entirely suitable sonosensitizer has been developed for clinical use.

Table 2. Overview of synergistic therapy of PDT, PTT and SDT with cGAS-STING agonists.

Therapy References

Photothermal Therapy

Photothermal Transduction Agents STING agonist

Indocyanine green DMXAA [30,57,66]
Croconaine dye IR1024 DiABZIs [60,67,68]
DTTB DMXAA [55–57]
Prussian blue Manganese [64,65,69,70]
Polydopamine Manganese [63,70,71]

Photodynamic Therapy

Photosensitizers STING agonist

Verteporfin ADU-S100 [93,94,97]
Meso-tetra(carboxyphenyl) porphyrin (TCPP) SR-717 [95,96,98]
MHI148 2′3′-cGAMP [31,90,99]

Sonodynamic Therapy

Sonosensitizers STING agonist

Semiconducting polymer MSA-2 [112–114,120]
Hematoporphyrin monomethyl ether SR-717 [95,115,116]
Zinc oxide Zinc ions [117–119]



Molecules 2024, 29, 3704 9 of 16
Molecules 2024, 29, x FOR PEER REVIEW 9 of 18 
 

 

 

Figure 3. The principle of a synergistic therapy of sonodynamic therapy and a cGAS-STING agonist 

using a material consisting of triphenyl phosphonium (TPP) and sonodynamic cobalt organic frame-

work nanosheets (TPP@CoTCPP) and some experimental results. (A) Graphic illustration of 

TPP@CoTCPP [111]. (B) Comparison of the volume of ipsilateral and contralateral tumor in vivo in 

different groups treated by sonodynamic therapy and a STING agonist alone and a synergistic ther-

apy of sonodynamic therapy and a cGAS-STING agonist. ** p < 0.01 vs. control [111]. (C) Tumor 

volume of sonodynamic therapy alone and synergistic therapy [111]. Copyright 2023 Elsevier. 

Table 2. Overview of synergistic therapy of PDT, PTT and SDT with cGAS-STING agonists. 

Therapy   References 

Photothermal Therapy 

Photothermal Transduction Agents STING agonist  

Indocyanine green  DMXAA [30,57,66] 

Croconaine dye IR1024  DiABZIs [60,67,68] 

DTTB  DMXAA [55–57] 

Prussian blue Manganese [64,65,69,70] 

Polydopamine Manganese [63,70,71] 

Photodynamic Therapy 

Photosensitizers STING agonist  

Verteporfin ADU-S100 [93,94,97] 

Meso-tetra(carboxyphenyl) porphyrin (TCPP) SR-717 [95,96,98] 

MHI148 2′3′-cGAMP [31,90,99] 

Sonodynamic Therapy 

Sonosensitizers STING agonist  

Semiconducting polymer MSA-2 [112–114,120] 

Hematoporphyrin monomethyl ether  SR-717 [95,115,116] 

Zinc oxide Zinc ions [117–119] 

Figure 3. The principle of a synergistic therapy of sonodynamic therapy and a cGAS-STING ago-
nist using a material consisting of triphenyl phosphonium (TPP) and sonodynamic cobalt organic
frame-work nanosheets (TPP@CoTCPP) and some experimental results. (A) Graphic illustration of
TPP@CoTCPP [111]. (B) Comparison of the volume of ipsilateral and contralateral tumor in vivo
in different groups treated by sonodynamic therapy and a STING agonist alone and a synergistic
therapy of sonodynamic therapy and a cGAS-STING agonist. ns indicates not significant, ** p < 0.01
vs. control [111]. (C) Tumor volume of sonodynamic therapy alone and synergistic therapy [111].
Copyright 2023 Elsevier.

5. Summary and Outlook

Recent progress has emerged with promising solutions to advance photothermal,
photodynamic and sonodynamic cancer therapy. Addressing the challenges of limited
light penetration and oxygen deficiency in the tumor environment, Tian et al. utilized a
singlet oxygen battery (SOB) to release ROS independently of oxygen and light and to
control the release within the tumor [121]. Shaw et al. also reported that by modulating
the concentration and distribution of nanoparticles and the range of irradiation, thermal
damage can be achieved for tumors at depths of up to 9 mm [122]. But we still have a
long way to go in clinical cancer therapy, particularly in the aspects of therapeutic efficacy,
material safety, minimal side effects, etc. In addition, some agents in PTT, PDT and SDT
have reached clinical trials, and we have listed some of them in Table 3. For photothermal
therapy, only one reported trial has reached phase III. For photothermal therapy, the safety
issue still needs more clinical confirmation. For photodynamic therapy, four of them have
reached phase II and one has reached phase IV. Three trials are recruiting and four have
not started to recruit. For sonodynamic therapy, three trials have reached phase I and two
trials have reached phase II. Three out of five clinic trials are under active recruiting.
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Table 3. Summary of photothermal, photodynamic and sonodynamic therapies in clinical trials published on the NIH website (https://clinicaltrials.gov/ by
13 July 2024).

Therapy Clinical Trials ID Study Start Report Title Sponsor Study Status Study Phase

Photothermal
Therapy

NCT01679470 2012-10 Efficacy Study of AuroLase Therapy in Subjects with
Primary and/or Metastatic Lung Tumors

Nanospectra Biosciences, Inc.
(Houston, TX, USA) Terminated Not Applicable

NCT03202446 2016-06
Randomized Clinical Trial Evaluating the Use of the
Laser-Assisted Immunotherapy (LIT/inCVAX) in
Advanced Breast Cancer

Eske Corporation S.A.C (Lima,
Peru) Terminated Phase III

Photodynamic
therapy

NCT05386056 2022-12
Pembrolizumab and Photodynamic Therapy in
Previously Treated Metastatic Esophageal Squamous Cell
Carcinoma

Peking University (Beijing, China) Not Yet Recruiting Phase II

NCT05551299 2023-02
Treatment of Non-resectable Bile Duct Cancer with
Radiofrequency Ablation or Photodynamic Therapy
(CARP)

University of Leipzig (Leipzig,
Germany) Recruiting Phase IV

NCT05736406 2024-02 A Dose-escalation Clinical Study of Intraoperative
Photodynamic Therapy of Glioblastoma

Hemerion Therapeutics
(Villeneuve d’Ascq, France) Recruiting Phase I/II

NCT05374915 2024-02
Efficacy and Safety Study of REM-001 Photodynamic
Therapy for Treatment of Cutaneous Metastatic Breast
Cancer (CMBC)

Kintara Therapeutics, Inc. (San
Diego, CA, USA) Recruiting Phase II

NCT06381154 2024-06
Photoradiation with Verteporfin to Facilitate
Immunologic Activity of Pembrolizumab in Unresectable,
Locally Advance or Metastatic Pancreatic Cancer

Mayo Clinic (Scottsdale, AZ, USA) Not Yet Recruiting Phase II

NCT06306638 2024-07
Interstitial Photodynamic Therapy Following Palliative
Radiotherapy in Treating Patients with Inoperable
Malignant Central Airway Obstruction

Roswell Park Cancer Institute
(Buffalo, NY, USA) Not Yet Recruiting Phase I/II

NCT06437288 2024-07 Hematoporphyrin Photodynamic Therapy for
Esophageal Cancer

Sun Yat-sen University
(Guangzhou, China) Not Yet Recruiting Phase II

Sonodynamic therapy

NCT04559685 2021-03 Study of Sonodynamic Therapy in Participants with
Recurrent High-Grade Glioma Nader Sanai (Phoenix, AZ, USA) Recruiting Early Phase I

NCT05362409 2022-06 Study to Evaluate 5-ALA Combined with CV01 Delivery
of Ultrasound in Recurrent High Grade Glioma

Alpheus Medical, Inc.
(Chanhassen, MN, USA)

Active, Not
Recruiting Phase I

NCT05123534 2022-08
A Phase 2 Study of Sonodynamic Therapy Using
SONALA-001 and Exablate 4000 Type 2.0 in Patients
With DIPG

SonALAsense, Inc. (Berkeley, CA,
USA) Recruiting Phase II

NCT04845919 2023-02 Sonodynamic Therapy with ExAblate System in
Glioblastoma Patients (Sonic ALA)

Fondazione I.R.C.C.S. Istituto
Neurologico Carlo Besta (Milan,
Italy)

Not Yet Recruiting Phase II

NCT06039709 2024-01 Sonodynamic Therapy in Patients with Recurrent GBM
(GBM 001)

Shayan Moosa, MD
(Charlottesville, VA, USA) Recruiting Phase I

https://clinicaltrials.gov/
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We hope this review will provide a glimpse into a synergistic effect with cGAS-STING
agonists and their potential in clinic application. Combining photothermal, photody-
namic and sonodynamic therapeutic methods with cGAS-STING agonists can help to
overcome the blockade of the immune-suppressive environment within tumors. In turn,
those therapeutic methods can strengthen the stimulation of the cGAS-STING pathway
as they can induce cell death and the release of tumor-associated antigen. In addition,
side effects caused by cGAS-STING agonists can be accurately controlled by synergistic
application of these methods. These three kinds of synergistic therapy can be applied in
various tumors and lead to an efficient, persistent systemic anti-tumor effect compared
to monotherapy. They shine a light on a new direction of clinical application along with
chances and challenges. In conclusion, the combination of photothermal, photodynamic
and sonodynamic therapeutic methods with cGAS-STING agonists could offer more precise
and safe approaches with broad future prospects for cancer therapy.
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