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Abstract: [(Bn-tpen)FeII(MeCN)](ClO4)2, containing the pentadentate Bn-tpen–N-benzyl-N,N′,N′-
tris(2-pyridylmethyl)-1,2-diaminoethane ligand, was studied in the oxygenation of cyclohexene and
limonene using low-pressure dioxygen (0.2 atm air or 1 atm pure O2) in acetonitrile. 2-Cyclohexen-
1-one and 2-cyclohexen-1-ol are the main products of cyclohexene oxidations, with cyclohexene
oxide as a minor product. Limonene is oxidized to limonene oxide, carvone, and carveol. Other
oxidation products such as perillaldehyde and perillyl alcohol are found in trace amounts. This
catalyst is slightly less active than the previously reported [(N4Py)FeII(MeCN)](ClO4)2 (N4Py–N,N-
bis(2-pyridylmethyl)-N-(bis-2-pyridylmethyl)amine). Based on cyclic voltammetry experiments, it is
postulated that [(Bn-tpen)FeIV=O]2+ is the active species. The induction period of approx. 3 h during
cyclohexene oxygenation is probably caused by deactivation of the reactive Fe(IV)=O species by the
parent Fe(II) complex. Equimolar mixtures of Fe(II) salt and the ligand (in situ-formed catalyst) gave
catalytic performance similar to that of the synthesized catalyst.

Keywords: dioxygen activation; iron(II)-Bn-tpen complex; cyclohexene oxidation; limonene oxidation;
pentadentate ligands

1. Introduction

The catalysis of hydrocarbon oxidation processes leading to industrially sound prod-
ucts remains a challenging problem in chemistry. Cyclohexene and limonene are abundant
raw materials whose oxidation leads to valuable intermediates used in the polymer, phar-
maceutical, food, and fragrance industries, as well as surfactant industries [1–9]. Molecular
oxygen (dioxygen) is an attractive oxidant for both environmental and economic reasons.

In our recent article [1], we have reported that the [(N4Py)FeII(MeCN)](ClO4)2 complex
[N4Py–N,N-bis(2-pyridylmethyl)-N-(bis-2-pyridylmethyl)amine] (Scheme 1a) in acetoni-
trile (MeCN) catalyzes the oxidation of cyclohexene and limonene by dioxygen. Cyclohex-
ene was oxidized mainly to 2-cyclohexen-1-one and 2-cyclohexen-1-ol; cyclohexene oxide
was formed in much smaller amounts (Scheme 2).
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to oxidation of organic substrates, is provided in our previous article [1]. In addition, the 
structures of both complexes and their adducts with oxygen as well as their 
physicochemical properties have been characterized in detail. Table 1 summarizes the 
papers presenting the properties of the complexes with both ligands. 

Table 1. A list of papers that present the physicochemical properties of iron complexes with the Bn-
tpen and N4Py ligands determined by different analytical methods. 

Complexes 
Analytical Methods  

L–Bn-tpen 
Analytical Methods  

L–N4Py 

[LFeII]2+ UV–Vis [11], NMR [12], CV [12] 
UV–Vis [13–15], NMR [12,14,16], EPR [16], EXAFS 

[10], CV [1,12] 

[LFeIV=O]2+ 
UV–Vis [10,17–20], EXAFS [10], NMR [21], 
Mössbauer [10,17,20], ESI-MS [17,19], CV 

[19,22] 

UV–Vis [10,17–20,23], X-ray [10,21], EXAFS [10], 
NMR [21], Mössbauer [17,20], CV [1,19,22], ESI-

MS [17] 

[LFeIII–OOH]2+ 
UV–Vis [11,12,24], EPR [12,25–27], ESI-MS 

[25], Mössbauer [26,27] 
UV–Vis [12–14,16,27], EPR [12–14,16,27], EXAFS 

[27], Mössbauer [26,27] 
L—ligand, UV–Vis—Ultraviolet–Visible Spectroscopy, NMR—Nuclear Magnetic Resonance 
Spectroscopy, CV—Cyclic Voltammetry, EPR—Electron Paramagnetic Resonance Spectroscopy, 
EXAFS—Extended X-Ray Absorption Fine Structure Spectroscopy, ESI-MS—Electrospray 
Ionization Mass Spectrometry. 

The analysis of the data presented in the articles listed in Table 1 generally shows 
close similarities between the physicochemical properties of the complexes with the Bn-
tpen and N4Py ligands. The same observations have been reported for the reactivity of 
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The oxidation of limonene led to limonene oxide, carvone, and carveol as the main
products. Perillaldehyde and perillyl alcohol were also present in the products, but in trace
amounts (Scheme 3).
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Scheme 3. Products of limonene oxidation with dioxygen catalyzed by [(N4Py)FeII]2+.

We have postulated that the simultaneous combination of [(N4Py)FeII]2+ dioxygen
and substrate causes the formation of the iron(IV)-oxo adduct [(N4Py)FeIV=O]2+, and the
adduct initiates the catalytic cycle.

The [(Bn-tpen)FeII(MeCN)](ClO4)2 complex [Bn-tpen–N-benzyl-N,N′ ,N′-tris(2-
pyridylmethyl)-1,2-diaminoethane (Scheme 1b)] has been reported to have properties
similar to those of the [(N4Py)FeII]2+ complex. In reaction with iodosobenzene (PhIO),
the [(Bn-tpen)FeII]2+ complex also forms the iron(IV)-oxo adduct [10]. Both complexes
have been intensively investigated, and a detailed discussion of their properties, also
in relation to oxidation of organic substrates, is provided in our previous article [1]. In
addition, the structures of both complexes and their adducts with oxygen as well as their
physicochemical properties have been characterized in detail. Table 1 summarizes the
papers presenting the properties of the complexes with both ligands.

Table 1. A list of papers that present the physicochemical properties of iron complexes with the
Bn-tpen and N4Py ligands determined by different analytical methods.

Complexes Analytical Methods
L–Bn-tpen

Analytical Methods
L–N4Py

[LFeII]2+ UV–Vis [11], NMR [12], CV [12] UV–Vis [13–15], NMR [12,14,16], EPR
[16], EXAFS [10], CV [1,12]

[LFeIV=O]2+
UV–Vis [10,17–20], EXAFS [10],

NMR [21], Mössbauer [10,17,20],
ESI-MS [17,19], CV [19,22]

UV–Vis [10,17–20,23], X-ray [10,21],
EXAFS [10], NMR [21], Mössbauer
[17,20], CV [1,19,22], ESI-MS [17]

[LFeIII–OOH]2+
UV–Vis [11,12,24], EPR
[12,25–27], ESI-MS [25],

Mössbauer [26,27]

UV–Vis [12–14,16,27], EPR [12–14,16,27],
EXAFS [27], Mössbauer [26,27]

L—ligand, UV–Vis—Ultraviolet–Visible Spectroscopy, NMR—Nuclear Magnetic Resonance Spectroscopy, CV—
Cyclic Voltammetry, EPR—Electron Paramagnetic Resonance Spectroscopy, EXAFS—Extended X-Ray Absorption
Fine Structure Spectroscopy, ESI-MS—Electrospray Ionization Mass Spectrometry.

The analysis of the data presented in the articles listed in Table 1 generally shows close
similarities between the physicochemical properties of the complexes with the Bn-tpen
and N4Py ligands. The same observations have been reported for the reactivity of the
complexes. For example, the sulfoxidation of aryl 1-methyl-1-phenylethyl sulfides by
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iron(IV)-oxo complexes with both ligands occurs via an electron transfer−oxygen rebound
mechanism and not through direct oxygen transfer [28]. Similarly, iron(II) complexes of
both ligands are potent inhibitors of the 20S proteasome [29]. Iron(IV)-oxo complexes
mimic flavone synthase enzymes that oxidize flavanones to flavones [30,31]. In the last
case, the [(Bn-tpen)FeIV=O]2+ complex is much more efficient, whereas in the previous
cases, the differences between the complexes are not as strong.

The rate constants of electron transfer from a series of electron donors to various high-
valent metal oxo complexes have been evaluated in light of Marcus theory to determine
the reorganization energy for electron transfer [32]. The values for [(Bn-tpen)FeIV=O]2+

and [(N4Py)FeIV=O]2+ were the highest, with the value for the last complex approximately
0.2 eV higher. Based on EXAFS measurements, it has been reported [10] that in the series of
complexes [LFeII]2+, [LFeIII–OOBu-t]2+, and [LFeIV=O]2+, for L = N4Py, five nitrogen atoms
are located in the first coordination sphere of iron with a small range of Fe–N bond lengths.
For L = Bn-tpen, greater variability in the length of Fe–N bonds is observed, and the first
coordination sphere contains four nitrogen atoms; the same behavior was observed for these
complexes with the tetradentate ligand TPA [TPA–N,N,N-tris(2-pyridylmethyl)amine]. On
the other hand, it has been shown [33] that in the [(N4Py)FeII]2+ complex, one nitrogen
atom of the N4Py ligand can free the iron ion coordination site for a water molecule or
hydrogen ion.

An interesting observation on the transformation of [(Bn-tpen)FeIII(OOH)]2+ in the
presence of acids has been reported [34]. In acetonitrile, the addition of an acid with a
value of pKa greater than 8.5 causes homolysis of the O–O bond, producing an iron(IV)-oxo
species and a hydroxyl radical, whereas in the presence of an acid with pKa value less
than 8.5, a highly reactive iron(V)-oxo species and a water molecule are formed through
proton-assisted O–O bond heterolysis.

Taking into account the above considerations, we have decided to use the [(Bn-
tpen)FeII]2+ complex as a catalyst for the oxidation of cyclohexene and limonene with
dioxygen. To the best of our knowledge, the complex has not been used in the activation
of dioxygen for the oxidation of cyclohexene and limonene. Only peroxo and hydroper-
oxo complexes, [(Bn-tpen)FeIII–O2]+ and [(Bn-tpen)FeIII–OOH]2+, respectively, have been
reported to oxidize cyclohexene [35].

2. Results and Discussion
2.1. Oxidation of Cyclohexene

When transition metal complexes are used as homogeneous catalysts in solution, the
question usually arises of whether the application of the catalyst formed in situ by mixing
stoichiometric amounts of ligand and a simple salt of metal is comparable to the use of the
synthesized metal complex. Therefore, we have performed the oxidation of cyclohexene
using both forms of the catalyst.

Cyclohexene is oxidized to ketone (2-cyclohexen-1-one), alcohol (2-cyclohexen-1-ol),
and epoxide by dioxygen in the presence of [(Bn-tpen)FeII]2+ as a catalyst. The concentra-
tions of the products obtained after a 24 h reaction time in a continuous flow of dioxygen
or air in the presence of different concentrations of substrate and synthesized catalyst
are presented in Table 2. For example, using 1 M cyclohexene and 1 mM of the catalyst
in the dioxygen atmosphere, 120 mM ketone, 50 mM alcohol, and 11 mM epoxide were
obtained, which means that 0.18 M of the products were formed with 181 product/catalyst
turnovers. The yield is slightly lower than reported for [(N4Py)FeII]2+ catalysts under the
same experimental conditions, where 114 mM ketone, 77 mM alcohol, and 10 mM epoxide
were obtained, giving 201 turnovers [1]. However, the present system is slightly more
selective. Generally, the amount of alcohol formed is less than half that of ketone.
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Table 2. Oxidation of cyclohexene with dioxygen (pO2 = 1 atm) and air (pO2 = 0.2 atm) in MeCN,
catalyzed by [(Bn-tpen)FeII]2+. Reaction time 24 h.

Catalyst,
mM

Substrate,
M

O2,
atm

Ketone a,
mM

Ketone b,
mM

Alcohol a,
mM

Alcohol b,
mM

Epoxide a,
mM

Epoxide b,
mM

TON a TON b

0.5 1 1 116 113 46 35 12 14 348 324
0.5 1 0.2 110 118 48 44 10 15 336 354
1 c 1 1 120 138 50 41 11 18 181 197
1 d 1 0.2 115 115 49 51 8 7 172 173
2.5 1 1 96 111 34 20 4 12 54 57
2.5 1 0.2 80 98 20 37 7 4 43 56
5 1 1 93 84 38 16 4 3 27 21
5 1 0.2 72 65 13 23 3 2 18 18

7.5 1 1 76 48 28 15 3 1 14 9
7.5 1 0.2 62 42 20 9 2 1 11 7
10 1 1 72 23 20 6 2 1 9 3
10 1 0.2 47 21 6 5 1 1 5 3
1 0.5 1 51 43 7 8 5 6 63 57
1 0.5 0.2 38 42 12 10 5 6 55 58

1 c 1 1 120 138 50 41 11 18 181 197
1 d 1 0.2 115 115 49 51 8 7 172 173
1 1.5 1 182 144 47 43 25 23 254 210
1 1.5 0.2 145 143 44 54 26 20 215 217
1 2 1 218 174 94 70 30 28 342 272
1 2 0.2 196 170 138 56 22 21 356 247

a—synthesized [(Bn-tpen)FeII]2+; b—[(Bn-tpen)FeII]2+ formed in situ; c,d—data from the same experiments,
respectively; TON—turnover number—product molecules per catalyst molecule.

Relatively high concentrations of the substrate have been used to avoid further ox-
idation of the products formed. We have previously reported [36] that under the same
experimental conditions, the oxidation of cyclohexene did not occur in the absence of a
catalyst, and in the presence of uncomplexed iron(II), only traces of ketone and alcohol
were detected.

From the data presented in Table 2, it follows that there is no substantial difference
in the reaction yields between the two forms of the catalyst used, i.e., synthesized (see
Chemicals and Reagents) and formed in situ after mixing equimolar amounts of Bn-tpen
and Fe(ClO4)2·6H2O, especially for their lower concentrations. It is necessary to realize
that by the use of hydrated iron salt, water is introduced to the system. For the highest
concentration of catalyst investigated, taking into account the amount of water in the
solvent (~0.02%), the total water content is approximately equal to 0.16%. Obviously, such
amount of water does not influence the investigated process. This is in agreement with
our previous finding that water content up to 1.1% in MeCN does not change the redox
properties of the FeIII/FeII couple [37].

For low concentrations of the catalyst (0.5–2.5 mM), the product yields do not depend
significantly on its concentration. The further increase in the catalyst concentration causes
a decrease in the amounts of the products formed. The effect was observed in our previous
studies on the activation of dioxygen by transition metal complexes and was caused by the
deactivation of the catalysts used [1,38]. Another interesting observation is that the use of
either dioxygen or air as an oxidant gives very similar amounts of the products.

Figure 1 presents the dependence of the concentrations of the products on time for the
oxidation of 1 M cyclohexene with dioxygen and air catalyzed by 1 mM synthesized [(Bn-
tpen)FeII]2+ in acetonitrile. For both dioxygen and air used as oxidants, an induction period
can be observed in the product profiles. Similar behavior was observed when the catalyst
prepared in situ was used under the same experimental conditions. The induction period
has previously been observed during the oxidation of limonene by dioxygen catalyzed
by the [(bpy)2MnII]2+ (bpy–2,2′-bipyridine) complex in acetonitrile [38] but not for iron
complexes. When 10 mM tert-butyl hydroperoxide (t-Bu–OOH) or hydrogen peroxide
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(HOOH) was introduced into the system at the beginning of the experiment, the induction
period was not observed (Figure 2).
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Figure 2. Product concentrations over time for the oxidation of 1 M cyclohexene with 10 mM (a)
t-Bu–OOH and (b) HOOH in MeCN, in the presence of 1 mM synthesized [(Bn-tpen)FeII]2+. The
reaction was carried out in an air atmosphere (pO2 = 0.2 atm).

The product profiles indicate that the concentration of alcohol decreases slightly with
time. This is caused by the further oxidation of the formed alcohol. In fact, oxidation
of 50 mM of alcohol (the mean amount of alcohol formed after 24 h during cyclohexene
oxidation) in the presence of 1 mM synthesized [(Bn-tpen)FeII]2+ gives 5 mM and 4 mM of
ketone after 24 h for dioxygen and air, respectively.

The existence of the induction period and the S-shaped product profiles could indi-
cate that an autocatalytic mechanism occurs. It has been suggested that the presence of
alcohol facilitates the formation of iron(IV)-oxo species during the autocatalytic oxidation
of iron(II) [39]. In this case, in the presence of a hydrocarbon, a corresponding organic
hydroperoxide should also be formed. However, during cyclohexene oxidation in the
presence of 10 mM of 2-cyclohexen-1-ol, an induction period was also present (Figure S1).
Furthermore, the introduction of triphenylphosphine before the analysis of the reaction
mixture (Shul’pin test [40], also for alkenes [41]) only slightly increased the amount of alco-
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hol (within experimental error), indicating that hydroperoxide does not play a substantial
role in the reaction mechanism (Figures S2 and S3).

2.2. Oxidation of Limonene

Because in the case of cyclohexene oxidation, the amounts of products obtained using
synthesized and in situ forms of the catalyst do not differ substantially, the experiments for
limonene oxidation were performed using only the catalyst formed in situ. [(Bn-tpen)FeII]2+

formed in situ also catalyzes the oxidation of limonene by dioxygen. The main products
are limonene oxide, carvone, and carveol. Perillaldehyde and perillyl alcohol are formed in
trace amounts. Table 3 presents the product concentrations obtained after 24 h reaction time,
using dioxygen and air as oxidants, for different concentrations of catalyst and substrate.

Table 3. Oxidation of limonene with dioxygen (pO2 = 1 atm) and air (pO2 = 0.2 atm) in MeCN,
catalyzed by [(Bn-tpen)FeII]2+ formed in situ. Reaction time 24 h.

Catalyst,
mM

Substrate,
M

O2,
atm

Limonene
Oxide,

mM

Carvone,
mM

Carveol,
mM

Perillaldehyde,
mM

Perillyl
Alcohol,

mM
TON a

0.5 1 1 69 41 18 0 2 260
0.5 1 0.2 55 32 20 0 0 214
1 b 1 1 62 38 15 2 2 119
1 c 1 0.2 59 36 20 3 1 119
2.5 1 1 56 37 16 2 4 46
2.5 1 0.2 54 32 20 2 3 44
5 1 1 50 35 16 1 1 21
5 1 0.2 44 28 20 0 0 18

7.5 1 1 56 30 15 1 2 14
7.5 1 0.2 43 24 19 0 0 11
10 1 1 59 33 16 2 3 11
10 1 0.2 47 27 19 0 1 9
1 0.5 1 34 17 7 0 1 59
1 0.5 0.2 34 16 9 0 0 59

1 b 1 1 62 38 15 2 2 119
1 c 1 0.2 59 36 20 3 1 119
1 1.5 1 69 50 30 1 3 153
1 1.5 0.2 62 38 26 2 4 132
1 2 1 80 48 24 3 3 158
1 2 0.2 71 36 32 1 2 142

a—TON (turnover number—product molecules per catalyst molecule), b,c—data from the same experiments,
respectively.

For all experimental conditions, the amount of the products formed, in decreasing
order, was limonene oxide > carvone > carveol. For example, the combination of 1 mM
catalyst and 1 M substrate in a dioxygen atmosphere after 24 h gave 62 mM limonene oxide,
38 mM carvone, 15 mM carveol, 2 mM perillaldehyde, and 2 mM perillyl alcohol, meaning
that approximately 0.12 M substrate had reacted with 119 product/catalyst turnovers. The
yield obtained was lower than when [(N4Py)FeII]2+ was used as the catalyst. In this case,
in the same experimental conditions, 0.18 M limonene reacted with 181 turnovers [1].

As follows from Table 3 for all catalyst concentrations investigated (0.5–10 mM), its
concentration does not have a substantial influence on the amount of products formed.
Generally, there were no significant differences in the concentrations of the products
depending on the use of dioxygen or air as an oxidant. The amounts of products formed
increased proportionally to the substrate concentration.

From the time profiles of the product concentrations presented in Figure 3, it follows
that the dependencies are almost linear up to 24 h reaction time. After this time, plateaus
start to form for all products. The striking difference between the oxidation of cyclohexene



Molecules 2024, 29, 3755 7 of 16

and limonene under the same experimental conditions is the lack of an induction period
for limonene.
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2.3. Electrochemical Properties of the [(Bn-tpen)FeII]2+ Complex

Cyclic voltammetry provides useful information on the interaction in the cata-
lyst/substrate/oxidant system. Figure 4 illustrates the electrochemical behavior of the
synthesized [(Bn-tpen)FeII]2+ complex in acetonitrile in a wide potential window.
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Figure 4. Cyclic voltammograms of 5 mM [(Bn-tpen)FeII(MeCN)](ClO4)2 in MeCN containing 0.1 M
(t-Bu)4NClO4 as a supporting electrolyte: (a) anodic scan, (b) cathodic scan performed first. Scan rate,
0.1 V/s, GCE (0.008 cm2, GCE—glassy carbon electrode), SCE vs. NHE +0.242 V (SCE—saturated
calomel electrode, NHE—normal hydrogen electrode).

Two oxidation peaks are observed at potentials +1.0 V and +1.5 V vs. SCE, which
correspond to the oxidation of iron(II) to iron(III) and iron(III) to iron(IV) complexes,
described by Equations (1) and (2), respectively.

[(Bn-tpen)FeII]2+ − e− → [(Bn-tpen)FeIII]3+ (1)
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[(Bn-tpen)FeIII]3+ − e− → [(Bn-tpen)FeIV]4+ (2)

During the anodic scan, a very large oxidation peak was observed at a potential equal
to +2.4 V (Figure S4). The origin of the peak is hard to interpret. It may have been be caused
by oxidation of the components of the system and the products of their interactions. In
view of the results of the paper, the peak will not be considered. Similarly, two cathodic
peaks, probably caused by the ligand-centered reduction of the [(Bn-tpen)FeII]2+ complex,
are beyond the scope of the present research.

Figure 5 presents a cyclic voltammogram of [(Bn-tpen)FeII]2+ complexes prepared in
situ by mixing 5 mM Fe(ClO4)2·6H2O and 5 mM Bn-tpen. The shape of the voltammogram
is analogous to that obtained for the synthesized one except for a small sharp peak in
the cathodic region at approximately −1.3 V. This fact indicates that the [(Bn-tpen)FeII]2+

complex is formed under these conditions and explains the similarity of the concentrations
of products formed in the oxidation of cyclohexene by dioxygen by the use of both forms
of the catalyst.
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Figure 5. Cyclic voltammograms of a 5 mM mixture of Bn-tpen and Fe(ClO4)2·6H2O in MeCN con-
taining 0.1 M (t-Bu)4NClO4 as a supporting electrolyte: (a) anodic scan, (b) cathodic scan performed
first. Scan rate 0.1 V/s, GCE (0.008 cm2), SCE vs. NHE +0.242 V.

The first anodic peak at +1.0 V is reversible, whereas the second at +1.5 V is irreversible,
which indicates that [(Bn-tpen)FeIII]3+ is stable under experimental conditions and [(Bn-
tpen)FeIV]4+ is not. Both oxidation processes (Equations (1) and (2)) are diffusion-controlled,
which is confirmed by the linear dependencies of I = f(ν1/2), where I is the value of a
maximum peak current and ν is the potential scan rate [42] (see Figures S5 and S6).

In contrast to N4Py [1], Bn-tpen does not reduce Fe3+ ion. Figure 6 presents the cyclic
voltammogram measured in the solution obtained by mixing 5 mM Fe(ClO4)3 and 5 mM
Bn-tpen in MeCN. In the first anodic scan (Figure 6a), the iron(II) oxidation peak is almost
not visible, whereas the iron(III) oxidation peak is well developed. However, in the first
cathodic scan, the reduction peak originated from the reduction of [(Bn-tpen)FeIII]3+, which
should be visible at +0.9 V as that generated by the oxidation of [(Bn-tpen)FeII]2+, is not
present. Instead, the first reduction peak appears at +0.35 V, probably as a result of the
reduction of an iron-hydroxo complex due to the traces of water present in the investigated
system. The tendency of iron(III) to form hydroxo complexes is well known [43,44].
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Figure 6. Cyclic voltammograms of the mixture of 5 mM Fe(ClO4)3 and 5 mM Bn-tpen in MeCN
with 0.1 M (t-Bu)4NClO4: (a) anodic scan, (b) cathodic scan performed first. Scan rate 0.1 V/s, GCE
(0.008 cm2), SCE vs. NHE +0.242 V.

[(Bn-tpen)FeII]2+ reacts with iodosobenzene (PhIO) to form [(Bn-tpen)FeIV=O]2+ [10,17,19,21].
Figure 7a presents a cyclic voltammogram registered in a solution of [(Bn-tpen)FeII]2+ and
PhIO. The cathodic peak at +0.1 V corresponds to the reduction of [(Bn-tpen)FeIV=O]2+.
The process is diffusion-controlled (Figure S7). As indicated in [1] PhIO is not electroactive
in the potential region. The addition of a proton source to the system results in the shift of
the [(Bn-tpen)FeIV=O]2+ reduction peak towards more positive values (+0.5 V, Figure 7b),
which is characteristic of iron(IV)-oxo species [45].

Molecules 2024, 29, x FOR PEER REVIEW 9 of 15 
 

 

  
(a) (b) 

Figure 6. Cyclic voltammograms of the mixture of 5 mM Fe(ClO4)3 and 5 mM Bn-tpen in MeCN 
with 0.1 M (t-Bu)4NClO4: (a) anodic scan, (b) cathodic scan performed first. Scan rate 0.1 V/s, GCE 
(0.008 cm2), SCE vs. NHE +0.242 V. 

  
(a) (b) 

Figure 7. Cyclic voltammograms of (a) the mixture of 5 mM [(Bn-tpen)FeII]2+ and 10 mM PhIO in 
MeCN [0.1 M (t-Bu)4NClO4] and (b) the same solution after the addition of 15 mM HClO4. Scan rate 
0.1 V/s, GCE (0.008 cm2), SCE vs. NHE +0.242 V. 

The cyclic voltammogram of [(Bn-tpen)FeII]2+ in the presence of dioxygen shows a 
broad reduction peak located in the potential range of +0.1 V to −0.2 V (Figure 8a). It may 
suggest that the iron(IV)-oxo complex is formed in the system. However, the formation of 
iron(III)-hydroxo complexes cannot be excluded; their presence probably causes the broad 
nature of the observed reduction peak. The addition of cyclohexene or limonene induces 
the increase in the peak; in the presence of cyclohexene, it is better developed and shifted 
to −0.2 V. It would suggest that the presence of a substrate facilitates the formation of 
iron(IV)-oxo species. The oxidation peak of [(Bn-tpen)FeII]2+ is barely altered by the 
presence of dioxygen. However, the addition of 0.5 M limonene causes the oxidation peak 
to practically disappear, while the addition of the same amount of cyclohexene results in 
a slight decrease in the height of this peak (Figure 8b). 

  
(a) (b) 

Figure 7. Cyclic voltammograms of (a) the mixture of 5 mM [(Bn-tpen)FeII]2+ and 10 mM PhIO in
MeCN [0.1 M (t-Bu)4NClO4] and (b) the same solution after the addition of 15 mM HClO4. Scan rate
0.1 V/s, GCE (0.008 cm2), SCE vs. NHE +0.242 V.

The cyclic voltammogram of [(Bn-tpen)FeII]2+ in the presence of dioxygen shows a
broad reduction peak located in the potential range of +0.1 V to −0.2 V (Figure 8a). It may
suggest that the iron(IV)-oxo complex is formed in the system. However, the formation
of iron(III)-hydroxo complexes cannot be excluded; their presence probably causes the
broad nature of the observed reduction peak. The addition of cyclohexene or limonene
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induces the increase in the peak; in the presence of cyclohexene, it is better developed and
shifted to −0.2 V. It would suggest that the presence of a substrate facilitates the formation
of iron(IV)-oxo species. The oxidation peak of [(Bn-tpen)FeII]2+ is barely altered by the
presence of dioxygen. However, the addition of 0.5 M limonene causes the oxidation peak
to practically disappear, while the addition of the same amount of cyclohexene results in a
slight decrease in the height of this peak (Figure 8b).
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These facts can be used to explain the observed induction period during the oxidation
of cyclohexene. The presence of the [(Bn-tpen)FeII]2+ complex in the system can deactivate
the iron(IV)-oxo complex due to the formation of the diiron µ-oxo complex as presented in
Equation (3) [46].

[(Bn-tpen)FeIV=O]2+ + [(Bn-tpen)FeII]2+ → [(Bn-tpen)FeIII-O-FeIII(Bn-tpen)]4+ (3)

Usually, µ-oxo iron complexes are considered less active in activating dioxygen for
oxidation of organic substrates compared to monomeric species [47]. The formation of
oxidation products after the induction period can be explained by the assumption of the
reduction of the µ-oxo species to an iron(II) complex by cyclohexene, which is apparently
a slow process. However, it was also reported that µ-oxo iron complexes catalyze the
oxidation of organic compounds by hydroperoxides [48]. This fact can explain the lack of
an induction period during cyclohexene oxidation when hydrogen peroxide or tert-butyl
peroxide is introduced into the reaction system. The oxidation of the iron(II) complex in
the presence of limonene and dioxygen prevents the decomposition of active iron(IV)-oxo
species and therefore enables the oxidation reaction to occur immediately after mixing
the reagents. These assumptions also seem to be confirmed by the fact that, for limonene
oxidation, the TON for 10 mM of the catalyst is approximately fourth as much as in the
case of cyclohexene oxidation (Tables 2 and 3).

2.4. Proposed Putative Oxidation Mechanism

Based on the electrochemical data presented in this article, it can be assumed that the
[(Bn-tpen)FeIV=O]2+ adduct is an active species in cyclohexene and limonene oxidation pro-
cesses. The species is formed when the catalyst [(Bn-tpen)FeII]2+, dioxygen, and the substrate
are combined in the reaction mixture. The direct interaction of the iron(IV)-oxo complex
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with the substrate can lead to the production of alcohol or epoxide [12,39,49] (Scheme 4).
Mechanistic details of the formation of alcohol and epoxide have been described [50,51].
However, the formation of ketone cannot be explained by this simple mechanism.
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limonene.

In previous reports [1,36,52] we postulated the formation of the adduct (1) (Scheme 5)
as the starting point of the catalytic cycle. This adduct can decompose to form ketone
and the iron(IV)-oxo species (path A); combine with another substrate molecule, giving
ketone and alcohol (path B); and react with the catalyst, leading to ketone and diiron(III)
µ-oxo species (path C). The diiron adduct can be reduced back to the catalyst by the organic
substrate (path D), which is probably a slow process responsible for the initiation of product
formation after the induction period. The rationale for the possible formation of the adduct
(1) has been given in a previous paper [1]. Briefly, a pentadentate ligand in an iron(IV)-oxo
complex can free a coordinate site of iron for a solvent molecule [32,33], which is then
replaced by a dioxygen molecule.
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3. Materials and Methods
3.1. Equipment

The products of the performed reactions were identified by gas chromatography using
a Hewlett-Packard (series 4890A) (Palo Alto, CA, USA) gas chromatograph with an HP-1
capillary column (cross-linked methyl-silicone gum phase, 30 m × 0.53 mm i.d.). Cyclic
voltammetric measurements were performed on Princeton Applied Research (PAR, Oak
Ridge, TN, USA) Model 273A and Metrohm Autolab (Utrecht, The Netherlands) model
PGSTAT 302 N potentiostats. The structure of the compounds obtained as a result of the
syntheses was confirmed by 1H NMR investigations, which were carried out in CD3CN at
25 ◦C, using an NMR 500 MHz Bruker (Billerica, MA, USA) AvanceTM spectrometer.
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3.2. Chemicals and Reagents

The chemicals used for syntheses or catalytic tests were of the highest purity available
and were not additionally purified. Argon (grade 5.0, high-purity) from Linde (Kraków,
Poland) was used to deaerate the solutions. Iron(II) perchlorate (Fe(ClO4)2

.6H2O) and
iron(III) perchlorate (Fe(ClO4)3) were obtained from GRF Chemicals. Acetonitrile (≥99.9%,
HPLC grade) was used as a solvent, and biphenyl (PhPh, ≥99%) served as a standard
in GC analysis. The organic substrates were cyclohexene (≥99%) and (R)-(+)-limonene
(97%). The chemicals for the preparation of standard curves for the analyzed products,
namely, cyclohexene oxide (98%), 2-cyclohexen-1-ol (95%), 2-cyclohexen-1-one (95%) or (+)-
limonene oxide (97%), (R)-(–)-carvone (98%), (–)-carveol (97%), (S)-(–)-perillyl alcohol (96%),
and (S)-(–)-perillaldehyde (92%), were purchased from Aldrich. The 2-picolyl chloride
hydrochloride (98%) and N-benzylethylenediamine (97%) used for the ligand synthesis
and the iodobenzene (98%) used for PhIO preparation were also delivered by Aldrich.
Peracetic acid (39%) and perchloric acid (70%) were delivered by Fluka. Magnesium sulfate
anhydrous (99%) and dichloromethane (99.5%) were purchased from POCH (Gliwice,
Poland) and sodium carbonate (99.5%) from ChemPur (Piekary Śląskie, Poland).

PhIO was obtained according to the procedure described in [53,54]. The Bn-tpen
ligand and its complex with iron(II) were synthesized using the Schlenk line to provide an
inert atmosphere when necessary, according to the procedure from the literature [55–57].
1H NMR of Bn-tpen (500 MHz, CD3CN, 25 ◦C) showed the following: δ (ppm) = 2.66
(4H, m), 3.55 (2H, s), 3.64 (2H, s), 3.69 (4H, s), 7.15 (3H, m), 7.19–7.32 (5H, m), 7.46 (3H, t),
7.60 (3H, t), 8.43 (2H, m). The given values are consistent with the spectrum reported in
the literature [57]. 1H NMR of the complex of iron(II) with Bn-tpen is characterized by a
chemical shift of the ligand signals to higher values δ.

3.3. Methods

Oxidation of organic substrates: The selected catalyst concentration was dissolved
in deaerated acetonitrile (O2, 0 atm). This solution was stirred for 10 min, then saturated
with air (O2, 0.2 atm) or oxygen (O2, 1 atm) depending on the reaction conditions, and the
substrate (usually 1 M) was added. Excess substrate was used to minimize the oxidation
of the resulting products and protect the complex against oxidative degradation. The
total volume of the solution was 2.5 cm3, and the reaction was carried out in a vial with
a total volume of 25 cm3. The reactions, with constant stirring and ensuring a constant
concentration of the oxidant, were usually carried out for 24 h at ambient temperature
(23 ± 1 ◦C). Volumes of 0.2 µL were withdrawn from the reaction mixture to monitor the
reaction progress using gas chromatography (GC). Biphenyl (at a concentration of 5 mM for
the oxidation of cyclohexene or 10 mM for limonene) was used as an internal standard. The
collected product concentration results are average values from 3 independent experiments.

Electrochemical analysis: Cyclic voltammograms were recorded in a 2 cm3 electro-
chemical cell with a 3-electrode system: the working electrode, which was glassy carbon,
1 mm diameter, in PEEK (Cypress Systems, Division of ESA, Inc., Tokyo, Japan); the auxil-
iary electrode, which was a Pt wire; and the reference, which was an Ag/AgCl wire in an
aqueous Me4NCl solution with a potential of 0.00 V vs. SCE [58]. The reference electrode
was placed inside a Luggin capillary that was in a Pyrex tube with Vycor. Before each
measurement, the working electrode was polished using Buehler Micropolish Alumina
Gamma 3B and a Buehler Microcloth polishing cloth, then rinsed with deionized water
and dried.

4. Conclusions

In acetonitrile, the [(Bn-tpen)FeII]2+ complex activates dioxygen for alkene oxidation.
However, the process is not selective. Cyclohexene is oxidized mainly to 2-cyclohexen-1-one
and 2-cyclohexen-1-ol, and the amount of ketone formed is approximately two times higher
than that of alcohol, especially for low concentrations of catalyst. Cyclohexene oxide is
produced in smaller quantities. In the experimental conditions applied, the main oxidation
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products of limonene oxidation are limonene oxide, carvone, and carveol, which are formed
in a molar ratio of roughly 3:2:1. Other possible oxidation products, perillaldehyde and
perillyl alcohol, are formed in trace amounts. The system is slightly less reactive than the
analog in which the [(N4Py)FeII]2+ complex is used as a catalyst [1].

The voltammetric investigations suggested that the simultaneous interaction of the
catalyst, substrate, and dioxygen induces the formation of the [(Bn-tpen)FeIV=O]2+ adduct
(among other iron–dioxygen adducts), which is a reactive species that generate the catalytic
cycle. The possible interaction of the reactive species with the basic form of the catalyst (the
[(Bn-tpen)FeII]2+ complex) is responsible for the existence of the induction period observed
in the concentration profiles for cyclohexene oxidation.

The presented investigations indicate that there is only a small difference in the
results obtained in preparative and voltammetric measurements depending on whether a
synthesized or in situ-prepared catalyst was used.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/molecules29163755/s1, Figure S1: Product concentrations over
time for the oxidation of 1 M cyclohexene by air (pO2 = 0.2 atm) in the presence of 10 mM cyclohexen-
1-ol catalyzed by 1 mM synthesized [(Bn-tpen)FeII]2+ in MeCN; Figure S2: The amounts of products
formed in the oxidation of 1 M cyclohexene with dioxygen (pO2 = 1.0 atm) catalyzed by 1 mM
synthesized [(Bn-tpen)FeII]2+ in MeCN after 3 h of reaction. Analysis of products was performed
(a) without triphenylphosphine and (b) with 50 mM triphenylphosphine added to the sample be-
fore analysis; Figure S3: The amounts of products formed in the oxidation of 1 M limonene with
dioxygen (pO2 = 1.0 atm) catalyzed by 1 mM synthesized [(Bn-tpen)FeII]2+ in MeCN after 3 h of
reaction. Analysis of products was performed (a) without triphenylphosphine and (b) with 50 mM
triphenylphosphine added to the sample before analysis; Figure S4: Cyclic voltammogram of 5 mM
synthesized [(Bn-tpen)FeII]2+ in MeCN containing 0.1 M (t-Bu)4NClO4 as a supporting electrolyte.
Scan rate 0.1 V/s, GCE (0.008 cm2), SCE vs. NHE +0.242 V, anodic scan; Figure S5: Cyclic voltammo-
gram of 5 mM synthesized [(Bn-tpen)FeII]2+ in MeCN with 0.1 M (t-Bu)4NClO4. Scan rate 0.1 V/s,
GCE (0.008 cm2), SCE vs. NHE +0.242 V; Figure S6: Dependence of I on ν1/2 registered for 5 mM syn-
thesized [(Bn-tpen)FeII]2+ in MeCN [0.1 M (t-Bu)4NClO4] for anodic peaks at potentials of (a) +1.0 V
and (b) +1.5 V; Figure S7: Dependence of I on ν1/2 registered for the mixture of 5 mM synthesized
[(Bn-tpen)FeII]2+ and 10 mM PhIO in MeCN [0.1 M (t-Bu)4NClO4], GCE (0.008 cm2), SCE vs. NHE
+0.242 V.
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