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Abstract: Plants from the Amaranthaceae family are a source of
oleanolic acid (OA)-type saponins with cytotoxic activity. Two known
OA-type saponins: calenduloside E and chikusetsusaponin IVa, were
isolated from the roots of Chenopodium strictum Roth. Their structures
were confirmed using MS and NMR techniques. This constitutes the
inaugural report of saponins in Ch. strictum. Both isolated saponins and
structurally similar compounds: momordin Ic and OA, were compared
for their cytotoxicity against various cancer and normal cell lines
(including skin, breast, thyroid, gastrointestinal, and prostate panels).
Their effects were dose- and time-dependent, varying with the specific cell
line and compound structure. A chemometric approach demonstrated the
effects of compounds on cell lines. The study discusses structure-activity
observations. Key structural elements for potent cytotoxic activity
included the free carboxyl group-28COOH in the sapogenin structure
(OA) and the presence of a sugar moiety. Monodesmosides with
glucuronic acid (GlcA) at the C3 position of OA were generally more
cytotoxic than bidesmosides or OA alone. The addition of xylose in the
sugar chain modified the activity towards cancer cells, depending on the
specific cell line. OA-type saponins with GlcA (particularly calenduloside
E and momordin Ic) represent a promising avenue for further
investigation as potential anti-cancer agents.

Keywords: Chenopodium strictum, calenduloside E, chikusetsusaponin IVa,
momordin Ic, cytotoxic, structure-activity, saponins
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Figure S1. TLC chromatogram of methanol extracts from leaves (1), stems (2), roots
(3), and seeds (4) of Ch. strictum.

[silica gel, solvent system: CHCl>-CHsOH-H:0 (20:12:2 v/v), visualisation: 25% methanolic
H250: + heating H2SO4(120°C/4 min.)]

Table S1. 'H (500 MHz) and *C DEPT Q (125 MHz) NMR spectral data (0 ppm) for
compound 1 and 2 (pyridine-ds/D20 250:10 with 0.2% trifluoroacetic acid).

Compound 1 Compound 2
No. oC OH (J in Hz)* oC OH (J in Hz)*
1 39.07 1.38; 39.12 1.36 d (13.0);
0.81 t (12.0) 0.82 t (12.0)
2 26.80 2.24,d (13.1); 26.74 2.28,d (12.5);
1.82 1.82, q (12.5)
3 89.70 3.32,dd (11.7, 4.3) 89.71 3.33,dd (11.9, 4.5)
4 39.87 - 39.86 -
5 56.26 0.74, d(11.9) 56.27 0.75, d(11.8)
6 18.89 1.47;1.26 18.93 1.41;1.24
7 33.61 1.45;1.26 33.56 1.42;1.30
8 40.15 - 40.31 -
9 48.41 1.59, t (8.9) 48.41 1.56, t (8.8)
10 37.36 - 37.34 -
11 24.17 1.85 24.20 1.83
12 123.00 5.44,1(3,8) 123.3 5.35, t (3,6)
13 145.22 - 144.54 -
14 42.58 - 42.55 -
15 28.73 2.12;1.18 28.65 2.28;1.18,d (13.6)
16 24.09 2.11;1.94 23.82 2.07, t (12.8);
1.94, d (12.8)
17 47.10 - 47.46 -
18 42.40 3.25,dd (13.9, 4.6) 42.17 3.15,dd (14.0,4.7)
19 46.92 1.79, t (13.6); 46.68 1.75, t (13.7);
1.27 1.24,d (13.3)
20 31.37 - 31.18 -




21 34.64 1.42;1.18 34.41 1.32;1.08

22 33.61 1.99;1.18 32.94 1.81;1.72

23 28.67 1.26, s 28.68 1.25,s

24 17.39 0.94, s 17.41 094, s

25 15.85 0.77, s 15.94 0.79, s

26 17.82 0.94, s 17.88 1.04, s

27 26.61 1.28, s 26.54 1.24,s

28 180.69 - 177.03 -

29 33.71 0.94, s 33.57 0.89, s

30 24.20 0.98, s 24.09 0.86, s

3-O--D-GIcA

1 107.14 4.85,d (7.7) 107.00 4.82,d (7.7)

2 75.61 4.00, t (8.3) 75.60 4.00, t (8.4)

3 78.41 4.22,t(8.6) 78.52 4.19, t (8.5)

4 73.90 4.34 73.92 4.26

5 77.00 441 76.80 4.29

6 nd nd

28-O--D-Glc

1 96.12 6.23,d (8.1)

2 74.33 4.15, t (8.4)

3 79.00 4.24,t(9.1)

4 71.43 4.28,t(9.1)

5 79.58 3.98

6 62.53 4.40, dd (12.0, 2.5);
4.32,dd (12.0, 4.6)

*Overlapping signals are reported without designated multiplicity.
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Figure S2. 'H (500 MHz) spectrum of compound 1.
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Figure S3. BC DEPT Q (125 MHz) spectrum of compound 1.
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Figure S4. 'H (500 MHz) spectrum of compound 2.
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Figure S5. 3C DEPT Q (125 MHz) spectrum of compound 2.
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Figure S6. UPLC (PDA; range A = 200-700 nm) chromatogram of compound 1
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Figure S7. UPLC (PDA; range A = 200-700 nm) chromatogram of compound 2.
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Figure S8. ESI-TQD-MS and MS/MS spectra (negative and positive ion mode) of

compound 1.
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Figure S9. ESI-TQD-MS and MS/MS spectra (negative and positive ion mode) of

compound 2.



Supplementary note 1: Structure elucidation

The negative-ion electrospray ionisation mass spectrometry (ESI-MS) of compound 1
exhibited a pseudomolecular ion peak at m/z 631.19 [M — H]- (deprotonated molecule),
whereas the ESI-MS spectrum in positive ion mode displayed ion peaks at m/z 649.47, which
were assigned to ammonium adduct [M + NH4]* and diagnostic ion at m/z 439.43,
corresponding to loss of GlcA residue and loss of water from the sapogenin [M + H - 176 —
18]*. Furthermore, GlcA was identified as a constituent of the structure through acid
hydrolysis of the compound. The analysis of 'H NMR, DEPT-Q, and 2D NMR (HSQC,
HMBC, H2BC, COSY, TOCSY) spectra enabled the identification of the aglycone as oleanolic
acid. The downfield shift of C-3 (6 89.70) indicated the presence of a glycosylation at this
position. The linkage position of the glucuronic acid to the sapogenin was confirmed based
on the long-range heteronuclear multiple bond correlation (HMBC) between the anomeric
proton at 0 4.85 and the carbon signal at d 89.70, which corresponds to the C-3 of the
aglycone. The data obtained, when compared with existing literature [DOI:
10.1021/acs.jafc.0c04603 ; DOI: 10.1016/s0367-326x(99)00166-5 ; DOI: 10.1007/s10600-012-0216-
2; DOI: 10.3390/molecules28030982], indicated that compound 1 is identical with oleanolic
acid-3-O-B-D-glucuronopyranoside (calenduloside E).

In negative electrospray ionisation mass spectrometry, compound 2 exhibited a
pseudomolecular ion peak at m/z 793.56 [M — H]~. A comparison of the MS data for
compounds 2 and 1 revealed a difference of 162 mass units, indicating that compound 2 has
an additional hexose unit. In positive ion mode, the ESI-MS spectrum yielded an intense ion
at m/z 439.51, resulting from the loss of a sugar moiety (comprising one hexose unit and a
GIcA residue) accompanied by the dehydration of the sapogenin [M + H - 162 - 176 — 18]*.
The NMR spectrum of compound 2 also exhibited signals corresponding to two anomeric
protons at 0 4.82 and d 6.23. The results of the acidic analysis of compound 2 demonstrated
the presence of GlcA and glucose in its structure. A comparison of the 1D and 2D NMR
spectral data of the isolated compounds 1 and 2 revealed a high degree of similarity, with the
exception of the signals corresponding to glucose, which were observed exclusively in the
spectrum of compound 2. Moreover, the downfield shift values of C-28 (d 177.03) suggest
that compound 2 has a 3,28-bidesmosidic structure. This was corroborated by the correlation
between the anomeric proton of glucose (0 6.23) and C-28 (0 177.03 in the HMBC spectrum).
In light of the aforementioned data and their comparison with existing literature [DOI:
10.1016/s0367-326x(99)00166-5 ; DOI: 10.3390/molecules28030982], it was determined that
compound 2 is 3-O-B-D-glucuronopyranosyl oleanolic acid 28-O-p-D-glucopyranosyl ester,
also known as chikusetsusaponin IVa.



Table S2. The basic features of PCA models constructed for compounds 1-4.

conc. 10 (0.335)
conc. 20 (0.330)

Model Variance Eigenvalues | Parameters Parameters mainly
explained by of first two | mainly loaded on | loaded on the
the first two principal the first PC (with | second PC (with
components components | respective respective
(%) loadings) loadings)

CE 97.4 8.97,0.77 | conc. 4 (0.320) conc. 0.5 (0.432)
conc. 6 (0.326) conc. 1 (0.359)
conc. 10 (0.327) conc. 50 (-0.408)
conc. 20 (0.325) conc. 100 (-0.442)

ChIVa 98.4 8.90; 0.94 | conc. 4 (0.329) conc. 0.5 (-0.449)
conc. 6 (0.332) conc. 1 (-0.363)
conc. 10 (0.334) conc. 50 (0.402)
conc. 20 (0.330) conc. 100 (0.541)

Mlc 93.7 8.43;0.94 | conc. 6 (0.333) conc. 0.5 (0.439)
conc. 10 (0.329) conc. 1 (0.384)
conc. 20 (0.333) conc. 50 (-0.437)
conc. 30 (0.329) conc. 100 (-0.463)

OA 98.1 8.73;1.08 | conc. 6 (0.334) conc. 0.5 (-0.389)

conc. 50 (0.462)
conc. 100 (0.550)
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Figure S10. The loading scatter plot for model 1 (the numbers next to the points

indicate the concentration of compound 1 in subsequent solutions, pg/mL).
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Figure S11. The loading scatter plot for hierarchical principal component analyses
model (the symbol tlcl denotes first principal component in PCA model for CE; the
symbol t1c2 denotes second principal component in PCA model for CE; etc.).



