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Abstract: The diselenide bond has attracted intense interest for drug delivery systems (DDSs) for
tumor chemotherapy, owing to it possessing higher redox sensitivity than the disulfide one. Various
redox-responsive diselenide-containing carriers have been developed for chemotherapeutics delivery.
However, the premature drug leakage from these DDSs was significant enough to cause toxic side
effects on normal cells. Here, a pH/redox co-triggered degradable polyprodrug was designed
as a drug self-delivery system (DSDS) by incorporating drug molecules as structural units in the
polymer main chains, using a facile one-pot two-step approach. The proposed PDOX could only
degrade and release drugs by breaking both the neighboring acid-labile acylhydrazone and the
redox-cleavable diselenide conjugations in the drug’s structural units, triggered by the higher acidity
and glutathione (GSH) or reactive oxygen species (ROS) levels in the tumor cells. Therefore, a
slow solubility-controlled drug release was achieved for tumor-specific chemotherapy, indicating
promising potential as a safe and efficient long-acting DSDS for future tumor treatment.

Keywords: tumor chemotherapy; drug self-delivery system; polyprodrug; pH/redox co-triggered
degradation; diselenide bond

1. Introduction

Owing to the higher GSH and ROS levels in tumor cells than in normal cells, redox-
responsive DDSs have been widely investigated as tumor-targeting nanomedicines in recent
decades [1,2] in order to improve antitumor efficacy and suppress the toxic side effects
of chemotherapeutics on normal cells. Moreover, the most widely used redox linker, the
disulfide bond, has been used to conjugate drugs onto the carriers to form redox-triggered
prodrugs [3,4], for a better controlled drug release with minimized premature drug leakage
from the DDSs via non-covalent drug-loading.

Polyprodrugs [5–7], in which the drug molecules are incorporated as structural units
in the polymer main chains, were developed as DSDSs. Owing to the two dynamic covalent
conjugations neighboring the drug unit, a more precise tumor-selective controlled-drug-
release performance could be achieved, in comparison with the conventional polymer
prodrugs with only one conjugation. Moreover, multi-triggered drug release could be
designed by combining different stimulus-responsive conjugations [8–11].

Like the disulfide bond, the diselenide bond could also be cleaved by reduction
with GSH or oxidation with ROS. Moreover, it possesses a higher redox sensitivity than
the disulfide bond [12]. Recently, it has been widely used in redox-triggered DDSs for
chemotherapeutics delivery, by designing the diselenide-containing carriers for drug en-
capsulation [13–18]. Up to now, there has been very little work carried out on the polymer
prodrug concerning the conjugation of drugs onto the polymer via the diselenide bond [19].

Besides redox-cleavage, the diselenide bond could also be cleaved by X-ray [20,21],
γ-ray [22] and near-infrared (NIR) laser [23,24]. This means that the endogenous stimuli-
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triggered drug release from the diselenide-containing nanomedicines could also be ac-
celerated by exogenous irradiation, meaning a more regulable drug release performance.
Moreover, the selenide-containing polymers were found to selectively induce cancer cells to
express excessive ROS, thus causing significant cellular apoptosis as a drug-free therapeutic
system [25–27].

Based on the unique advantages of the diselenide bond, the pH/redox co-triggered
degradable polyprodrug was designed as a drug self-delivery system (DSDS) by incorpo-
rating drug molecules as structural units into the polymer main chains, by a facile one-pot
two-step reaction, with selenolactone and an acid-labile dimer of doxorubicin (D-DOXADH)
(Scheme 1). It provided a slow, sustained drug release triggered by endogenous stimuli
such as higher acidity and GSH or ROS levels in the tumor intracellular microenviron-
ment, due to the solubility of the released derivatives selenol (DOX-SeH) or seleninic acid
(DOX-SeOOH), respectively.
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2. Results
2.1. Synthesis and Characterization of PDOX

Selenolactone was synthesized with selenide (Se), NaBH4 and 4-chlorobutyryl chloride
according to the reported work (Scheme 2) [28], with a yield of 47.67% and revealed by 1H
NMR analysis ((400 MHz, chloroform-d): δ = 3.50 ppm (d, 2.00H), δ = 2.43 ppm (d, 1.99H),
δ = 2.23 ppm (t, 2.00H)) (Figure 1). D-DOXADH was synthesized by conjugating DOX with
adipic dihydrazone (ADH) according to the reported work [29], with a yield of 78.80%
and revealed by 1H NMR ((400 MHz, DMSO-d6): δ = 10.39 ppm, 0.93H, δ = 7.96–7.82 ppm,
2.06H, δ = 7.50–7.45 ppm, 1.00H, δ = 3.95–3.90 ppm, 3.03H)) (Figure 2).
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Figure 2. 1H NMR spectra of DOX, D-DOXADH and PDOX.

In the polymerization, selenolactone was ring-opened with the two amino groups on
the D-DOXADH producing the intermediate (selenol derivative of D-DOXADH). Because
the reaction was conducted in air, the selenol derivative could be easily coupled by oxida-
tion with O2 in air. Thus, the proposed pH/redox co-triggered degradable polyprodrug
(PDOX) was obtained. D-DOXADH is soluble in both DMF and ethanol; a red precipitate
was obtained after adding ethanol to the resultant solution, meaning successful stepwise
polymerization via ring-opening/oxidation. The red precipitate was analyzed using the
GPC technique; a number-average molecular weight of 1.25 × 104 was achieved with a
polydispersity index (PDI) of 1.06 (Figure 3).
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In the 1H NMR spectrum (Figure 2), the signal of the protons adjacent to the carbonyl
group was overlapped with that of the methoxy group on DOX at δ = 3.97–3.72 ppm. The
protons in the amide group on D-DOXADH and the methyl group on DOX showed the
signals at the chemical shifts of δ = 10.49–10.20 ppm and δ = 1.13–1.01 ppm, respectively.
The integral area of the three signals was 4.95:0.84:3.00. It was near to the theoretical
value of 5:1:3, indicating the successful synthesis of the proposed PDOX via the open-ring
reaction and oxidation coupling reaction in one pot (Scheme 1).

Furthermore, the DOX content of the proposed PDOX was determined as 1.30 × 10−3 mmol/g
by measuring the absorption at 480 nm of its DMSO solution with UV–vis spectrometer and
calculating with the calibration curve of DOX in DMSO. It was very near to the theoretical
value of its repeating unit (1.31 × 10−3 mmol/g), also revealing the successful synthesis of
the proposed PDOX.

2.2. Fabrication and Characterization of PDOX Nanoparticles

The PDOX nanoparticles were fabricated by dialyzing the PDOX solution in DMSO
with different concentrations against water (molecular weight cutoff (MWCO) of 1000).
During the dialysis, the good solvent of PDOX (DMSO) diffused out of the dialysis bag,
while the bad solvent of PDOX (water) diffused into the dialysis bag. Therefore, the PDOX
solution in the dialysis bag suffered a transformation from good solvent to bad solvent.
Therefore, the PDOX was slowly fabricated due to the π–π stacking interaction between
the anthracene rings in the DOX units [30].

Increasing the PDOX concentration from 0.20 mg/mL to 2.0 mg/mL, the mean hydro-
dynamic diameter (Dh) of the resultant PDOX nanoparticles increased significantly from
143 nm (PDI of 0.199) to 245 nm (PDI of 0.018), 346 nm (PDI of 0.015) and 403 nm (PDI
of 0.024), respectively (Figure 4a). For a better passive targeting via the enhanced perme-
ability and retention (EPR) effect, the nanoparticles fabricated at a PDOX concentration of
0.2 mg/mL were selected for further investigation. In the TEM observation (Figure 4b),
the PDOX nanoparticles showed a near spherical shape with a particle size in the range of
75–230 nm. Its mean particle size was approximately 107 nm, smaller than the Dh from the
DLS analysis, due to its swelling and/or surface hydration.



Molecules 2024, 29, 3837 5 of 11Molecules 2024, 29, x FOR PEER REVIEW 5 of 11 
 

 

0 100 200 300 400 500 600
0

20

40

60

80

100

In
te

n
si

ty
 (

%
)

Hydrodynamic diameter (nm)

 0.2 mg/mL

 0.5 mg/mL

 1.0 mg/mL

 2.0 mg/mL

(a)

  

Figure 4. Typical hydrodynamic diameter and distribution of the PDOX nanoparticles by dialysis 

at different concentrations (a) and the TEM image of the PDOX nanoparticles fabricated at 0.2 

mg/mL (b). 

2.3. In Vitro Drug Release 

The pH/redox co-triggered degradation and drug release from the proposed PDOX 

nanoparticles were investigated in vitro in different media (Figure 5). Clearly, there was 

no obvious drug leakage in the weak basic media, even with a high GSH level of 10 mM 

(7.4/GSH). It ensured the safety of the proposed polyprodrug-based nanomedicine, effi-

ciently avoiding premature drug leakage into the blood circulation. 

0 20 40 60 80 100

0

5

10

15

20

25

30

35

40

C
u

m
u

la
ti

v
e
 r

e
le

a
se

 (
%

)

Time (h)

 7.4

 7.4/GSH

 5.0

 5.0/GSH

 5.0/GSH/T

 5.0/0.1 mM H2O2

 5.0/0.1 mM H2O2/T

 5.0/0.5 mM H2O2

 5.0/0.5 mM H2O2/T

 

Figure 5. Drug release profiles of the PDOX nanoparticles in different media. 

In the acidic media mimicking the intracellular microenvironment, the drug could 

not be released with any GSH or H2O2 (5.0), and the cumulative release was only 12% and 

16% with 10 mM GSH (5.0/GSH) or 0.5 mM H2O2 (5.0/0.5 mM H2O2) in 96 h, respectively. 

And no obvious drug release was observed in the media with 0.1 mM H2O2 (5.0/0.1 mM 

H2O2). Such a feature revealed the excellent pH/redox co-triggered degradation and drug 

release from the proposed PDOX nanoparticles, also avoiding drug mis-release into nor-

mal cells with the same acidity but much lower GSH and H2O2 levels. 

Moreover, the drug release was accelerated distinctly by adding surfactant (0.1% 

Tween-80) in the releasing media. The cumulative release increased to 19% and 34% in the 

acidic media with high GSH (5.0/GSH/T) and H2O2 (5.0/0.5 mM H2O2/T) levels. These phe-

nomena demonstrated that the released drug possessed a lower solubility in aqueous me-

dia. Based on the results, it was deduced that the DOX derivatives selenol (DOX-SeH) and 

seleninic acid (DOX-SeOOH) were released by cleaving the diselenide bond in the poly-

prodrug via reduction with GSH or oxidation with H2O2, respectively [31,32]. Moreover, 

the cumulative release was higher with a high H2O2 level than with a high GSH level, 

regardless of Tween-80, because of the more hydrophilic qualities of derivative seleninic 

(b) 

Figure 4. Typical hydrodynamic diameter and distribution of the PDOX nanoparticles by dial-
ysis at different concentrations (a) and the TEM image of the PDOX nanoparticles fabricated at
0.2 mg/mL (b).

2.3. In Vitro Drug Release

The pH/redox co-triggered degradation and drug release from the proposed PDOX
nanoparticles were investigated in vitro in different media (Figure 5). Clearly, there was
no obvious drug leakage in the weak basic media, even with a high GSH level of 10 mM
(7.4/GSH). It ensured the safety of the proposed polyprodrug-based nanomedicine, effi-
ciently avoiding premature drug leakage into the blood circulation.
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Figure 5. Drug release profiles of the PDOX nanoparticles in different media.

In the acidic media mimicking the intracellular microenvironment, the drug could not
be released with any GSH or H2O2 (5.0), and the cumulative release was only 12% and 16%
with 10 mM GSH (5.0/GSH) or 0.5 mM H2O2 (5.0/0.5 mM H2O2) in 96 h, respectively. And
no obvious drug release was observed in the media with 0.1 mM H2O2 (5.0/0.1 mM H2O2).
Such a feature revealed the excellent pH/redox co-triggered degradation and drug release
from the proposed PDOX nanoparticles, also avoiding drug mis-release into normal cells
with the same acidity but much lower GSH and H2O2 levels.

Moreover, the drug release was accelerated distinctly by adding surfactant (0.1%
Tween-80) in the releasing media. The cumulative release increased to 19% and 34% in
the acidic media with high GSH (5.0/GSH/T) and H2O2 (5.0/0.5 mM H2O2/T) levels.
These phenomena demonstrated that the released drug possessed a lower solubility in
aqueous media. Based on the results, it was deduced that the DOX derivatives selenol
(DOX-SeH) and seleninic acid (DOX-SeOOH) were released by cleaving the diselenide bond
in the polyprodrug via reduction with GSH or oxidation with H2O2, respectively [31,32].
Moreover, the cumulative release was higher with a high H2O2 level than with a high
GSH level, regardless of Tween-80, because of the more hydrophilic qualities of derivative
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seleninic acid than of selenol. The results indicated a solubility-controlled drug release
performance by the pH/redox co-triggered polyprodrug.

On the other hand, obvious accelerated drug release stages could be seen in the acidic
media with high GSH or H2O2 level. And the acceleration occurred earlier in the presence
of Tween-80. Due to the hydrophobic nature of the polyprodrug as well as the π–π stacking
interaction between the anthracene ring in the DOX units, the stimuli (H+ and GSH or
H2O2) could hardly enter the PDOX nanoparticles, but only act on their surfaces. The
surface polyprodrug blocks were cleaved into oligomers, then dimers and finally the DOX
derivatives selenol (DOX-SeH) (Scheme 3) and seleninic acid (DOX-SeOOH) (Scheme 4).
Due to the cleavage of the diselenide bond and release, the polarity of the oligomers and
dimers increased, favoring the attack of the stimuli, leading to an acceleration. Owing to
the higher polarity and hydrophilicity of the seleninic acid (DOX-SeOOH), faster drug
release was achieved with a high H2O2 level than a high GSH level.
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In any case, the solubility of the DOX derivatives selenol (DOX-SeH) and seleninic
acid (DOX-SeOOH) is low, and the oligomers and dimers could barely be dissolved in
water. With the help of Tween-80, more DOX derivatives were dissolved in the releasing
media. On the other hand, Tween-80 would also interact with the oligomers and dimers in
the surface layer, also enhancing hydrophilicity and subsequently enabling the entry and
attack of the stimuli.

2.4. Cellular Uptake and Cytotoxicity

The successful cellular uptake was revealed by the CLSM analysis of the human
cancer cells (HepG2) after co-incubation with the proposed PDOX nanoparticles at a
dosage of 15 µg/mL for 48 h (Figure 6). The red fluorescence of DOX overlapped perfectly
with the blue fluorescence of the DAPI-stained nuclei, indicating the internalized PDOX
nanoparticles were triggered to degrade and release the DOX derivatives, selenol (DOX-
SeH) and seleninic acid (DOX-SeOOH), in the tumor intracellular microenvironment with
high acidity and GSH/ROS levels.
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Finally, the cellular toxicity of the proposed PDOX nanoparticles was evaluated with
the HepG2 cells and normal human liver cells (L02), in comparison with free DOX. The
proposed PDOX nanoparticles exhibited a dosage-dependent cytotoxicity on the HepG2
cells but an excellent cytocompatibility on the L02 cells with a high cellular viability of 98%,
even at a high DOX-equivalent dosage of 20 µg/mL (Figure 7a), while the free DOX gave
higher cytotoxicity on the L02 cells (Figure 7b). Such differences may be caused by the
redox responsiveness of the diselenide conjugation in the proposed PDOX nanoparticles,
which showed different sensitivities to the GSH and ROS levels in normal cells and tumor
cells. The results demonstrated the promising potential as a safe and efficient long-acting
DSDS for tumor treatment.
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At the same DOX-equivalent dosage, the cellular viability after incubation with the
PDOX nanoparticles was higher than that with free DOX. This was caused by the slow drug
release from the polyprodrug, as well as the lower antitumor efficacy of the released drugs,
in which the amino group on DOX was derivatized, affecting its insertion in DNA [33].
However, the drug release could be accelerated with irradiation [20–24], providing a
strategy to achieve a fast drug release if needed. So, individualized chemotherapy is
expected with the proposed PDOX nanoparticles, by endowing both a faster drug release
in the early stages of chemotherapy with exogenous irradiation, and slower drug release in
the later stages for the recurrence of tumors.

3. Discussion

The proposed diselenide-containing polyprodrug PDOX showed a pH/redox co-
triggered degradation and drug release owing to the alternate acid-labile acylhydrazone
conjugation and redox-cleavable diselenide conjugation between the drug structural units
in the main chain of the polyprodrug. Despite excellent stability in the normal physiological
medium, such as blood circulation, as well as the intracellular microenvironment in normal
cells, very slow drug release was achieved in the tumor intracellular microenvironment,
similar to previous reports [34,35]. Such solubility-controlled drug release behavior was
caused by the pH/reduction co-triggered DOX-SeH release and the pH/oxidation co-
triggered DOX-SeOOH release. Despite the higher redox-responsive sensitivity of the
diselenide bond compared to the disulfide one, such release drug derivatives hardly
transfer into the parent drug DOX in the microenvironment, unlike the disulfide [36]. Thus,
slower drug release and lower cytotoxicity resulted due to the lower solubility of the drug
derivatives, DOX-SeH and DOX-SeOOH. Based on the results in the present work and
other reported works [34,35], such combinations of amide/diselenide bonds may not be
a better option for redox-triggered polyprodrugs. High antitumor efficacy is expected
by designing diselenide-containing polyprodrugs using other combinations, which could
release the parent drug after the redox cleavage of the disulfide bond.

4. Materials and Methods
4.1. Materials and Reagents

Selenium (Se, ≥99.99%), 4-chlorobutyryl chloride (98%), 1,8-diazabicyclo [5.4.0]undec-
7-ene (DBU, 99%) and glutathione (GSH, 97%) were purchased from Shanghai Aladdin
Bio-Chem Technology Co., Ltd. (Shanghai, China). Sodium borohydride (NaBH4, 96%) was
purchased from Sinopharm Chemical Reagent Co., Ltd., Shanghai, China. Hydrogen perox-
ide (H2O2, 30%) was purchased from Damao Chemical Reagent Factory (Tianjin, China).
Doxorubicin hydrochloride (DOX·HCl, 99.4%) was bought from Beijing Huafeng United
Technology Co., Ltd. (Beijing, China). All other reagents and solvents were analytical grade
and used directly as received. Deionized water was used throughout the experiments.

4.2. Analysis and Characterization
1H NMR measurements were conducted on a JNM-ECS 400 M instrument (JEOL,

Tokyo, Japan). The relative molecular weight and polydispersity of the polyprodrug were
measured on a gel permeation chromatograph (GPC) equipped with a Waters 1515 pump
and a Waters 2414 differential refractive index detector, using DMF as the eluent at 35 ◦C.
The morphology and particle size of the PDOX nanoparticles were observed on a JEM-2100
transmission electron microscope (TEM) (JEOL, Tokyo, Japan), sampling with their aqueous
dispersions. Their hydrodynamic diameter and distribution were measured using dynamic
light scattering (DLS, BI-200SM) in aqueous dispersion and the normalized scattering
intensity was presented. The UV–vis spectra and drug content were detected using a TU-
1901 UV–vis spectrometer (Beijing Purkinje General Instrument Co., Ltd., Beijing, China) at
room temperature.
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4.3. Synthesis Procedure

The pH/redox co-triggered degradable polyprodrug (PDOX) was synthesized via a
facile one-pot two-step approach, including the open-ring reaction of selenolactone with the
amino groups on D-DOXADH to form the intermediate (selenol derivative of D-DOXADH)
and the oxidation coupling reaction between the intermediates (Scheme 1).

Typically, D-DOXADH (70.0 mg, 0.0537 mmol, 1.0 eq) and triethylamine (TEA, 13.0 mg
0.129 mmol, 2.4 eq) were dissolved in 10 mL DMF. After adding selenolactone (48.1 mg,
0.323 mmol, 6.0 eq) and DBU (2.47 mg, 0.0162 mmol), the mixture was stirred in the dark
at 40 ◦C for 72 h. The PDOX was collected by precipitation with ethanol and purified
by three cycles of dissolving in DMF and precipitating with ethanol and dried in vac-
uum. (Yield: 38.19%); (1H NMR (400 MHz, DMSO-d6): δ = 10.49–10.20 ppm, 0.84H, Ha,
δ = 3.97–3.72 ppm, 4.95H, Hb+c, δ = 1.13–1.01 ppm, 3.00H, He).

4.4. Redox-Triggered Drug Release

The PDOX nanoparticles (1.0 mg) were dispersed in 10 mL of different release media,
respectively. Then, the dispersions were transferred into dialysis bags (MWCO = 1000) and
immersed in 100 mL of the corresponding buffer solution in an IS-RSD3 incubation shaker
at 37 ◦C. At certain time intervals, 5.0 mL of the dialysate was taken out to measure the
DOX concentration on a TU-1901 UV–vis spectrometer at 480 nm and 5.0 mL of the fresh
buffer solution was added to maintain constant volume. The experiments were carried out
in triplicate and the data presented are the average of three measurements.

4.5. In Vitro Cellular Experiments

The cellular uptake of the PDOX nanoparticles and subcellular distribution of the
released drugs were visualized through fluorescence microscope (OLYMPUS, IX71), after
incubating HepG2 cells with a PDOX dosage of 15 µg/mL for 48 h. Briefly, the cell nucleus
was stained with 4′,6-diamidino-2-phenylindole (DAPI), and the fluorescent images were
obtained at 405 nm for DAPI and 480 nm for DOX, respectively.

The MTT assay was used to evaluate the cytotoxicity of the PDOX nanoparticles and
free DOX against the HepG2 and L02 cells (National Collection of Authenticated Cell
Cultures). The cells were incubated in a 96-well plate with a concentration of 1 × 105 per
well at 37 ◦C for 48 h. Then, the PDOX nanoparticles or free DOX was added at different
concentrations for a co-incubation of 48 h. After that, MTT (5.0 mg/L) was added to each
well, followed by incubation for another 4 h. Finally, the cell viability was measured using
the enzyme-linked immunosorbent assay appliance at 490 nm, after removing the crystals
by dissolving in 150 µL of DMSO for 20 min. All the data are presented as the mean value
of six measurements.

5. Conclusions

In summary, a novel safe and efficient long-acting tumor-specific DSDS was developed
for future tumor treatment, by designing a polyprodrug with drug molecules as structural
units in the polymer main chain, linked with acid-labile acylhydrazone and redox-cleavable
diselenide conjugations. It could only be triggered to degrade and release drugs in acidic
media with a high GSH or ROS level, like the tumor intracellular microenvironment. Such
a feature makes it safe to normal cells but toxic to tumor cells. The drug release profiles
indicated that the slow drug release was controlled by the solubility of the degraded
products. Owing to the irradiation responsiveness of the diselenide bond, a faster drug
release could be expected using exogenous irradiation, showing promising potential as an
efficient individualized chemotherapy strategy for the different therapeutic stages in future
tumor treatments.
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