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Abstract: A systematic theoretical study on the molecular electronic structure of graphene and its
oxides, including their interactions with molecular species of different polarity, was carried out. The
influence of the O/C atomic ratio in the graphene oxides was also evaluated. Quantum chemical
and COSMO-based statistical-thermodynamic calculations were performed. Geometry optimizations
demonstrated that graphene sheets are structurally distorted by oxygen substitution, although
they show high resistance to deformation. Furthermore, under axial O-C bonding, proton-donor
and proton-acceptor centers are created on the graphene oxide surface, which could acquire an
amphoteric character. In low-oxidized graphene oxides, H-bonding centers coexist with neutral
highly polarizable π electron clouds. Deep graphene oxidation is also related to the formation of a
quasi-two-dimensional H-bond network. These two phenomena are responsible for the exceptional
adsorption and catalytic properties and the potential proton conductivity of graphene oxides. The
current calculations demonstrated that the interactions of polar molecular species with deep-oxidized
graphene derivatives are thermodynamically favorable, but not with low-oxidized ones. The capacity
of the quantum chemical and COSMO-RS calculations to model all these issues opens the possibility
of selecting or designing graphene-based materials with optimized properties for specific applications.
Also, they are valuable in selecting/designing solvents with good exfoliant properties with respect to
certain graphene derivatives.

Keywords: graphene oxides; molecular electronic structure; quantum chemical calculations; COSMO-
based analyses; molecular interactions

1. Introduction

In recent years, graphene-based materials have attracted the attention of the scientific
and technological communities because their exceptional properties ensure interesting
potential applications in different fields [1–4], such as electronics and nano-electronics,
composite materials, spintronic devices, electromechanical resonators, quantum computing,
impermeable atomic membranes, sensors, biomedicine, adsorbents, catalysts, etc. Graphene
oxide (GO) is a peculiar material composed of single oxygen-functionalized graphene layers
with a crystal structure like pristine graphite but more disordered and showing larger inter-
sheet distances [5–8].

Some synthesis methods have been developed to produce GOs [2,7,9–13]; however,
only those methods based on the oxidative exfoliation of graphite materials (the Hummers
methods) result in high yields of GO and have succeeded to be reproducible, scalable, and
techno-economically viable [11–14]. The selection of efficient exfoliants is a crucial aspect of
these procedures. In addition, the response of these materials in the evaluated applications
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strongly depends on their intrinsic molecular electronic structure (applications in electronic
devices, for example) and the interaction capacity of the surface (when they are used as
adsorbent, catalyst, etc.). A wide set of experimental [15–22] and theoretical [8,22–34]
techniques have been used to study the molecular electronic structure of the GOs, to
characterize their surface, and to evaluate their interaction capacity with molecular species
of different polarity.

Among the theoretical methods, those based on the quantum chemical Density Func-
tional Theory (DFT) have been popularized because they combine relatively low computa-
tional costs with both reasonable accurate results and predictive capacity. These methods
include two main formalisms: (i) Graphene-based materials are considered extended pe-
riodic solid structures, and the calculations are carried out using pseudopotentials for
the core electrons and plane-wave basis sets of the valence electrons [23–27,29]. This is
recognized as the solid-state approach, based on the “first principle” closed-shell DFT
approximation complemented by artificial periodic boundary conditions. This strategy
is useful for describing the electronic structure (in terms of density of states around the
Fermi energy, for example) of the pure solid, doped by heteroatoms or chemically modi-
fied. (ii) Graphene and graphene derivatives are modeled as molecules or molecular clusters
using the self-consistent field molecular orbital (SCF-MO) method within the DFT the-
ory. In the current approach, the interaction of the solid surface with molecules can be
described as non-covalent aggregates formed by H-bonding, coulomb, and van der Waals
interactions. In this way, for instance, catalytic and adsorption phenomena are frequently
studied [22,28,30–32,34].

Using the second formalism mentioned above opens the possibility of applying the
COSMO-based theories [35–37] to assess the intermolecular interactions incorporating
quantum chemical and thermodynamic-statistic descriptors. This procedure formally
requires considering the solid as a pseudo-liquid [38] and raises the issue that the dimension
of the cluster constructed for modeling the solid should be big enough to correctly describe
the phenomena under study.

In the current work, considering the graphene and its oxides as discrete molecules, SCF-
MO DFT and COSMO-based calculations were carried out to understand the consequences
of the oxidation degree on both their molecular electronic structure and the interaction
with molecules of different polarities. By convention, the words molecule and molecular are
written in italics throughout the manuscript when they refer to the graphene and its oxides
because they are treated as discrete molecules for the reasons explained above.

2. Results and Discussions
2.1. Molecular and Electronic Structure of the GOs

Geometry optimizations carried out in this work reveal the loss of planarity from
graphene to GOs due to the axial C-O coordination (Figures 1 and 2). This phenomenon is
related to other structural changes in graphene (Figure 2): the increase in the mean C-C bond
distance (from 1.426 Å in graphene Model 0 to 1.549 Å in GO Model 4) and the decrease in
the C-C-C bond angles (from 120.0◦ in Model 0 to 113.8◦ in Model 4). These modifications
can be rationalized considering the change in the carbon hybridization [6,8] from the
sp2 hybridization, typical of planar conjugated systems like graphene, to the sp3 one,
corresponding to tetrahedral carbon when oxygen is attached axially to the carbons [39].

Moreover, the structural changes described above are more pronounced as the O/C
ratio increases (in the sequence from Model 1 to Model 4). The molecular structure of the
GOs studied here is a combination of planar and non-planar fragments [39], which has
a direct consequence on the electronic structure of the GO surface. The contribution of
the planar fragments becomes less significant as the O/C ratio increases. The outlined
structural changes are possible because of the flexibility of the carbon atom network that,
at the same time, shows a noticeable resistance to deformation: whereas the O/C ratio rises
approximately 300% from Model 1 to Model 4, the bond distance increases and the bond
angles decrease, each by less than 10%.
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Model 4
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Figure 1. Optimized geometries (at the B3LYP/6-31G(d,p)) computational level) of the model
structures used in this work to represent graphene (Model 0) and graphene oxides (Models 1 to
4) with different oxidation degrees. H-bonds, represented by dashed lines, were computed for
d(O···H) < 2.0 Å and a(H···O-C) ≤ 120◦. The atom color code: dark grey—carbon, red—oxygen, white—
hydrogen. This code will be maintained in the remaining figures.



Molecules 2024, 29, 3839 4 of 19Molecules 2024, 29, x FOR PEER REVIEW 4 of 19 
 

 

 

Figure 2. Loss of planarity (κ, Left) and C-C bond distances and C-C-C angles (Right) in the gra-

phene framework as a function of the O/C mass ratio for graphene (Model 0) and graphene oxide 

derivatives (Models 1 to 4). 

Positive electron density deformation, calculated by the Deformed Atoms in Mole-

cules (DAM) methodology [40,41], in graphene (Model 0) is strongly delocalized over the 

entire molecular domain (Figure 3), showing symmetrical charge accumulations above and 

below the molecular plane, as is characteristic of conjugated systems [40]. This behavior 

is altered in GOs due to the O-C bonds (Figure 3), with their electron density deformation 

characterized by the following two features: 

i. The electron density deformations display two distinct shapes. The first shape (de-

limited by dotted lines in Model 1, Figure 3, for example) resembles the density de-

formation of graphene (Model 0). It is localized on the planar fragments of the less 

oxidized GOs (Models 1 and 2) and results from the contribution of the π-electron 

cloud of the conjugated system. The second one is located on the oxygen-substituted 

fragments of the molecule, which is a direct consequence of the non-paired, n-elec-

trons of the oxygen atoms. The π-electron cloud remains intact in the non-substituted 

segments of Models 1 and 2 but practically disappears in the structure of Model 4, 

where the O-C substitution is the maximum evaluated in this work.  

ii. The electron density deformations show several discontinuities (indicated by arrows 

in Figure 3) in the GOs studied here. These correspond to regions of the molecular 

domain where ionic-like bonds (instead of covalent ones) predominate. It arises in 

the presence of hydrogen atoms strongly polarized positively, involved in H-bond 

interactions. This phenomenon has been well recognized in DAM studies of H-bond 

systems. The OH group distribution on the molecular surface of the GOs with high 

O/C ratios (Model 4, for example) guarantees a quasi-two-dimensional network of H-

bonds (Figure 4), which could support strong proton conduction in this kind of ma-

terial. 

Figure 2. Loss of planarity (κ, Left) and C-C bond distances and C-C-C angles (Right) in the graphene
framework as a function of the O/C mass ratio for graphene (Model 0) and graphene oxide derivatives
(Models 1 to 4).

Positive electron density deformation, calculated by the Deformed Atoms in Molecules
(DAM) methodology [40,41], in graphene (Model 0) is strongly delocalized over the entire
molecular domain (Figure 3), showing symmetrical charge accumulations above and below
the molecular plane, as is characteristic of conjugated systems [40]. This behavior is
altered in GOs due to the O-C bonds (Figure 3), with their electron density deformation
characterized by the following two features:

i. The electron density deformations display two distinct shapes. The first shape (de-
limited by dotted lines in Model 1, Figure 3, for example) resembles the density
deformation of graphene (Model 0). It is localized on the planar fragments of the less
oxidized GOs (Models 1 and 2) and results from the contribution of the π-electron
cloud of the conjugated system. The second one is located on the oxygen-substituted
fragments of the molecule, which is a direct consequence of the non-paired, n-electrons
of the oxygen atoms. The π-electron cloud remains intact in the non-substituted
segments of Models 1 and 2 but practically disappears in the structure of Model 4,
where the O-C substitution is the maximum evaluated in this work.

ii. The electron density deformations show several discontinuities (indicated by arrows
in Figure 3) in the GOs studied here. These correspond to regions of the molecular
domain where ionic-like bonds (instead of covalent ones) predominate. It arises in
the presence of hydrogen atoms strongly polarized positively, involved in H-bond
interactions. This phenomenon has been well recognized in DAM studies of H-bond
systems. The OH group distribution on the molecular surface of the GOs with high
O/C ratios (Model 4, for example) guarantees a quasi-two-dimensional network of
H-bonds (Figure 4), which could support strong proton conduction in this kind
of material.

Calculated Natural Population Analysis (NPA) atomic charges [42] confirm that H-
bonding additionally polarizes the atoms involved. The charges are −0.5 for the oxygen
atoms of epoxide, carbonyl, and ether groups not involved in H-bonds but decrease to −0.6
when they participate in hydrogen bonds. In similar situations, the charges of the oxygen
atoms belonging to hydroxyl groups fall from −0.7 to −0.8.

The electrostatic potential (calculated by the DAM theory, Figure S1) on the graphene
surface (Model 0) is homogeneously negative as is expected of systems with nucleophilic
character. This picture is substantially modified by oxygen substitution (Models 1 to
4). Under oxidation, some regions of the molecular surface exhibit positive electrostatic
potential. The polarization of the surface (positive and negative potential) becomes more
relevant as the O/C ratio increases, conferring amphoteric character to the GO surfaces.
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Figure 3. Positive electron density deformations obtained by DAM calculations for graphene (model
0) and GOs (Models 1 to 4) considered in this work. Representations correspond to a contour value of
0.001 a.u. See the text for the meaning of the arrows and the regions bounded by dashed lines.
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Figure 4. Quasi-two-dimensional H-bond network calculated in this work for Model 4 (GO model with
O/C mass ratio = 1.45). H-bonds, represented by dashed lines, were computed for d(O···H) < 2.0 Å
and a(H···O-C) ≤ 120◦.

2.2. COSMO Analysis of the Charge Distribution on the Molecular Surface of the GOs

The σ-surface of graphene (Model 0) is dominated by green–yellow colors (Figure 5),
revealing a highly polarizable π electronic structure, along with a slightly positively charged
framework of carbon atoms (blue–green zones). These results are consistent with the
electrostatic potential description offered by DAM calculations (Figure S1).

Oxygen substitution generates new red and blue regions on the σ-surface (Figure 5),
indicating the presence of groups positively and negatively polarized at the surface of
the graphene oxides, which correspond to the hydrogen and oxygen atoms, respectively.
Despite the polarization of the GO surface described above, yellow–green regions persist
at their surfaces (Models 1 to 4) along with the red and blue regions already mentioned.
Similarly to the case of graphene, this indicates the presence of neutral highly polariz-
able groups.
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Figure 5. Sigma-surfaces of the graphene (Model 0) and GOs (Models 1 to 4) obtained by COSMO
calculations on the optimized geometries. Color code: red and blue regions are, respectively, hydrogen
bonding proton-acceptor and proton-donor molecular segments; green-yellow regions can participate
in van der Waals and dispersive interactions. For Model 1, both superior and lateral views are given.

Neutral segments (green–yellow regions in Figure 5) on the molecular surface are re-
flected in the σ-profile (Figure 6) by two well-differentiated peaks in the region
−0.008 < σ (e/Å2) < 0.008.

In the σ-profile of the GOs, a broadband arises in the regions where σ < −0.008 e/Å2

(HB donor region), and a shoulder appears where σ > 0.008 e/Å2 (HB acceptor region).
The first of these regions is associated with the H atoms of the hydroxyl groups, whereas
the second one is related to the O atoms in the different oxygenated groups attached as
O-C substituents. These two types of signals in the σ-profiles suggest that the oxidized
graphene derivatives could show a certain limited amphoteric character. The signal at
σ ≈ −0.015 e/Å2 grows with the O/C ratio, peaking in Model 4, which correlates with the
increasing number of the hydroxyl groups attached to the graphene surface (see Section 3.1.
Molecular Models). Besides, the significant reduction of the peak at σ ≈ 0.003 e/Å2 due
to oxygen substitution (from Model 0 to Models 1–4) reflects the break of the molecular
conjugation by the oxygen coordination.

The polarized charge distribution on the molecular surface of the solvents and
monomers considered in this work (Figure S2) consistently reflects what is well-known
about the electronic structure of conventional molecular species. Octane is a non-polar
solvent whereas water, ethanol, and the monomers are capable of H-bond interacting
with both donor and acceptor groups, thus also showing amphoteric character.
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Figure 6. Sigma-profiles of the graphene (Model 0) and GOs (Models 1 to 4) obtained by COSMO
calculations on the previously optimized geometries.

2.3. Interaction of GOs with Molecular Species of Different Polarities: Thermodynamic Features

Regarding the σ-potentials of graphene (Model 0) and octane (Figure 7), it can be
inferred that they do not interact favorably (µ > 0 kJ/mol·Å2) with polar components,
which exhibit µ < 0 kJ/mol·Å2 if σ < −0.008 e/Å2 and σ > 0.008 e/Å2. The thermodynamic
behavior is noticeably different when it comes to the polar solvents and monomers and
the graphene oxides selected for the current analysis (Figure 7). The polar solvents and the
monomers exhibit a marked amphoteric character (µ < 0 kJ/mol·Å2 for σ < −0.008 e/Å2

and σ > 0.008 e/Å2) being capable of interacting favorably with both proton-donor and
proton-acceptor groups, i.e., the curves µ (kJ/mol·Å2) vs. σ (e/Å2) reveal a certain symme-
try. However, this symmetry is broken for some of the GOs studied. All of them show HB
potential donor capacity (µ < 0 kJ/mol·Å2 for σ > 0.008 e/Å2) due to the hydrogen atoms
of the hydroxyl groups, the value of µ (kJ/mol·Å2) being, as a rule, more negative as the
number of OH groups in the GO increases (blue regions in the σ-surfaces, Figure 4). This
is analogous to what occurs with the peak at σ ≈ −0.015 e/Å2 in the σ-profile (Figure 6),
which is already discussed. However, in several cases (Models 2 to 4), µ ≈ 0 kJ/mol·Å2

when σ < −0.008 e/Å2, showing a weak acceptor capacity of the oxygen attached to the car-
bonous surface. This is congruent with the yellow–red color distribution on the σ-surface
(Figure 5) and the presence of a shoulder in the σ-profile (Figure 6) when σ > 0.008 e/Å2,
which are also mentioned before.
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Figure 7. Sigma-potentials of the GOs [Up] and solvents and monomers [Down] obtained by
COSMO-RS calculations on the previously optimized geometries.

Pseudo-liquid binary mixtures (octane + graphene/GOs) exhibit HExcess > 0 kJ/mol for
practically all composition intervals and GrOs, which confirms the non-feasible thermo-
dynamic nature of the interactions among them. In mixtures (octane + GOs (Models 2 to
4)), the van der Waals interactions are favorable to the mixture, but misfit and HB ones are
the opposite.

Excess enthalpies (HExcess) of the pseudo-liquid (polar solvent/monomer + graphene/GO,
where polar solvent = water and ethanol) binary mixtures evidence a similar behavior
(Figures 8 and 9). The interaction of the molecular species with the most oxidized GOs
(Models 2 to 4) is always favorable (HExcess < 0 kJ/h) but not with graphene (Model 0) or
the low-oxidized (reduced) GO (Model 1), although this last graphene derivative displays
an amphoteric character (Figure 7).

HExcess is minimum, as a rule, for mixtures containing approximately 35 mole% GO.
Highly negative excess enthalpies, in the interval from −7 to −17 kJ/mol, characterize
the interaction in (polar solvents/monomer + GO (Model 3)) mixtures. In addition, these
interactions are predominantly of an HB nature. In fact, mean HB contribution to HExcess in
(polar solvent/monomers + GO) mixtures, where polar solvent = water and ethanol and
GO = Models 2 to 4, ranges from 51% to 98%, behaving as follows: water (98%) > ethanol
(77%) > polyester monomer (58%) > epoxy monomer (51%). An opposite trend is observed
for the van der Waals contribution to HExcess in these same mixtures: epoxy monomer
(55%) > polyester monomer (38%) > ethanol (16%). Van der Waals interactions are sig-
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nificant in those cases where conjugated rings participate in the molecular structure, i.e.,
practically doubling from polyester to epoxy monomers.
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It is noteworthy that the sequence obtained for HExcess of the pseudo-liquid (polar
solvent/monomer + GO) binary mixtures (Model 3 < Model 2 < Model 4) shows a minimum
for the mixture where GO ≡ Model 3 (Figures 8 and 9). This phenomenon could be
explained considering that: (i) H-bonding contribution is predominant in the intermolecular
(polar solvent/monomer + GO) interactions (Figures 8 and 9), and (ii) deep oxidation of the
graphene substrate favors the intramolecular H-bonding interaction over the intermolecular
H-bonding interactions with polar molecules.
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P = 1 atm.

The previous results should be considered when deciding the best application of a
specific graphene-based material or when selecting/designing the graphene derivative
with optimized properties for a specific application. For instance, deep-oxidized GOs
could be recommended as proton conductors because the intramolecular H-bonds favor
the formation of a quasi-two-dimensional proton-conducting network (Figure 4). On
the contrary, applications in adsorption, catalysis, and other related operations demand
GOs capable to intermolecular interact via H-bonding. The optimum O/C ratio for any
application should be determined on a case-by-case basis.

Quantifying the energy of the interaction between the solvents and the GOs is crucial
for selecting an adequate exfoliant agent in the synthesis of graphene and graphene deriva-
tives dispersions. To achieve this, the Hansen solubility parameters (Equation (4)), which
account for the dispersive, polar, and hydrogen bonding interactions between the solvent
molecule and the GO surface, are widely used [18,43–46]:

∆HMix
V

≈
[
(δD,S − δD,G)

2 +
(δP,S − δP,G)

2

4
+

(δH,S − δH,G)
2

4

]
·θG (1)

where ∆HMix is the enthalpy of mixing of the mixture (solvent + GO); δD, δP, and δH are the
dispersive, polar, and hydrogen bonding components of the cohesive energy density; and
S and G subscripts represent solvent and graphene, respectively. θG is the molar fraction of
graphene in the mixture.

From the results presented in this paragraph, it is evident that excess enthalpy calcu-
lated by the COSMO-RS method for (solvent + GO) pseudo-liquid binary mixtures could be
an alternative descriptor to the Hansen solubility parameters when selecting an appropriate
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exfoliant for the dispersion of GOs. They both consider a complete set (dispersive van der
Waals, polar, and hydrogen bonding) of interactions.

2.4. A Structural Insight to the Interactions of the Polar Solvents with Low-Oxidized GOs

As previously noted, HExcess > 0 kJ/mol (Figures 8 and 9) for all composition inter-
vals in the pseudo-liquid binary (polar solvents/monomers + GO (Model 1)) suggests that
the interaction among them is not thermodynamically favorable. This result seems to
contradict the fact that both the GO (Model 1) and the polar solvents/monomers exhibit
an amphoteric character (Figures 5–7) due to the presence of oxygenated and hydroxyl
groups in their structure. This hypothesis was confirmed by optimizing the structure
of the (ethanol + Model 1) cluster at m062x/6-311G(d,p) computational level, i.e., tran-
sitioning from the continuous solvation model to the discrete molecular description of
the interactions.

The energy stabilization (∆E) of the cluster along the optimization sequence was
evaluated as follows:

∆E = EE(GO−EtOH) −
(

EE(GO) + EE(EtOH)

)
(2)

where EE is the total electronic energy of the system. The term
(

EE(GO) + EE(EtOH)

)
accounts for the total energy of the individual fragments that constitute the cluster while in
a non-interacting state.

The cluster input structure (Figure 10) in the current optimization exercise was gen-
erated bearing in mind the premise of the H-bond formation. Accordingly, the ethanol
molecule (EtOH) was placed perpendicularly to the GO surface, the H of its OH group
pointing to the O atom of an epoxy group of the GO, and the O of the ethanol OH group
facing the H of an OH group on the GO surface (Figure 10). O···H interatomic distances in
the input structure were fixed below 1.0 Å (shorter than a typical H bond) to ensure higher
repulsive inter-nuclear energies than those corresponding to the minimum energy structure
and to the energy of the non-interacting fragments. Due to the elevated computational cost
of the full optimization of the cluster, individual fragments were not optimized, i.e., their
structures remained frozen during the optimization of the relative position between them.
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Figure 10. (EtOH + GO (Model 1)) cluster structures representative of the geometry optimization se-
quence. [Left]—Input geometry. [Middle]—Optimized structure at the first stage of the optimization
pathway. [Right]—Final optimized structure. Interatomic distances are given in Ångstrom.

Although the geometry optimization was carried out uninterruptedly (i.e., in only
one run), two well-differentiated phases can be recognized in the optimization profile
(Figure 11). Firstly, the computational procedure optimized the O···H interatomic distances
(enlarged compared to the input structure) preserving the perpendicular orientation of the
ethanol molecule relative to the GO surface.
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The resulting structure of the first geometry optimization phase is nearly 8 kJ/mol
more stable than the individual isolated molecules (Figures 10 and 11). Here, the O···H
interatomic distances (ca. 1.6 Å) are typical of H-bonding interactions. In the second
phase, the EtOH molecule changed the orientation relative to the GO surface, adopting
an almost parallel position relative to it but maintaining the H-bond configuration. The
structure obtained at the end of the geometry optimization is practically 33 kJ/mol more
stable than the individual isolated molecules, i.e., 76% of the stability (relative to the
individual isolated molecules), as cluster aggregation is achieved in the second phase of
the optimization pathway. Here, the O···H interatomic distance increases, relative to the
intermediate structure, to ca. 2.5 Å, with the mean distance between the ethanol molecule
and the GO surface being ca. 3.5 Å (calculated as the distance between the C(OH) of the
EtOH and the closest C atom of the GO).

Thus, it can be argued that the additional stabilization reached in the second optimiza-
tion phase, and the change in the orientation of the ethanol molecule relative to the GO
surface are related. It seems that the orientation change has two correlated consequences.
On the one hand, it makes possible the van der Waals interaction between the neutral frag-
ments (Figure S2) of the ethanol molecule and similar ones on the GO surface (Figure 5). In
fact, in Model 1, the green–yellow-colored molecular fragments located around H-bonding
centers (red- and blue-colored fragments) are capable of interacting via the van de Waals
mechanisms with similar ones in other molecules. On the other hand, the H-bonding inter-
actions are more comfortable from a steric point of view (even when the O···H interatomic
distance increases). The surface electron distribution in the GOs is not planar, as observed
in both the electron density (Figure 3) and COSMO (Figure 5) calculations. H-bonding
centers in Model 1 (lateral view of the σ-surface, Figure 5) are located at the top of the
electron density hills, whereas extended van der Waals valleys surround them.

From the set of results presented in Sections 2.3 and 2.4, an obvious question arises:
Why is the interaction (EtOH + GO (Model 1)) not thermodynamically favorable for any
composition of the mixture (Figure 8) if the cluster EtOH-GO (Model 1) is energetically
stable (Figures 10 and 11)? The solution to this question relates to the stability of the
(EtOH + EtOH) and (GO + GO) aggregates. The minimum energy structures obtained for
each of them (Figure 12) are, respectively, 45 and 176 kJ/mol more stable than the individual
isolated species (Figure 12). This means that (EtOH + EtOH) and (GO + GO, where
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GO = Model 1) are more stable than (EtOH + GO, where GO = Model 1). (EtOH + EtOH)
aggregate could model the ethanol dimerization, whereas (GO + GO) dimer could refer to
the aggregation of dispersed graphene oxides in the solvent.
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Figure 12. Relative energies of the aggregates (EtOH + GO), (EtOH + EtOH), and (GO + GO) relative
to the individual isolated molecular species. GO is represented by Model 1 in the corresponding cases.
Optimized structures of each cluster are also shown. Interatomic distances are given in Ångstrom.

3. Materials and Methods
3.1. Molecular Models

Five structures, having 38 carbon atoms (12 fused hexagons), were proposed (Figure 1)
to model both the graphene (Model 0) and its oxidized derivatives (oxidized graphene,
Models 1 to 4). The GO models were obtained by attaching axially oxygen atoms to some
selected carbons at the graphene structure. In this way, different oxygenated groups were
created: hydroxyl, epoxide, carbonyl, and ether. To model GOs of different oxidation
degrees, several of these C-O bonds were created. Thus, O/C atomic ratios of 0.35 (Model
1), 1.03 (Model 2), 1.26 (Model 3), and 1.45 (Model 4) were assessed. They represent a wide
interval of O/C ratios obtained experimentally (Figure 13) [12], ranging from low-oxidized
(reduced) to high-oxidized GOs. Model 1 could represent a reduced (low-oxidized) GO,
whereas the other models correspond to deep-oxidized GOs.

The relative quantity of each kind of oxygenated group attached to the graphene
framework also corresponds to experimental data (Figure 13) [11], but their distribution on
the molecular domain when creating the models was somewhat arbitrarily determined. In
all the structures proposed, valences of peripheral carbons were completed with hydrogens
when appropriate. Although 24-fused hexagon models were also evaluated in this work,
they were discarded due to the marked increase in the computational cost without a
significant improvement in the results.

Ethanol, water, octane, as well as polyester and epoxy monomers (Figure S3), were
selected to study the interactions of molecular solvents and monomers with the GOs. They
can display both polar and non-polar interactions with graphene oxides. (GO + solvent)
and (GO + monomer) interactions were analyzed because of their importance in the liquid
exfoliation used to prepare GO suspensions [19,43,44]; in the catalytic activity [47] of
GOs for several processes, such as the synthesis of graphene-based membranes [1] and
polymers; in the adsorption of drugs and other species on the GO surface [29–34,48]; as
well as in the synthesis of composite materials graphene/epoxy resin [49–51] with different
potential applications. Dimer aggregates were proposed to study the interactions between
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graphene and molecular species. Three types of dimmers were evaluated: (GO + molecule),
(molecule + molecule), and (GO + GO). More information on the strategy followed to define
these aggregates and additional computational details on their geometry optimization are
given in the next paragraph, along with the analysis of the results.
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Figure 13. Experimental information used to define both the O/C mass ratio of the GO models and
the distribution by type of the oxygenated functional groups. The O/C mass ratio was established by
elemental analysis, and group distribution by IR and Raman analysis [11,12]. The oxidation degree is
presented on a molar basis.

3.2. Quantum Chemical Calculations and Geometry Optimization

DFT methods were used in all the quantum chemical calculations. Two computational
levels were employed in geometry optimization tasks. Individual structures of graphene,
GO, solvents, and monomers were optimized at the B3LYP/6-31G(d,p) level. This func-
tional gives excellent results in structure optimization and energy calculations for systems
having covalent bonds, even if they are large in size. However, dimer aggregates were
optimized at the m062x/6-311G(d,p) level to ensure a good description of the long-range
interactions like dispersive, ionic, and H-bonds. In fact, m05-2x and m06-2x functionals,
having a greater number of parameters than B3LYP, were developed [52] to correct the
description of the non-local interactions. Additionally, polarized and diffuse atomic basis
sets were selected to guarantee enough flexibility to model the weak interactions.

In all the geometry optimization jobs, the molecules were considered isolated, i.e.,
they do not interact with other species. The minimum energy condition for the optimized
structures was confirmed by frequency calculations. Quantum chemical calculations were
performed with the Gaussian 16 program package [53].

Interatomic distances and bond and torsion angles were used to characterize the molec-
ular structures of the individual species and the aggregates. In GO, the axial coordination
of oxygen atoms breaks [8,54,55] the planarity of the graphene. Planarity loss of graphene
in GO was evaluated relative to the mean plane determined by the carbon atoms, the z
coordinate of which (zm) was defined as follows:

zm =
∑n zi

n
(3)

where zi is the z Cartesian coordinate for each carbon atom, and n is the total number of
carbon atoms in the GO (n = 38).

The planarity loss (κ) was calculated as follows:

κ =
∑n|zi − zm|

n
(4)
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In the current work, intramolecular H-bonds at the GO surfaces were studied. Here, it
is considered that the O···H interaction conforms a hydrogen bond for interatomic O···H
distances around 2.0 Å and H···O-C angles up to 120◦.

3.3. Electronic Structure

Atomic charges were used to characterize the electronic structure of the species studied.
They were calculated by the Natural Population Analysis formalism as implemented in
Gaussian 16 (Population = NBO keyword) [42].

Furthermore, electron density calculations by the Deformed Atoms in Molecules
(DAM) methodology [40,41] were carried out to study the electronic structure of graphene
and GOs. This method establishes a bridge between the quantum mechanical concept
of electron density and the concepts of empirical chemistry throughout the electron den-
sity deformation. The molecular electron density is partitioned into minimally deformed
pseudo-atomic densities, which are achieved by assigning to each atom the charge distribu-
tions centered on its nucleus plus the parts of the two-center ones nearest to it. This theory
has been successfully applied to the analysis of the molecular electron structure of complex
molecules and typical aromatic compounds [40,41]. DAM calculations were performed
with version 2.0 of the program DAMQT [56]. Deformations of the atomic electronic density
contributing to the chemical bond in the molecule (positive deformations) are graphically
represented in this work. Negative electron density deformations are omitted for simplicity.
Electron density deformations were calculated and represented here for a contour value of
0.001 a.u., which allows considering the density deformation of the π electron cloud in con-
jugated systems [40,41]. In addition, the electrostatic potential at the molecular surface was
calculated for an electron density value of 0.001 a.u., as recommended by Bader et al. [57].

3.4. COSMO and COSMO-RS Calculations

COSMO (COnductor-like Screening MOdel) and COSMO-RS (COnductor-like Screen-
ing MOdel for Real Solvents) methodologies [35–37] were used to examine both the elec-
tronic structure of the species considered in this work and the interaction of GOs with
molecular species of different polarity. COSMO is a continuum solvation model [58] that
describes a molecule in solution through a quantum chemical calculation of the solute
individual molecule with an approximate representation of the surrounding solvent as a
continuum, with dielectric constant
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RS theories, solids can be modeled as pseudo-liquid systems, making it possible to apply
both formalisms to the analysis of the interaction between solid surfaces and molecules in
operations such as adsorption [38].

COSMO calculations were performed on the molecular structures previously opti-
mized at the B3LYP/6-31G(d,p) level, using the refined cavity construction algorithm
(FINE) [59] implemented in the Turbomole program package v 7.0, which was accessed
through the TMoleX v 4.5.2 [60]. Cosmo files (.cosmo) containing the polarized (as a re-
sult of the interaction of the individual molecules with the continuum medium) charge
distribution were obtained with Turbomole and further used in COSMO-RS calculations,
which were carried out with the BIOVIA COSMOtherm version 20.0 program package [61].
BP_TZVPD_FINE_20 parametrization was used in all the COSMO-RS calculations.

The polarized charge distribution on the molecular surface was represented in this work,
as is typical in COSMO-based methodologies, through the sigma-surface and sigma-profile
(σ-surface and σ-profile, respectively). The sigma-potential (σ-potential) was employed to
thermodynamically characterize the potential capacity of interaction of the species assessed
in this work. Finally, the excess enthalpies calculated by the COSMO-RS method were used
to predict the thermodynamic feasibility of the interactions assessed.

In the COSMO-RS model, the excess enthalpy (HExcess) of a binary mixture is obtained
by the algebraic sum of three contributions associated with electrostatic misfit (MF), van
der Waals (vdW), and hydrogen bond (HB) intermolecular interactions (Equation (5)). The
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contributions of each type of these interactions to the excess enthalpies are evaluated in the
current work.

HExcess = HExcess(MF) + HExcess(vdW) + HExcess(HB) (5)

4. Concluding Remarks

Quantum chemical geometry optimization at the B3LYP/6-31G(d,p) computational
level reproduces reasonably well the changes in the molecular electronic structure of
the graphene as a consequence of carbon oxidation to hydroxyl, epoxide, carbonyl, and
ether groups. From the structural point of view, the loss of planarity, the increase in C-C
bond distances, and the decrease in C-C-C bond angle are noticeable. These changes can
be rationalized as a transition in the carbon hybridization from the sp2 hybridization,
characteristic of conjugated systems, to the sp3 one due to the axial oxygen substitution.
From the electronic point of view, the appearance of proton acceptor and proton donor
centers on the solid surface is relevant, which can confer amphoteric character to the
oxidized graphene derivatives and exceptional catalytic properties. GOs which have
relatively low oxidation degree exhibit additionally neutral surface fragments, consisting
of highly polarizable π electron cloud. In GOs with a high oxidation degree, the formation
of a quasi-two-dimensional H bond network is also observed, which could be responsible
for the high proton conduction of electricity. The interaction of oxidized graphene with
polar components (solvents and monomers) is in general thermodynamically favorable,
with the contribution of the H-bond being predominant. Furthermore, in those cases
where it is advantageous, the van der Waals dispersive interactions can contribute to
the stability of the (solvent/monomer + GO) complexes. Remarkably, the interaction
of low-oxidized (reduced) graphene oxides with polar compounds (like conventional
solvents and monomers) may not be thermodynamically favorable, despite their capacity
to interact via H-bonding and dispersive forces. In these cases, the (solvent + solvent)
dimerization and the GO aggregation could be thermodynamically more favorable than
the (solvent/monomer + GO) interactions. The results obtained in this work show that the
thermodynamic analyses supported by COSMO-RS calculations could be an interesting
alternative to select/design both adequate exfoliants of graphene and GOs and graphene
derivatives with optimized properties for specific applications.
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and GOs (Models 1 to 4) considered in this work. Figure S2: Sigma-surfaces and sigma-profiles of
the solvents and monomers obtained by COSMO calculations on optimized geometries. Figure S3:
Optimized geometries (at the B3LYP/6-31G(d,p)) computational level) of the solvents and monomeric
fragments used in this work to study the interactions with GO surfaces.
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