
Citation: Benataya, K.; Lakrat, M.;

Hammani, O.; Aaddouz, M.; Ait

Yassine, Y.; Abuelizz, H.A.; Zarrouk,

A.; Karrouchi, K.; Mejdoubi, E.

Synthesis of High-Purity

Hydroxyapatite and Phosphoric Acid

Derived from Moroccan Natural

Phosphate Rocks by Minimizing

Cation Content Using

Dissolution–Precipitation Technique.

Molecules 2024, 29, 3854. https://

doi.org/10.3390/molecules29163854

Academic Editors: Dun Wu,

Yuhang Gao and Guangqing Hu

Received: 2 July 2024

Revised: 8 August 2024

Accepted: 10 August 2024

Published: 14 August 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

molecules

Article

Synthesis of High-Purity Hydroxyapatite and Phosphoric Acid
Derived from Moroccan Natural Phosphate Rocks by Minimizing
Cation Content Using Dissolution–Precipitation Technique
Karim Benataya 1 , Mohammed Lakrat 1 , Othmane Hammani 2 , Mohamed Aaddouz 1 ,
Youssef Ait Yassine 3,4 , Hatem A. Abuelizz 5 , Abdelkader Zarrouk 6,7 , Khalid Karrouchi 8,*
and Elmiloud Mejdoubi 1

1 Laboratory of Applied Chemistry and Environment, Department of Chemistry, Faculty of Sciences,
Mohammed First University, Oujda 60000, Morocco; k.benataya@ump.ac.ma (K.B.);
m.lakrat@ump.ac.ma (M.L.); m.aaddouz@ump.ac.ma (M.A.); ee.mejdoubi@gmail.com (E.M.)

2 Chemistry Platform, Unités d’Appui Technique à la Recherche Scientifique (UATRS), Centre National pour la
Recherche Scientifique & Technique (CNRST), Rabat 10102, Morocco; othmane.hammani@hotmail.com

3 Higher School of Technology, Ibn Zohr University, Laayoune 3007, Morocco; y.aityassine@uiz.ac.ma
4 Laboratory of Thermodynamics and Energy, Faculty of Sciences, Ibn Zohr University, Agadir 80150, Morocco
5 Department of Pharmaceutical Chemistry College of Pharmacy, King Saud University,

P.O. Box 2457, Riyadh 11451, Saudi Arabia; habuelizz@ksu.edu.sa
6 Laboratory of Materials, Nanotechnology and Environment, Faculty of Sciences, Mohammed V University in

Rabat, Rabat P.O. Box 1014, Morocco; azarrouk@gmail.com
7 Research Centre, Manchester Salt & Catalysis, 88-90 Chorlton Road, Manchester M15 4AN, UK
8 Laboratory of Analytical Chemistry and Bromatology, Team of Formulation and Quality Control of Health

Products, Faculty of Medicine and Pharmacy, Mohammed V University in Rabat, Rabat 10100, Morocco
* Correspondence: khalid.karrouchi@um5s.net.ma

Abstract: This study investigates, in the first part, the synthesis and purification of a poorly crystalline
hydroxyapatite (HAp) using natural Moroccan phosphate (Boucraa region) as a raw material. Despite
its successful preparation, the obtained HAp was contaminated by several metallic cations (mostly
Cd, Pb, Sn, Ti, Mn, Mg, Fe, and Al) migrated from the natural rocks during the digestion process,
inhibiting HAp application in several sectors. To minimize the existence of these elements, the
dissolution–precipitation technique (DP) was investigated as a non-selective purification process.
Following the initial DP cycle conducted on the precipitated HAp, the removal efficiency was
approximately 60% for Al, Fe, Mg, Mn, and Ti and 90% for Cd and Pb. After three consecutive DP
cycles, notable improvement in the removal efficiency was observed, reaching 66% for Fe, 69% for
Mg, 73% for Mn, and 74% for Al, while Cd, Pb, and Ti were totally removed. In the second part of
this study, the purified HAp was digested using sulfuric acid to produce high-quality phosphoric
acid (PA) and gypsum (GP). The elemental analysis of the PA indicates a removal efficiency of
approximately 89% for Fe and over 94% for all the examined cations. In addition, the generated GP
was dominated by SO3 and CaO accompanied with minor impurities. Overall, this simple process
proves to be practically useful, to reduce a broad spectrum of cationic impurities, and to be flexible to
prepare valuable products such hydroxyapatite, phosphoric acid, and gypsum.

Keywords: hydroxyapatite; natural phosphate; heavy metals; precipitation–dissolution; decontamination

1. Introduction

Hydroxyapatite (HAp: Ca10(PO4)6(OH)2) is a well-known calcium phosphate com-
pound that has witnessed considerable interest in various fields owing to its unique proper-
ties. As a major component of the human bone and teeth, HAp is recognized as an attractive
biomaterial in regenerative medicine [1], dentistry [2], cancer therapy [3], bioimaging [4],
and drug delivery [5]. Beyond its traditional medical applications, researchers explored
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HAp utilities in other fields including catalysis [6,7], fertilization [8], and adsorption [9] as
well as in the cosmetic and pharmaceutical industries [10]. Therefore, the preparation of
HAp has seen huge advancements either by improving the already existing protocols such
as the sol-gel process [11], hydrothermal [12], microwave irradiation [13], spray pyroly-
sis [14], or exploring novel techniques involving wastes and mineral resources [15,16]. One
of the approaches that is paving the way for HAp preparation is the valorization of natural
phosphate as a low-cost and abundant natural source, especially in Morocco [6,16,17].
These studies primarily focus on the digestion of sedimentary rocks to generate a crude
liquor (c-Liq) rich in calcium and phosphorous ions, which is then precipitated into HAp
using an alkaline solution. However, there is a notable absence of studies focusing on
the purification of the precipitated phases. Indeed, sedimentary rocks commonly contain
calcium phosphate minerals, particularly apatite (Ca10(PO4)6(OH,F,Cl)2), quartz (SiO2),
and dolomite (Mg Ca (CO3)2) along with an important amount of heavy metals and rare
earth elements [18]. As a result, during the digestion process, these hazardous elements
migrate into the c-Liq, which, when it is used in the preparation of HAp, they integrate into
its structure as contaminants. Taking into consideration their non-biodegradability, toxicity,
as well as carcinogenicity, the presence of these cations in the final product poses significant
concerns regarding human health [19,20]. Hence, it becomes crucial to effectively remove
or minimize the presence of these hazardous elements prior to HAp synthesis to ensure
the purity and quality of the final product. To address these limitations, several techniques
have been suggested for purifying the digested c-Liq such as solvent and liquid–liquid ex-
traction [21], crystallization [22], extractant impregnated resin process [23], membrane [24],
and photocatalytic technologies [25]. Despite the considerable efforts, decontamination
techniques continue to face notable environmental, economic, and technical limitations,
such as complex purification processes, limited efficiency, and high costs. Conversely,
precipitation methods have been regarded as economic and promising strategies for the
c-Liq purification [26,27]. Meanwhile, most of these methods are typically selective, focus-
ing on the removal of a specific cation while permitting other impurities to persist in the
c-Liq. They commonly rely on the precipitation of the hazardous elements as insoluble
salts. This includes the defluorination through MgSiF6·6H2O or (Na,K)2SiF6 precipita-
tion [28]; heavy metal precipitation as sulfides (FeS2, CuS, PbS, and CdS) [29], ferrous
oxalate (FeC2O4·2H2O) [30], ferric oxide (Fe2O3) or ferric oxyhydroxide (Fe(OH)3) [31];
and magnesium precipitation as MgSiF6, MgAlF5, or MgAl2F8 compounds [32].

Therefore, the development of an innovative concept to purify the produced HAp
could represent a potential avenue to maximize the valorization of natural phosphate
resources. In this study, we explored a promising method to eliminate a broad range of
metallic ions from the c-Liq and produce less-contaminated HAp via a wet process utilizing
the dissolution–precipitation technique. The suggested method is a non-selective two-step
process to clean the prepared HAp from cationic impurities offering an inexpensive and
rapid decontamination approach. In the first step, the c-Liq digested from phosphate rocks
was transformed into HAp using ammonia solution at room temperature. This ensures the
formation of a solid phase containing calcium and phosphate ions with fewer hazardous
elements. Next, HAp was dissolved using diluted nitric acid to recover its constituent ele-
ments, facilitating the evaluation of their elimination efficiency. To improve the purification
process, three consecutive DP cycles were conducted on the same HAp powder.

Following both the first and third cycles, we examined the structure of the obtained
HAp and assessed the concentration of residual cations in the recovered liquor (r-Liq).

In the final stage, the purified HAp obtained after the third DP cycle was treated with
sulfuric acid to generate high-quality PA and GP. Both the chemical compositions of PA
and GP and the structural properties of GP were subsequently analyzed.

2. Results and Discussion

The XRD pattern of the calcined natural phosphate (Figure 1) revealed that the domi-
nant minerals are fluorapatite, quartz, and feldspar [33].
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Figure 1. XRD pattern of the natural phosphate calcined at 900 ◦C.

The mineral composition of the calcined natural phosphate was determined using XRF
spectrometry. As given in Table 1, the phosphate rocks are principally composed of P2O5,
CaO, SiO2, and F with mass fractions of 39.58%, 44.01%, 5.26%, and 5.12%, respectively.
The presence of other cations which are considered as hazardous elements including Al,
Mn, Mg, Fe, S, Na, and Ti was also confirmed.

Table 1. Chemical composition of calcined phosphate rocks.

Compound CaO P2O5 SiO2 F Al2O3 MnO MgO Fe2O3 Na2O SO3 TiO2 Other *

Concentration (wt%) 44.01 39.58 5.26 5.12 1.50 0.56 0.40 0.30 0.22 0.64 0.06 0.17

* Other elements include U, K, Sr, Cd, Sn, V, Zn, Cl, and Ni.

Table 2 presents the chemical composition of the c-Liq derived from phosphate rock
digestion. The results indicate a dominance of phosphorus and calcium ions, accompa-
nied by various impurities including aluminum, iron, magnesium, titanium, manganese,
and cadmium. It is worth noting that in the following sections, the study is specifically
concentrated on the evaluation of cations such as Fe, Al, Mg, Mn, Ti, Cd, Sn, and Pb and
their removal efficiency. Although the XRF analysis also detected anions, they are not the
primary focus of this work and will not be discussed further.

Table 2. Elemental analysis of the c-Liq performed by ICP-OES.

Elements Ca P Al Fe Mg Mn Ti Cd Sn Pb

c-Liq (mg/L) 142.4 101 22.983 17.134 14.438 0.369 0.5133 0.1954 0.1 0.05

As it was expected, the heavy metals detected earlier in the phosphate rocks end up
in the c-Liq during the digestion process. Therefore, the separation of all these cations
from this solution constitutes a major problem to produce a valuable product such as HAp
with minimal contamination. The purification process proposed herein is based on the
conversion of the c-Liq rich in phosphor and calcium ions into a solid phase, particularly
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HAp, using ammonia solution. In this sense, many studies tried to remove impurities from
the contaminated solution using adsorption and extraction techniques. However, the main
idea behind the present work is to extract phosphorus and calcium from impurities by
inducing their precipitation as a solid phase that can be easily separated out through a
simple filtration process.

The XRD pattern (Figure 2a) of the precipitated solid phase displayed diffraction
peaks that match well with those of the hexagonal hydroxyapatite structure (JCPDS No.
09-0432) [34]. Moreover, the broad diffraction peaks observed indicate that the prepared
HAp has low crystallinity.
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Figure 2. (a) XRD pattern; (b) ATR−FTIR spectra; and (c) SEM image of the prepared HAp.

The ATR-FTIR spectrum of the obtained sample (Figure 2b) reveals the presence of
typical absorption bands of an apatitic structure. The three absorption bands appearing at
463, 560, and 603 cm−1 are related to the bending vibration of phosphate groups (PO4

3−),
while those observed around 960, 1020, and 1089 cm−1 correspond to the stretching vibra-
tion of (PO4

3−) groups [34]. The broad bands located between 3300–3450 cm−1 and the
relatively small band at 1620 cm−1 are corresponding to water (H2O) molecules adsorbed
on the HAp particles’ surface [35]. A few additional bands were detected at 1580, 1415, and
873 cm−1, probably due to the presence of carbonate ions CO3

2− [36].
The morphology of the precipitated phases is given in Figure 2c, indicating the pres-

ence of agglomerated particles in the nanometer size range.
The XRD pattern and ATR-FTIR spectrum of the calcined powder (Figure 3a) showed

the existence of a well-crystallized phase corresponding to HAp without noticing any other
crystalline phase.
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To evaluate the effectiveness of the precipitation step in reducing impurities, the
produced HAp was totally transformed into a clear solution via a simple dissolution
step [37]. Thus, HAp was subjected to reaction with diluted nitric acid, serving as a
leaching reagent.

There were two main purposes for using nitric acid instead of sulfuric acid for leaching
phosphate rocks to produce the c-Liq. Firstly, to avoid the generation of a large volume
of contaminated GP as a byproduct, and secondly, to keep sufficient calcium ions in the
c-Liq to be utilized for HAp precipitation. For instance, a complete dissolution of HAp
without secondary precipitation occurs, enabling the delivery of its content in the solution,
allowing us to precisely determine its chemical composition.

The elemental composition of the r-Liq is highlighted in Table 3 where the results
indicate a significant decrease in the impurities content following the precipitation of HAp
from the crude liquor.

Table 3. Elemental analysis of c-Liq and r-Liq.

Solution
Elements (mg/L)

Sn Pb Cd Mn Ti Mg Al Fe

c-Liq 0.1 0.05 0.1954 0.369 0.3234 14.438 22.983 17.134

r-Liq 0.053 0.0001 0.0209 0.1315 0.1311 5.416 7.399 7.962

r1-Liq - 0.0023 0.1151 0.09 4.771 6.138 6.513

r3-Liq - - - 0.1012 0.007 4.642 5.294 5.013

Analyzing the removal efficiency (Figure 4), it is evident that the precipitation of the
phosphorus and calcium ions existing in the c-Liq into HAp effectively eliminated a broad
spectrum of metal ions. Specifically, the removal rates were 47.01% for Sn, 89.76% for Cd,
and 99.02% for Pb, while Mn and Ti exhibited removal rates close to 60%. For the main
elements such as Mg, Fe, and Al, the removal percentage ranged mainly between 53%
and 65%.

Mechanisms responsible for this decontamination process can be attributed to the pH
change in the c-Liq inducing a fast precipitation of HAp. From a physicochemical point
of view, the precipitation of HAp is thermodynamically favorable in the Ca2+-PO4

3−-H2O
system at a pH value higher than 7 more than any other calcium phosphate phase [38].
The presence of the hazardous elements (impurities) in the r-Liq is probably due to their
incorporation in the apatite lattice or simply adsorbed on its surface during precipitation.
In fact, HAp presents a flexible hexagonal structure that can accommodate almost all the
cations within its crystal lattice as substituents for Ca2+ ions [39,40]. In various chemical
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contexts, calcium ions can be substituted by numerous metallic cations including alkali
metals (Li+, Na+, K+. . .), alkaline earth metals (Ba2+, Mg2+, Sr2+. . .), transition metals (Mn2+,
Cu2+, Ni2+, Zn2+, Cd2+, and Co2+) as well as a variety of other cations (Pb2+, Al3+, and
Fe3+) [9]. Therefore, rapid filtration of the solid phase was carried out with the aim to
minimize the exchange between calcium in the HAp structure and cations in the c-Liq which
facilitate the recovery of less-contaminated compounds. What is more, the fast increase in
the pH of liquid to around 9 was performed to prevent the formation of secondary solid
phases such as iron phosphate (FePO4), aluminum phosphate (AlPO4), and chromium
phosphate (CrPO4), which are usually precipitated, respectively, in the pH ranges of 0.3–2.6,
2.0–2.5, and 4–6 [41]. The absence of these phases as confirmed by XRD analysis of the
non-sintered (Figure 2) and sintered (Figure 3) powders reflecting the presence of a single
phase, which is HAp.
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Although the precipitation step significantly decreased impurities from the produced
HAp, it did not achieve a complete decontamination.

To address this, a series of DP cycles was proposed as a simple and effective strategy
to further reduce the presence of impurities in the prepared HAp derived from natural
phosphate. Essentially, during the recrystallization process, crystals tend to expel im-
purities, allowing the recuperation of less-contaminated compounds. By repeating this
process, it may be possible to entirely eliminate the studied cations from the main HAp
crystal structure.

Elemental analysis of the recovered liquids r1-Liq and r3-Liq (Table 4) after the first
and third DP cycle, respectively, showed a noticeable diminution in the concentration of
each hazardous element, highlighting the relationship between the DP cycle and their
removal efficiency.

Table 4. Elemental composition of PA.

Solution
Elements (mg/L)

Mg Al Fe Mn Ti

r3-Liq 4.242 5.894 5.013 0.1012 0.007

PA 0.4647 0.3242 0.1897 0.0009 -

In fact, it is obvious that the concentration of the different cationic species coexisting
in the recovered liquor decreased almost linearly with each consecutive DP cycle. The
concentrations of Sn and Pb were below the detection limits after the first cycle, indicat-
ing their full elimination from the HAp structure. For Cd and Ti, their elimination was



Molecules 2024, 29, 3854 7 of 15

complete after three consecutive PD cycles performed on the same sample. Furthermore,
the concentration of Mn in the r3-Liq was 0.1 mg/L with a removal efficiency of 73%.
Concerning the major cations such as Fe, Mg, and Al, their removal efficiency reached,
respectively, 67.76%, 70.01%, and 74.35%, as simplified in Figure 5.
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These results indicate that the two-step DP proposed in this study operates as a non-
selective decontamination process, allowing the simultaneous removal of trivalent, bivalent,
as well as monovalent cations. These results indicate that the precipitation, each time, of
phosphorous and calcium ions minimized the content of the hazardous elements retained
in the HAp structure.

The XRD pattern (Figure 6) of the solid phase obtained after three consecutive PD
cycles exhibited peaks characteristic of a poorly crystalline HAp similar to the first one
precipitated from the c-Liq. This suggests that regardless of the number of PD cycles
performed, the structure of HAp remains unchanged.

Furthermore, the broad pattern reveals that the precipitated HAp powder has a low
crystallinity with nanometric size (33 ± 2 nm) as estimated by the Scherrer formula.

Consequently, HAp, with these attractive properties, is frequently recognized for its
high specific surface area [11,42].

Therefore, it can be recommended as a safe and environmentally friendly adsor-
bent to remove heavy metals and organic pollutants from contaminated aqueous solu-
tions [9]. It can also be proposed as a fertilizer to supply the necessary phosphorus for
plant growth [43,44].

The choice of three cycles for the novel purification process was arbitrary, yet the
results were promising. These encouraging results indicate that further exploration of
this decontamination technique have significant potential to unlock new opportunities
in the valorization of natural resources, paving the way for new advancements across
various industries.

After the three consecutive PD cycles, PA acid with fewer hazardous elements could
be recovered by digesting the purified HAp as another interesting aim of this study. This
time, the dissolution step was performed using sulfuric acid instead of nitric acid to convert
calcium ions (Ca2+) into insoluble calcium sulfate dihydrate (gypsum: CaSO4·2H2O).
The elemental composition of the obtained PA (final liquor: f-Liq) was quantified and is
presented in Table 4.

A remarkable decrease in the concentration of major elements, namely, iron, alu-
minum, and magnesium, was observed, reaching 0.19, 0.32, and 0.46 mg/L, respectively.
Accordingly, the leaching of HAp with sulfuric acid resulted in a removal efficiency of
approximately 89% for iron and over 94% for all examined cations, as depicted in Figure 7.
It is noted that the precipitation of GP effectively contributed to the absorbance of a signifi-
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cant portion of cations during the leaching process, thereby decreasing their level in the
produced phosphoric acid [45,46].
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Based on the obtained data, the overall reduction efficiency of hazardous metals in
the PA was improved to a very high ratio, and the residual concentration of all elements
detected in the f-Liq solution was negligible. It is noteworthy to highlight that the cation
content, particularly iron and aluminum, was reduced to the industrially accepted limit of
1.5% [47].

On the other side, GP generated as a byproduct during the digestion of the puri-
fied HAp with sulfuric acid was also washed with distilled water and then characterized.
The XRD diffractogram provided in Figure 8a indicates the formation of a highly crys-
talline phase with narrow peaks attributed all to calcium sulfate dihydrate or GP (PDF
N◦: 01-072-0596). Furthermore, the main mineral impurities usually observed such as
brushite (CaHPO4·2H2O), silicaluminate, or fluorine compounds (CaSiF6 or CaF2) were
absent. The SEM image displayed that needle-shaped crystals having a size varying from
40 to 120 µm (Figure 8b) were obtained.

Molecules 2024, 29, x FOR PEER REVIEW 9 of 16 
 

 

 
Figure 7. Removal efficiency of different cations in PA. 

Based on the obtained data, the overall reduction efficiency of hazardous metals in 
the PA was improved to a very high ratio, and the residual concentration of all elements 
detected in the f-Liq solution was negligible. It is noteworthy to highlight that the cation 
content, particularly iron and aluminum, was reduced to the industrially accepted limit 
of 1.5% [47]. 

On the other side, GP generated as a byproduct during the digestion of the purified 
HAp with sulfuric acid was also washed with distilled water and then characterized. The 
XRD diffractogram provided in Figure 8a indicates the formation of a highly crystalline 
phase with narrow peaks attributed all to calcium sulfate dihydrate or GP (PDF N°: 01-
072-0596). Furthermore, the main mineral impurities usually observed such as brushite 
(CaHPO4·2H2O), silicaluminate, or fluorine compounds (CaSiF6 or CaF2) were absent. The 
SEM image displayed that needle-shaped crystals having a size varying from 40 to 120 
μm (Figure 8b) were obtained. 

 
Figure 8. (a) XRD pattern and (b) SEM image of the obtained GP. 

The chemical composition of the GP as determined by XRF analysis is given in Table 5. 

Figure 8. (a) XRD pattern and (b) SEM image of the obtained GP.

The chemical composition of the GP as determined by XRF analysis is given in Table 5.

Table 5. Chemical composition analysis of GP.

Compound SO3 CaO Al2O3 P2O5 Fe2O3 Other LOI a

Concentration (wt.%) 48.70 29.74 0.096 0.01602 0.09 0.129 21.23
a LOI: Loss on Ignition.

In the light of these results, it is clear that GP is dominated by SO3 (44.23%) and CaO
(32.63%) as major constituents accompanied with minor impurities including SiO2 (0.129%),
Al2O3 (0.01%), P2O5 (0.016), and Fe2O3 (0.09). Moreover, the content of Mn and Ti were
below the detection limits, confirming their complete elimination.

Based on these results, the generated GP, previously regarded as a waste from the wet
process, is now a promising compound following the DP cycles and represents a valuable
byproduct of phosphoric acid production with potential applications across various indus-
tries. In fact, GP is largely utilized to produce β or α hemihydrate gypsum plaster as a
green and low-carbon material in the building sector [48]. Additionally, it can substitute
natural GP in the ordinary Portland cement or the manufacturing of porous sound ab-
sorbing material [49], supersulfated cement [50], and calcium sulfoaluminate cement [51].
Recently, purified GP attracted significant interest for CO2 mineral sequestration due to the
important calcium oxide CaO content in GP (around 30 wt.%) that can be applied as raw
material for CO2 storage [52,53].
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Overall, the strategy adopted in this work holds significant promise to solve many
environmental challenges and overcome limitations faced by current industrial practices
while producing high value-added products through simple and cost-effective protocols.
Particularly, with these techniques, we have the flexibility to prepare less-contaminated
HAp, offering opportunities for numerous sectors such as agriculture, where it can serve as
a fertilizer, environmental applications as an adsorbent, or even in medicine as a biomaterial
for bone tissue engineering. Furthermore, digesting purified HAp with sulfuric acid
provides a two-fold benefit: generating high-grade PA and GP.

3. Materials and Methods

The chemical reagents used in the present work such as nitric acid (HNO3, Sigma
Aldrich, Taufkirchen, Germany), sulfuric acid (H2SO4, Sigma Aldrich), and ammonia
solution (NH4OH, Sigma Aldrich) were all of analytical grades and used without any
further purification.

The phosphate rocks were collected from Boukraa region, Laayoune Province, Mo-
rocco. Firstly, the collected samples were washed with distilled water to remove the
impurities and dried at 120 ◦C for 24 h, then grounded and calcined at 900 ◦C for 4 h to
remove any organic phases.

3.1. Hydroxyapatite Precipitation

The calcined natural samples were sieved to the distribution size of 200–400 µm then
reacted with concentrated nitric acid. Specifically, 300 g of the natural phosphate was
dissolved in 250 mL of HNO3 (2 M) and stirred continuously for 6 h. To intensify the wet
process, the reaction was performed under heating (70–80 ◦C), and the resulting mixture
was filtered to obtain the c-Liq according to Equation (1) [54]. Next, the c-Liq was diluted
to a final volume of 1 L by adding demineralized water.

Ca10(PO4)6F2 + 20 HNO3 → 6 H3PO4 + 10 Ca2+ + 20 NO3 + 2 HF (1)

The preparation of HAp was performed by adjusting the pH of the diluted c-Liq
(source of Ca2+ and PO4

3−) to values higher than 9 by adding 2 M ammonia solution under
continuous stirring at room temperature (Equation (2)).

6 H3PO4 + 10 Ca2+ + 20 OH− → Ca10(PO4)6(OH)2 + 18 H2O (2)

The precipitate was filtered and washed three times with hot distilled water to remove
any further ions as well as impurities physically adsorbed on the surface powder then
dried at 100 ◦C for 12 h.

Next, a heat treatment was conducted on a fraction of the dried powder at 900 ◦C for
2 h to better illustrate the crystalline structure of the produced compound.

Scheme 1 depicts the sequential steps involved in the HAp precipitation from natural
phosphate, along with the characterization techniques applied at each phase.
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3.2. Purification Process of Hydroxyaptite

The decontamination procedure adopted herein encompasses two key stages: initially,
HAp is precipitated from the c-Liq by treatment with an alkaline medium. Following
filtration and washing, the HAp is dissolved in diluted nitric acid at room temperature to
produce the r-Liq (Scheme 2).
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The chemical composition of the c-Liq and r-Liq was determined, and the removal
efficiency of the studied cations was calculated as:

R (%) = ((C0 − C1)/C0) × 100 (3)

where C0 and C1 are, respectively, the initial and residual concentrations of cations (mg/L).
To intensify the elimination and co-separation of cationic impurities and produce

cleaner HAp, series of DP cycles were performed on the same HAp powder at room
temperature, as outlined in Scheme 3. The elemental composition of the r-Liq was analyzed
for the first and third DP cycles.
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3.3. Preparation of High-Quality PA and GP

After reducing impurities, the purified HAp (HAp3) was digested with sulfuric acid
to generate high-quality PA and GP (Equation (4)) [54]:

Ca10(PO4)6(OH)2 + 10 H2SO4 + 20 H2O → 6 H3PO4 + 10(CaSO4, 2H2O) + 2H2O (4)

By improving the quality of HAp derived from natural phosphate rocks, this process
facilitates the production of PA and GP with reduced hazardous elements (Scheme 4).
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3.4. Characterizations

Chemical analyses of phosphate rocks and produced GP were carried out using X-ray
fluorescence spectroscopy (XRF, PANalytical Axios, Eindhoven, The Netherlands). The
elemental composition of the produced c-Liq, r-Liq, and PA was performed by Induc-
tively Coupled Plasma Optical Emission Spectrometer (ICP-OES, Horiba Ultima-Expert,
Oberursel, Germany). The samples were analyzed to quantify the content of the cations,
especially heavy metals (Cd, Pb, Sn, Fe, Al, Ti, Mg, and Mn).

The phase composition of the precipitated and calcined HAp as well as GP was
characterized by X-ray Diffraction (Shimadzu XRD 6000, Kyoto, Japan) using monochro-
matic CuKα radiation (λ = 1.54056 Å) at a voltage of 40 kV and current of 30 mA. All
diffractograms were taken in the 2θ range of 10–60◦ with a step size of 0.02◦.

Scherrer formula was applied to estimate the crystallite size of the precipitated HAp
particles as follows [42]:

D =
0.94λ

β(hkl)cos θ
(5)

where D is the average crystal size in nm, λ is the wavelength (λ = 1.54056 Å for CuKα

radiation), and β(hkl) and θ (in degree) represent, respectively, the full width at half
maximum FWHM of the (hkl) reflection and the Bragg angle of the related plan.

Functional groups of the studied samples were identified by Attenuated Total Re-
flectance Fourier-Transform Infrared (ATR-FTIR) spectroscopy using JASCO Jasco4700-ATR
spectrophotometer (Shimadzu, Kyoto, Japan). The spectrum was obtained in the spectral
range of 450 to 4000 cm−1 at a resolution of 4 cm−1 and number of scanning of 32.

Morphological analysis of precipitated HAp and GP was conducted by field emission
scanning electron microscopy (FESEM, Quanta 400F, FEI, Eindhoven, The Netherlands).

4. Conclusions

This study successfully demonstrated the effectiveness of the precipitation–dissolution
technique in reducing the most hazardous cations in HAp derived from natural Moroccan
phosphate, paving the way for its potential use in various environmentally friendly appli-
cations. The obtained data showed the non-selective nature of the DP process allowing for
the elimination of a wide range of cations, reaching removal rates from 100% for Cd, Pb,
and Sn to about 70% for Mg, Al, and Fe.

Then, leaching the produced HAp by sulfuric acid enhanced the elimination of
the remaining cations to a very high ratio (~95%) while producing high-quality phos-
phoric acid and gypsum. Therefore, the combination of low cost, high effectiveness,
and flexibility makes the dissolution–precipitation strategy a promising approach in the
valorization of natural resources for producing attractive products and contributing to
environmental protection.
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