Composition-Regulated Photocatalytic Activity of ZnIn2S4@CdS Hybrids for Efficient Dye Degradation and H2O2 Evolution
Abstract
:1. Introduction
2. Results and Discussion
2.1. Physical Properties of Semiconducting Materials
2.2. Optical Properties and Photocatalytic Activity
3. Materials and Methods
3.1. Reagents
3.2. CdS Synthesis
3.3. ZIS Synthesis
3.4. Synthesis of CdS@ZnIn2S4 Hybrids
3.5. Characterization
3.6. Photodegradation of Orange G Dye
3.7. Photocatalytic Evolution of Hydrogen Peroxide
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Peng, L.; Li, Y.; Raza, S.A.; Shahzadi, I. Natural resources and environmental sustainability: COP26 targets from resources-based perspective. Res. Pol. 2023, 83, 103623. [Google Scholar] [CrossRef]
- Al-Tohamy, R.; Ali, S.S.; Li, F.; Okasha, K.M.; Mahmoud, Y.A.-G.; Elsamahy, T.; Jiao, H.; Fu, Y.; Sun, J. A critical review on the treatment of dye-containing wastewater: Ecotoxicological and health concerns of textile dyes and possible remediation approaches for environmental safety. Ecotox. Environ. Safety 2022, 231, 113160. [Google Scholar] [CrossRef] [PubMed]
- Brillas, E. Ultrasonic treatment of dye chemicals in wastewater: A review. J. Environ. Chem. Engin. 2024, 12, 113191. [Google Scholar] [CrossRef]
- Yang, N.; Jun, B.-M.; Choi, J.S.; Park, C.M.; Jang, M.; Son, A.; Nam, S.-N.; Yoon, Y. Ultrasonic treatment of dye chemicals in wastewater: A review. Chemosphere 2024, 354, 141676. [Google Scholar] [CrossRef] [PubMed]
- Kumar, P.; Singh, G.; Guan, X.; Lee, J.; Bahadur, R.; Ramadass, K.; Kumar, P.; Kibria, M.G.; Vidyasagar, D.; Yi, J.; et al. Multifunctional carbon nitride nanoarchitectures for catalysis. Chem. Soc. Rev. 2023, 52, 7602–7664. [Google Scholar] [CrossRef]
- Ganzali, F.; Kashtiaray, A.; Zarei-Shokat, S.; Taheri-Ledari, R.; Maleki, A. Functionalized hybrid magnetic catalytic systems on micro- and nanoscale utilized in organic synthesis and degradation of dyes. Nanoscale Adv. 2022, 4, 1263–1307. [Google Scholar] [CrossRef] [PubMed]
- Ciriminna, R.; Albanese, L.; Meneguzzo, F.; Pagliaro, M. Hydrogen Peroxide: A Key Chemical for Today’s Sustainable Development. ChemSusChem 2016, 9, 3374–3381. [Google Scholar] [CrossRef] [PubMed]
- Deng, Y.; Zhao, R. Advanced Oxidation Processes (AOPs) in Wastewater Treatment. Curr. Pollut. Rep. 2015, 1, 167–176. [Google Scholar] [CrossRef]
- Herrmann, J.-M. Heterogeneous photocatalysis: State of the art and present applications. Topics Catal. 2005, 34, 49–65. [Google Scholar] [CrossRef]
- Cheng, L.; Xiang, Q.; Liao, Y.; Zhang, H. CdS-based photocatalysts. Energy Environ. Sci. 2018, 11, 1362–1391. [Google Scholar] [CrossRef]
- Yadav, G.; Ahmaruzzaman, M. ZnIn2S4 and ZnIn2S4 based advanced hybrid materials: Structure, morphology and applications in environment and energy. Inorg. Chem. Commun. 2022, 138, 109288. [Google Scholar] [CrossRef]
- Shen, S.; Zhao, L.; Guo, L. Cetyltrimethylammonium bromide (CTAB)-assisted hydrothermal synthesis of ZnIn2S4 as an efficient visible-light-driven photocatalyst for hydrogen production. Int. J. Hydr. Energy 2008, 33, 4501–4510. [Google Scholar] [CrossRef]
- Chen, Y.; Hu, S.; Liu, W.; Chen, X.; Wu, L.; Wang, X.; Liu, P.; Li, Z. Controlled syntheses of cubic and hexagonal ZnIn2S4 nanostructures with different visible-light photocatalytic performance. Dalton Trans. 2011, 40, 2607–2613. [Google Scholar] [CrossRef] [PubMed]
- Gao, B.; Liu, L.; Liu, J.; Yang, F. Photocatalytic degradation of 2,4,6-tribromophenol over Fe-doped ZnIn2S4: Stable activity and enhanced debromination. Appl. Catal. B Environ. 2013, 129, 89–97. [Google Scholar] [CrossRef]
- Jiao, X.; Chen, Z.; Li, X.; Sun, Y.; Gao, S.; Yan, W.; Wang, C.; Zhang, Q.; Lin, Y.; Luo, Y.; et al. Defect-Mediated Electron–Hole Separation in One-Unit-Cell ZnIn2S4 Layers for Boosted Solar-Driven CO2 Reduction. J. Am. Chem. Soc. 2017, 139, 7586–7594. [Google Scholar] [CrossRef]
- Yang, S.; Li, L.; Yuan, W.; Xia, Z. Enhanced visible light photocatalytic activity of ZnIn2S4 modified by semiconductors. Dalton Trans. 2015, 44, 6374–6383. [Google Scholar] [CrossRef]
- Wang, S.; Guan, B.Y.; Lou, X.W.D. Construction of ZnIn2S4–In2O3 Hierarchical Tubular Heterostructures for Efficient CO2 Photoreduction. J. Am. Chem. Soc. 2018, 140, 5037–5040. [Google Scholar] [CrossRef]
- Tan, C.-L.; Qi, M.-Y.; Tang, Z.-R.; Xu, Y.-J. Cocatalyst decorated ZnIn2S4 composites for cooperative alcohol conversion and H2 evolution. Appl. Catal. B Environ. 2021, 298, 120541. [Google Scholar] [CrossRef]
- Zhang, W.; Zhao, S.; Xing, Y.; Qin, H.; Zheng, Q.; Zhang, P.; Zhang, S.; Xu, X. Sandwich-like P-doped h-BN/ZnIn2S4 nanocomposite with direct Z-scheme heterojunction for efficient photocatalytic H2 and H2O2 evolution. Chem. Engin. J. 2022, 442, 136151. [Google Scholar] [CrossRef]
- Huang, F.; Li, Z.; Xu, Y.; Yan, A.; Zhang, T.; Wang, Q.; Li, S.; Lu, S.; Zhao, W.; Zhang, J. Excellent anti-photocorrosion and hydrogen evolution activity of ZnIn2S4-based photocatalysts: In-situ design of photogenerated charge dynamics. Chem. Engin. J. 2023, 473, 145430. [Google Scholar] [CrossRef]
- Liu, H.-Y.; Niu, C.-G.; Huang, D.-W.; Liang, C.; Guo, H.; Yang, Y.-Y.; Li, L. Unravelling the role of reactive oxygen species in ultrathin Z-scheme heterojunction with surface zinc vacancies for photocatalytic H2O2 generation and CTC degradation. Chem. Engin. J. 2023, 465, 143007. [Google Scholar] [CrossRef]
- Tu, H.; Wang, H.; Zhang, J.; Ou, Y.; Zhang, Z.; Chen, G.; Wei, C.; Xiang, X.; Xie, Z. A novel hierarchical 0D/3D NH2-MIL-101(Fe)/ZnIn2S4 S-scheme heterojunction photocatalyst for efficient Cr(VI) reduction and photo-Fenton-like removal of 2-nitrophenol. J. Environ. Chem. Engin. 2024, 12, 111695. [Google Scholar] [CrossRef]
- Shao, Y.; Hu, J.; Yang, T.; Yang, X.; Qu, J.; Xu, Q.; Li, C.M. Significantly enhanced photocatalytic in-situ H2O2 production and consumption activities for efficient sterilization by ZnIn2S4/g-C3N4 heterojunction. Carbon 2022, 190, 337–347. [Google Scholar] [CrossRef]
- Hu, J.; Yang, T.; Chen, J.; Yang, X.; Qu, J.; Cai, Y. Efficient solar-driven H2O2 synthesis in-situ and sustainable activation to purify water via cascade reaction on ZnIn2S4-based heterojunction. Chem. Engin. J. 2022, 430, 133039. [Google Scholar] [CrossRef]
- Xue, F.; Zhang, C.; Peng, H.; Sun, L.; Yan, X.; Liu, F.; Wu, W.; Liu, M.; Liu, L.; Hu, Z.; et al. Modulating charge centers and vacancies in P-CoNi loaded phosphorus-doped ZnIn2S4 nanosheets for H2 and H2O2 photosynthesis from pure water. Nano Energy 2023, 117, 108902. [Google Scholar] [CrossRef]
- Ghalehsefid, E.S.; Jahani, Z.G.; Aliabadi, A.; Ghodrati, M.; Khamesan, A.; Parsaei-Khomami, A.; Mousavi, M.; Hosseini, M.-A.; Ghasemi, J.B.; Li, X. TiO2 nanotube/ZnIn2S4 nanoflower composite with step-scheme heterojunction for efficient photocatalytic H2O2 production and organic dye degradation. J. Environ. Chem. Engin. 2023, 11, 110160. [Google Scholar] [CrossRef]
- Zhang, G.; Chen, D.; Li, N.; Xu, Q.; Li, H.; He, J.; Lu, J. Preparation of ZnIn2S4 nanosheet-coated CdS nanorod heterostructures for efficient photocatalytic reduction of Cr(VI). Appl. Catal. B Environ. 2018, 232, 164–174. [Google Scholar] [CrossRef]
- Zhu, Z.; Li, X.; Qu, Y.; Zhou, F.; Wang, Z.; Wang, W.; Zhao, C.; Wang, H.; Li, L.; Yao, Y.; et al. A hierarchical heterostructure of CdS QDs confined on 3D ZnIn2S4 with boosted charge transfer for photocatalytic CO2 reduction. Nano Res. 2021, 14, 81–90. [Google Scholar] [CrossRef]
- Li, P.; Liu, M.; Li, J.; Guo, J.; Zhou, Q.; Zhao, X.; Wang, S.; Wang, L.; Wang, J.; Chen, Y.; et al. Atomic heterojunction-induced accelerated charge transfer for boosted photocatalytic hydrogen evolution over 1D CdS nanorod/2D ZnIn2S4 nanosheet composites. J. Colloid Interf. Sci. 2021, 604, 500–507. [Google Scholar] [CrossRef]
- Li, C.-Q.; Du, X.; Jiang, S.; Liu, Y.; Niu, Z.-L.; Liu, Z.-Y.; Yi, S.-S.; Yue, X.-Z. Constructing Direct Z-Scheme Heterostructure by Enwrapping ZnIn2S4 on CdS Hollow Cube for Efficient Photocatalytic H2 Generation. Adv. Sci. 2022, 9, 2201773. [Google Scholar] [CrossRef]
- Chen, W.; Yan, R.-Q.; Chen, G.-H.; Chen, M.-Y.; Huang, G.-B.; Liu, X.-H. Hydrothermal route to synthesize helical CdS@ZnIn2S4 core-shell heterostructures with enhanced photocatalytic hydrogeneration activity. Ceram. Int. 2019, 45, 1803–1811. [Google Scholar] [CrossRef]
- Zhang, S.; Du, M.; Xing, Z.; Li, Z.; Pan, K.; Zhou, W. Defect-rich and electron-rich mesoporous Ti-MOFs based NH2-MIL-125(Ti)@ZnIn2S4/CdS hierarchical tandem heterojunctions with improved charge separation and enhanced solar-driven photocatalytic performance. Appl. Catal. B Environ. 2020, 262, 118202. [Google Scholar] [CrossRef]
- Zhang, E.; Zhu, Q.; Huang, J.; Liu, J.; Tan, G.; Sun, C.; Li, T.; Liu, S.; Li, Y.; Wang, H.; et al. Visually resolving the direct Z-scheme heterojunction in CdS@ZnIn2S4 hollow cubes for photocatalytic evolution of H2 and H2O2 from pure water. Appl. Catal. B Environ. 2021, 293, 120213. [Google Scholar] [CrossRef]
- Yang, L.; Guo, J.; Chen, S.; Li, A.; Tang, J.; Guo, N.; Yang, J.; Zhang, Z.; Zhou, J. Tailoring the catalytic sites by regulating photogenerated electron/hole pairs separation spatially for simultaneous selective oxidation of benzyl alcohol and hydrogen evolution. J. Colloid Interf. Sci. 2024, 659, 776–787. [Google Scholar] [CrossRef]
- Liu, T.; Shen, H.; Wang, M.; Feng, Q.; Chen, L.; Wang, W.; Zhang, J. Fabrication of ZnIn2S4 nanosheets decorated hollow CdS nanostructure for efficient photocatalytic H2-evolution and antibiotic removal performance. Separ. Purif. Technol. 2023, 315, 123698. [Google Scholar] [CrossRef]
- Almajidi, Y.Q.; Al-dolaimy, F.; Alsaab, H.O.; Althomali, R.H.; Jabbar, H.S.; Abdullaev, S.S.; Hassan, Z.F.; Ridha, B.M.; Alsalamy, A.H.; Akram, S.V. Build-in internal electric field in vacancy engineered CdS@ZnIn2S4 type-II heterostructure for boosting photocatalytic tetracycline degradation and in-situ H2O2 generation. Mater. Res. Bull. 2024, 170, 112570. [Google Scholar] [CrossRef]
- Paraschoudi, E.N.; Bairamis, F.; Sygellou, L.; Andrikopoulos, K.S.; Konstantinou, I.; Tasis, D. Construction of Pd-Co-Doped CdS Heterojunctions as Efficient Platforms in Photocatalysis. Chem. Eur. J. 2023, 29, e202300568. [Google Scholar] [CrossRef] [PubMed]
- Khan, A.; Danish, M.; Alam, U.; Zafar, S.; Muneer, M. Facile Synthesis of a Z-Scheme ZnIn2S4/MoO3 Heterojunction with Enhanced Photocatalytic Activity under Visible Light Irradiation. ACS Omega 2020, 5, 8188–8199. [Google Scholar] [CrossRef]
- Wang, G.; Chen, W.; Zhang, Y.; Xu, Q.; Li, Y.; Foo, M.L.; Tang, L. Synthesis of ZnIn2S4@Co3S4 particles derived from ZIF-67 for photocatalytic hydrogen production. RCS Adv. 2021, 11, 9296–9302. [Google Scholar] [CrossRef]
- Cavdar, O.; Malankowska, A.; Amgar, D.; Mazierski, P.; Łuczak, J.; Lisowski, W.; Zaleska-Medynska, A. Remarkable visible-light induced hydrogen generation with ZnIn2S4 microspheres/CuInS2 quantum dots photocatalytic system. Int. J. Hydr. Energy 2021, 46, 486–498. [Google Scholar] [CrossRef]
- Pan, X.; Shang, C.; Chen, Z.; Jin, M.; Zhang, Y.; Zhang, Z.; Wang, X.; Zhou, G. Enhanced Photocatalytic H2 Evolution over ZnIn2S4 Flower-Like Microspheres Doped with Black Phosphorus Quantum Dots. Nanomaterials 2019, 9, 1266. [Google Scholar] [CrossRef] [PubMed]
- Shen, S.; Zhao, L.; Guan, X.; Guo, L. Improving visible-light photocatalytic activity for hydrogen evolution over ZnIn2S4: A case study of alkaline-earth metal doping. J. Phys. Chem. Solids 2012, 73, 79–83. [Google Scholar] [CrossRef]
- Nims, C.; Cron, B.; Wetherington, M.; Macalady, J.; Cosmidis, J. Low frequency Raman Spectroscopy for micron-scale and in vivo characterization of elemental sulfur in microbial samples. Sci. Rep. 2019, 9, 7971. [Google Scholar] [CrossRef] [PubMed]
- Tzanidis, I.; Bairamis, F.; Sygellou, L.; Andrikopoulos, K.S.; Avgeropoulos, A.; Konstantinou, I.; Tasis, D. Rapid Microwave-Assisted Synthesis of CdS/Graphene/MoSx Tunable Heterojunctions and Their Application in Photocatalysis. Chem. Eur. J. 2020, 26, 6643–6651. [Google Scholar] [CrossRef]
- Grasser, M.A.; Pietsch, T.; Brunner, E.; Ruck, M. Exploration of metal sulfide syntheses and the dissolution process of antimony sulfide in phosphonium-based ionic liquids. Dalton Trans. 2022, 51, 4079–4086. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Karamoschos, N.; Katsamitros, A.; Sygellou, L.; Andrikopoulos, K.S.; Tasis, D. Composition-Regulated Photocatalytic Activity of ZnIn2S4@CdS Hybrids for Efficient Dye Degradation and H2O2 Evolution. Molecules 2024, 29, 3857. https://doi.org/10.3390/molecules29163857
Karamoschos N, Katsamitros A, Sygellou L, Andrikopoulos KS, Tasis D. Composition-Regulated Photocatalytic Activity of ZnIn2S4@CdS Hybrids for Efficient Dye Degradation and H2O2 Evolution. Molecules. 2024; 29(16):3857. https://doi.org/10.3390/molecules29163857
Chicago/Turabian StyleKaramoschos, Nikolaos, Andreas Katsamitros, Labrini Sygellou, Konstantinos S. Andrikopoulos, and Dimitrios Tasis. 2024. "Composition-Regulated Photocatalytic Activity of ZnIn2S4@CdS Hybrids for Efficient Dye Degradation and H2O2 Evolution" Molecules 29, no. 16: 3857. https://doi.org/10.3390/molecules29163857
APA StyleKaramoschos, N., Katsamitros, A., Sygellou, L., Andrikopoulos, K. S., & Tasis, D. (2024). Composition-Regulated Photocatalytic Activity of ZnIn2S4@CdS Hybrids for Efficient Dye Degradation and H2O2 Evolution. Molecules, 29(16), 3857. https://doi.org/10.3390/molecules29163857