Enantiocomplementary Bioreduction of 1-(Arylsulfanyl)propan-2-ones
Abstract
:1. Introduction
2. Results and Discussion
3. Materials and Methods
3.1. Chemicals
3.2. Biocatalysts
3.2.1. Lyophilized Yeast Whole-Cell Preparations
3.2.2. Recombinant Alcohol Dehydrogenase Whole-Cell Preparations
3.3. Analytical Methods
3.3.1. Sampling for Determination of Conversion in Bioreductions by GC
3.3.2. Sampling for Determination of Conversion in Bioreductions by GC
3.4. Chemical Synthesis of the Substrates and Reference Compounds
3.4.1. Synthesis of 1-(Arylsulfanyl)propan-2-ones 2a–e
3.4.2. Synthesis of Racemic 1-(Arylsulfanyl)propan-2-ols (±)-1a–e
3.5. Bioreductions of 1-(Arylsulfanyl)propan-2-ones (2a–e) to (S)-1-(Arylsulfanyl)propan-2-ols (S)-1a–e
3.6. Bioreduction of 1-(Arylsulfanyl)propan-2-ones (2a–e) to (S)- or (R)-1-(Arylsulfanyl)propan-2-ols (S)- or (R)-1a–e
3.7. Bioreduction of 1-(Arylsulfanyl)propan-2-ones (2a–e) to (S)-1-(Arylsulfanyl)propan-2-ols (S)-1a–e at Preparative Scale
3.8. Bioreduction of 1-(Arylsulfanyl)propan-2-ones (2a–e) to (R)-1-(Arylsulfanyl)propan-2-ols (R)-1a–e at Preparative Scale
- (2R)-1-(Phenylsulfanyl)propan-2-ol (R)-1a: Colorless liquid (73% yield). Physical data and spectra were undistiguishable from the ones of (S)-1a.
- (2R)-1-[(4-Methylphenyl)sulfanyl]propan-2-ol (R)-1b: Yellowish liquid (56% yield). Physical data and spectra were undistiguishable from the ones of (S)-1b.
- (2R)-1-[(4-Chlorophenyl)sulfanyl]propan-2-ol (R)-1c: Yellow liquid (60% yield). Physical data and spectra were undistiguishable from the ones of (S)-1c.
- (2R)-1-[(2,5-Dichlorophenyl)sulfanyl]propan-2-ol (R)-1d: White solid (62% yield). Physical data and spectra were undistiguishable from the ones of (S)-1d.
- (2R)-1-[(4-Methoxyphenyl)sulfanyl]propan-2-ol (R)-1e: Colorless liquid (52% yield). Physical data and spectra were undistiguishable from the ones of (S)-1e.
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Liu, H.; Cohen, T.J. S-(+)-5-(Phenylthio)-2-pentanol and S-(+)-4-(Phenylthio)-2-butanol: Readily Prepared, Useful Additions to the Chirality Pool. Highly Enantioselective Syntheses of Naturally Occurring Spiroketal Pheromones. J. Org. Chem. 1995, 60, 2022–2025. [Google Scholar] [CrossRef]
- Fujisawa, T.; Itoh, T.; Nakai, M.; Sato, T. Optically pure (S)-3-phenylthio-1,2-propanediol: Synthesis by the yeast reduction and use as a precursor of both enantiomers of secondary alcohols. Tetrahedron Lett. 1985, 26, 771–774. [Google Scholar] [CrossRef]
- Dinunno, L.; Franchini, C.; Nacci, A.; Scilimati, A.; Sinicropi, M.S. Baker’s yeast-induced asymmetric reduction of α-ketosulfides: Synthesis of optically active 1-(benzothiazol-2-ylsulfanyl)-2-alkanols, 2-alkanols, and thiiranes. Tetrahedron Asymmetry 1999, 10, 1913–1926. [Google Scholar] [CrossRef]
- Gruttadauria, M.; Meo, P.; Noto, R. Regiochemical control in the synthesis of tetrahydrofurans by acid-catalyzed cyclization of hydroxy selenides and hydroxy sulfides. Tetrahedron 1999, 55, 4769–4782. [Google Scholar] [CrossRef]
- Nakatsuka, T.; Iwata, H.; Tanaka, R.; Imajo, S.; Ishiguro, M. Copper-assisted substitution reaction for phenylthio group of a 4-phenylthioazetidinone derivative. Tetrahedron Lett. 1994, 35, 5887–5888. [Google Scholar]
- Kandil, B.S.; McGuigan, C.; Westwell, D.A. Synthesis and Biological Evaluation of Bicalutamide Analogues for the Potential Treatment of Prostate Cancer. Molecules 2021, 26, 56. [Google Scholar] [CrossRef]
- Singh, S.; Kumar, S.; Chimni, S.S. Humicola lanuginosa lipase-catalyzed enantioselective resolution of β-hydroxy sulfides: Versatile synthons for enantiopure β-hydroxy sulfoxides. Tetrahedron Asymmetry 2001, 12, 2457–2462. [Google Scholar] [CrossRef]
- Singh, S.; Kumar, S.; Chimni, S.S. Enantioselective resolution of 3-phenylthio-2-propanol with Humicola lanuginosa lipase. Biotechnol. Lett. 2000, 22, 1237–1241. [Google Scholar] [CrossRef]
- Gariani, R.A.; Luengo, F.A.G.; Vale, L.A.S.; Bazito, R.C.; Comasseto, J.V. Enzymatic kinetic resolution of organochalcogenides in supercritical CO2. Tetrahedron Lett. 2011, 52, 3336–3338. [Google Scholar] [CrossRef]
- Chen, Q.; Wang, K.; Yuan, C. A chemo-enzymatic synthesis of chiral secondary alcohols bearing sulfur-containing functionality. New J. Chem. 2009, 33, 972–975. [Google Scholar] [CrossRef]
- Holland, H.L.; Brown, F.M.; Barrett, F.; French, J.; Johnson, D.V. Biotransformation of β-ketosulfides to produce chiral β-hydroxysulfoxides. J. Ind. Microbiol. Biotechnol. 2003, 30, 292–301. [Google Scholar] [CrossRef] [PubMed]
- Zhao, F.; Lauder, K.; Liu, S.; Finnigan, J.D.; Charnock, S.B.R.; Charnock, S.J.; Castagnolo, D. Chemoenzymatic Cascades for the Enantioselective Synthesis of β-Hydroxysulfides Bearing a Stereocentre at the C−O or C−S Bond by Ketoreductases. Angew. Chem. Int. Ed. 2022, 61, e202202363. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Yang, H.; Liu, J.; Huang, Z.; Chen, F. Application of Ketoreductase in Asymmetric Synthesis of Pharmaceuticals and Bioactive Molecules: An Update (2018–2020) Chem. Rec. 2021, 21, 1611. [Google Scholar] [CrossRef] [PubMed]
- Kumari, P.; Khatik, A.G.; Patil, P.D.; Tiwari, M.S.; Nadar, S.S.; Jain, A.K. Recent immobilization techniques for ketoreductases: Its design and their industrial application. Biocatal. Agric. Biotechnol. 2024, 56, 103027. [Google Scholar] [CrossRef]
- Yuan, Q.; Ma, L.; Kong, W.; Liu, J.; Zhang, S.; Yan, J.; Yan, J.; Bai, J.; He, Y.; Zhou, L.; et al. Enzymatic synthesis of chiral alcohols using ketoreductases. Catal. Rev. 2024, 66, 1–40. [Google Scholar] [CrossRef]
- Reetz, M.T.; Qu, G.; Sun, Z. Engineered enzymes for the synthesis of pharmaceuticals and other high-value products. Nat. Synth. 2024, 3, 19–32. [Google Scholar] [CrossRef]
- Hummel, W. New alcohol dehydrogenases for the synthesis of chiral compounds. Adv. Biochem. Engin. Biotechnol. 2007, 58, 145–184. [Google Scholar]
- Wolberg, M.; Hummel, W.; Wandrey, C.; Müller, M. Highly regio- and enantioselective reduction of 3,5-dioxocarboxylates. Angew. Chem. Int. Ed. Engl. 2000, 39, 4306–4308. [Google Scholar] [CrossRef]
- Borzęcka, W.; Lavandera, I.; Gotor, V. Synthesis of Enantiopure Fluorohydrins Using Alcohol Dehydrogenases at High Substrate Concentrations. J. Org. Chem. 2013, 78, 7312–7317. [Google Scholar] [CrossRef]
- Rodríguez, C.; Borzęcka, W.; Sattler, J.H.; Kroutil, W.; Lavandera, I.; Gotor, V. Steric vs. electronic effects in the Lactobacillus brevis ADH-catalyzed bioreduction of ketones. Org. Biomol. Chem. 2014, 12, 673–681. [Google Scholar] [CrossRef]
- Hummel, W.; Weckbecker, A. Cloning, expression, and characterization of an (R)-specific alcohol dehydrogenase from Lactobacillus kefir. Biocatal. Biotransformation 2006, 24, 380–389. [Google Scholar]
- Hummel, W. Enzyme-catalysed synthesis of optically pure R-(+)-phenylethanol. Biotechnol. Lett. 1990, 12, 403–408. [Google Scholar] [CrossRef]
- Prelog, V. Specification of the stereospecificity of some oxido-reductases by diamond lattice sections. Pure Appl. Chem. 1964, 9, 119–130. [Google Scholar] [CrossRef]
- Nagy-Győr, L.; Lăcătuș, M.; Balogh-Weiser, D.; Csuka, P.; Bódai, V.; Erdélyi, B.; Molnár, Z.; Hornyánszky, G.; Paizs, C.; Poppe, L. How to Turn Yeast Cells into a Sustainable and Switchable Biocatalyst? On-Demand Catalysis of Ketone Bioreduction or Acyloin Condensation. ACS Sustain. Chem. Eng. 2019, 7, 19375–19383. [Google Scholar] [CrossRef]
- Contente, M.L.; Molinari, F.; Zambelli, P.; De Vitis, V.; Gandolfi, R.; Pinto, A.; Romano, D. Biotransformation of aromatic ketones and ketoesters with the non-conventional yeast Pichia glucozyma. Tetrahedron Lett. 2014, 55, 7051–7053. [Google Scholar] [CrossRef]
- Contente, M.L.; Serra, I.; Brambilla, M.; Eberini, I.; Gianazza, E.; De Vitis, V.; Gandolfi, R.; Pinto, A.; Romano, D. Stereoselective reduction of aromatic ketones by a new ketoreductase from Pichia glucozyma. Appl. Microbiol. Biotechnol. 2016, 100, 193–201. [Google Scholar] [CrossRef]
- Contente, M.L.; Serra, I.; Palazzolo, L.; Parravicini, C.; Gianazza, E.; Eberini, I.; Pinto, A.; Guidi, B.; Molinari, F.; Romano, D. Enzymatic reduction of acetophenone derivatives with a benzil reductase from Pichia glucozyma (KRED1-Pglu): Electronic and steric effects on activity and enantioselectivity. Org. Biomol. Chem. 2016, 14, 3404–3408. [Google Scholar] [CrossRef]
- Jakoblinnert, A.; Van den Wittenboer, A.; Shivange, A.V.; Bocola, M.; Heffele, L.; Ansorge-Schumacher, M.; Schwaneberg, U. Design of an activity and stability improved carbonyl reductase from Candida parapsilosis. J. Biotechnol. 2013, 165, 52–62. [Google Scholar] [CrossRef]
- Jakoblinnert, A.; Bocola, M.; Bhattacharjee, M.; Steinsiek, S.; Bönitz-Dulat, M.; Schwaneberg, U.; Ansorge-Schumacher, M.B. Who’s Who? Allocation of Carbonyl Reductase Isoenzymes from Candida parapsilosis by Combining Bio- and Computational Chemistry. ChemBioChem 2012, 13, 803–809. [Google Scholar] [CrossRef]
- Jakoblinnert, A.; Mladenov, R.; Paul, A.; Sibilla, F.; Schwaneberg, U.; Ansorge-Schumacher, M.B.; Domíngez de María, P. Asymmetric reduction of ketones with recombinant E. coli whole cells in neat substrates. Chem. Commun. 2011, 47, 12230–12232. [Google Scholar] [CrossRef]
- Erdélyi, B.; Szabó, A.; Seres, G.; Birincsik, L.; Ivanics, J.; Szatzker, G.; Poppe, L. Stereoselective production of (S)-1-aralkyl- and 1-arylethanols by freshly harvested and lyophilized yeast cells. Tetrahedron Asymmetry 2006, 17, 268–274. [Google Scholar] [CrossRef]
- Bódai, V.; Nagy-Győr, L.; Örkényi, R.; Molnár, Z.; Kohári, S.; Erdélyi, B.; Nagymáté, Z.; Romsics, C.; Paizs, C.; Poppe, L.; et al. Wickerhamomyces subpelliculosus as whole-cell biocatalyst for stereoselective bioreduction of ketones. J. Mol. Catal 2016, 134, 206–214. [Google Scholar] [CrossRef]
- Csuka, P.; Nagy-Győr, L.; Molnár, Z.; Paizs, C.; Bódai, V.; Poppe, L. Characterization of Yeast Strains with Ketoreductase Activity for Bioreduction of Ketones. Per. Polytechn. Chem. Eng. 2021, 65, 299–307. [Google Scholar] [CrossRef]
- Gu, X.P.; Nishida, N.; Ikeda, I.; Okahara, M. 2-(Chloromethyl)-3,5-dioxahex-1-ene. An effective acetonylating reagent. J. Org. Chem. 1987, 52, 3192–3196. [Google Scholar] [CrossRef]
- Yan, G.; Borah, A.J.; Wang, L.; Pan, Z.; Chen, S.; Shen, X.; Wu, X. α-Arylchalcogenation of acetone with diaryl dichalcogenide via metal-free oxidative C(sp3)–H bond functionalization. Tetrahedron Lett. 2015, 56, 4305–4307. [Google Scholar] [CrossRef]
- Shafiee, A.; Toghraie, S.; Aria, F.; Mortezaei-Zandjani, G. Selenium heterocycles. XXXV. Synthesis and pyrrolysis of aryloxy-, arylthio-, and arylseleno-1,2,3-selenadiazoles. J. Heterocycl. Chem. 1982, 19, 1305–1308. [Google Scholar] [CrossRef]
- McManus, S.P.; Smith, M.R.; Herrmann, F.T.; Abramovitch, R.A. Neighboring group participation in the conversion of β-substituted ethanesulfonate salts to β-substituted ethanesulfonyl chlorides. J. Org. Chem. 1978, 43, 647–649. [Google Scholar] [CrossRef]
- Mathieu-Pelta, I.; Evans, S.A. Highly regioselective and stereospecific functionalization of 1,2-propanediol with trimethyl(X)silanes employing the 1,3,2λ5-dioxaphospholane methodology. J. Org. Chem. 1992, 57, 3409–3413. [Google Scholar] [CrossRef]
- Bandgar, B.P.; Joshi, N.S.; Kamble, V.T.; Sawant, S.S. Cyanuric Chloride: An Efficient Catalyst for Ring Opening of Epoxides with Thiols Under Solvent-Free Conditions. Aust. J. Chem. 2008, 61, 231–234. [Google Scholar] [CrossRef]
- Sun, Y.W.; Chen, K.-M.; Kwon, C.-H. Sulfonyl-Containing Nucleoside Phosphotriesters and Phosphoramidates as Novel Anticancer Prodrugs of 5-Fluoro-2′-deoxyuridine 5′-Monophosphate (FdUMP). Mol. Pharmacol. 2006, 3, 161–173. [Google Scholar] [CrossRef]
- Eddeger, K.; Gruber, C.C.; Poessl, T.M.; Wallner, S.R.; Lavandera, I.; Faber, K.; Niehaus, F.; Eck, J.; Oehrlein, R.; Hafner, A.; et al. Biocatalitic duterium- and hydrogen-transfer using over expressed using ADH-’A’: Enhanced stereoselectivity and 2H-labeled chiral alcohols. Chem. Commun. 2006, 2402–2404. [Google Scholar] [CrossRef] [PubMed]
Entry | Alcohol | Biocatalyst | Yield (%) | Enantiomeric Excess (%) | [α] 1 |
---|---|---|---|---|---|
1 | (S)-1a | WY12 | 75 | >99 | 59.3 2 |
2 | (S)-1b | WY12 | 36 | >99 | 57.3 3 |
3 | (S)-1c | WY12 | 58 | >99 | 44.4 4 |
4 | (S)-1d | WY12 | 42 | >99 | 40.2 |
5 | (S)-1e | WY12 | 50 | >99 | 76.4 5 |
6 | (R)-1a | LkADH | 73 | >99 | −59.4 6 |
7 | (R)-1b | LkADH | 56 | >99 | −57.2 7 |
8 | (R)-1c | LkADH | 60 | >99 | −44.5 8 |
9 | (R)-1d | LkADH | 62 | >99 | −40.1 |
10 | (R)-1e | LkADH | 52 | >99 | −76.3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sándor, E.; Csuka, P.; Poppe, L.; Nagy, J. Enantiocomplementary Bioreduction of 1-(Arylsulfanyl)propan-2-ones. Molecules 2024, 29, 3858. https://doi.org/10.3390/molecules29163858
Sándor E, Csuka P, Poppe L, Nagy J. Enantiocomplementary Bioreduction of 1-(Arylsulfanyl)propan-2-ones. Molecules. 2024; 29(16):3858. https://doi.org/10.3390/molecules29163858
Chicago/Turabian StyleSándor, Emese, Pál Csuka, László Poppe, and József Nagy. 2024. "Enantiocomplementary Bioreduction of 1-(Arylsulfanyl)propan-2-ones" Molecules 29, no. 16: 3858. https://doi.org/10.3390/molecules29163858
APA StyleSándor, E., Csuka, P., Poppe, L., & Nagy, J. (2024). Enantiocomplementary Bioreduction of 1-(Arylsulfanyl)propan-2-ones. Molecules, 29(16), 3858. https://doi.org/10.3390/molecules29163858