

Correction

Correction: Samsuzzaman et al. A Synthetic Derivative SH 66 of Homoisoflavonoid from Liliaceae Exhibits Anti-Neuroinflammatory Activity against LPS-Induced Microglial Cells. *Molecules* 2024, 29, 3037

Md Samsuzzaman ^{1,2,†}, Lalita Subedi ^{1,†}, Seong-Min Hong ^{1,†}, Sanha Lee ¹, Bhakta Prasad Gaire ¹, Eun-Ji Ko ¹, Ji-Woong Choi ¹, Seung-Yong Seo ^{1,*} and Sun-Yeou Kim ^{1,*}

- ¹ College of Pharmacy and Gachon Institute of Pharmaceutical Sciences, Gachon University, Incheon 21936, Republic of Korea; samsuzzaman238@gmail.com (M.S.); subedilali@gmail.com (L.S.); hongsm0517@gmail.com (S.-M.H.); sanha030@gmail.com (S.L.); samarpanbp@gmail.com (B.P.G.); imko1004@gachon.ac.kr (E.-J.K.); pharmchoi@gachon.ac.kr (J.-W.C.)
- ² Department of Biochemistry and Molecular Biology, University of Maryland, Baltimore, MD 21201, USA
- * Correspondence: syseo@gachon.ac.kr (S.-Y.S.); sunnykim@gachon.ac.kr (S.-Y.K.); Tel.: +82-32-820-4949 (S.-Y.S.); +82-32-820-4931 (S.-Y.K.); Fax: +82-32-820-4829 (S.-Y.S.); +82-32-899-8962 (S.-Y.K.)
- These authors contributed equally to this work.

Error in Figure

In the original publication [1], there was a mistake in the Figure 4 image file. Upon reviewing our published work, we realized that the results of the positive control as L-NMMA (PC) on the protein level of the NRLP3 inflammasome in LPS-induced BV2 microglia cells in Figure 4A in Section 2.4 were found to be mishandled in the manuscript preparation. The PC group was also co-treated with LPS in microglia cells. Thus, the Western blotting image in the LPS section from the PC group was changed from "–"to "+". There was also a mistake in the legend for Figure 4. We missed the Figure 4 legend, which related to a significant difference with the untreated control group. The correct Figure 4 image and legend appear below.

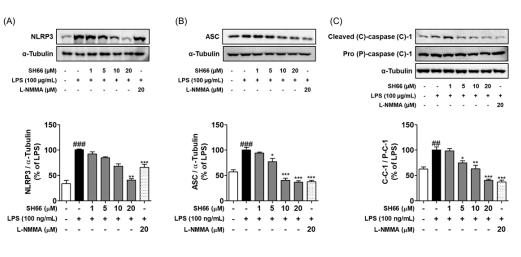
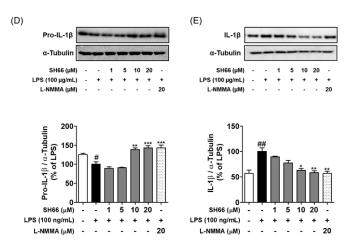


Figure 4. Cont.


Citation: Samsuzzaman, M.; Subedi, L.; Hong, S.-M.; Lee, S.; Gaire, B.P.; Ko, E.-J.; Choi, J.-W.; Seo, S.-Y.; Kim, S.-Y. Correction: Samsuzzaman et al. A Synthetic Derivative SH 66 of Homoisoflavonoid from Liliaceae Exhibits Anti-Neuroinflammatory Activity against LPS-Induced Microglial Cells. *Molecules* 2024, 29, 3037. *Molecules* 2024, 29, 3926. https://doi.org/10.3390/ molecules29163926

Received: 9 July 2024 Accepted: 14 July 2024 Published: 20 August 2024

Copyright: © 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https:// creativecommons.org/licenses/by/ 4.0/).

Figure 4. SH66 inhibits NLRP3 inflammasome induction and activation in LPS-primed microglial cells. BV2 cells were pre-treated with SH66 (1–20 μ M) followed by the priming of LPS (100 ng/mL) and incubated for 6 h. Protein level was analyzed by Western blot analysis. (**A**–**E**) Protein levels and their quantitative analysis for NLRP3, ASC, pro-caspase-1, cleaved-caspase-1, pro- IL-1 β , and IL-1 β . α -tubulin was used as loading control. The data shown represent the mean \pm SEM (n = 3). * p < 0.05, ** p < 0.01, and *** p < 0.001 vs. LPS alone. # p < 0.05, ## p < 0.01, and ### p < 0.001 vs. untreated control group.

The authors state that the scientific conclusions are unaffected. This correction was approved by the Academic Editor. The original publication has also been updated.

Reference

 Samsuzzaman, M.; Subedi, L.; Hong, S.-M.; Lee, S.; Gaire, B.P.; Ko, E.-J.; Choi, J.-W.; Seo, S.-Y.; Kim, S.-Y. A Synthetic Derivative SH 66 of Homoisoflavonoid from Liliaceae Exhibits Anti-Neuroinflammatory Activity against LPS-Induced Microglial Cells. *Molecules* 2024, 29, 3037. [CrossRef] [PubMed]

Disclaimer/Publisher's Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.