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Abstract: The dried ripe fruit of Terminalia chebula Retz. is a common Chinese materia medica,
and ellagic acid (EA), isolated from the plant, is an important bioactive component for medicinal
purposes. This study aimed to delineate the optimal extraction parameters for extracting the EA
content from Chebulae Fructus (CF), focusing on the variables of ethanol concentration, extraction
temperature, liquid–solid ratio, and extraction time. Utilizing a combination of the response surface
methodology (RSM) and an artificial neural network (ANN), we systematically investigated these
parameters to maximize the EA extraction efficiency. The extraction yields for EA obtained under
the predicted optimal conditions validated the efficacy of both the RSM and ANN models. Analysis
using the ANN-predicted data showed a higher coefficient of determination (R2) value of 0.9970 and
a relative error of 0.79, compared to the RSM’s 2.85. The optimal conditions using the ANN are an
ethanol concentration of 61.00%, an extraction temperature of 77 ◦C, a liquid–solid ratio of 26 mL g−1

and an extraction time of 103 min. These findings significantly enhance our understanding of the
industrial-scale optimization process for EA extraction from CF.

Keywords: artificial neural networks; Chebulae Fructus; response surface methodology; ellagic acid

1. Introduction

Chebulae Fructus (CF), known colloquially as “Hezi” within the annals of traditional
Chinese medicine, comprises the dried, mature fruits of either Terminalia chebula Retz. or its
variant, Terminalia chebula Retz. var. tomentella Kurt. This species, T. chebula, stands as a tow-
ering arboreal presence across South and Southeast Asia. In the Chinese Pharmacopoeia, CF
is documented for its therapeutic applications, which encompass the treatment of chronic
diarrhea and dysentery, hematochezia, rectocele, and respiratory ailments such as cough
accompanied by dyspnea stemming from pulmonary insufficiency, as well as persistent
coughing, sore throat and hoarseness [1]. Recent studies revealed a spectrum of chemical
constituents within CF, predominantly featuring phenolic acids, tannins, and triterpenes,
with the phenolic acids identified as the predominant bioactive substances [2,3]. Ellagic
acid (EA, Figure 1), [C14H6O8, CASRN 476-66-4] as the principle active component of the
polyphenol dilactones abundant in a diverse array of botanical sources such as berries,
pomegranates, walnuts, cranberries, pecans, and various other plant-based foods, exhibits
a multitude of pharmacological activities, including anti-inflammatory, anti-bacterial, an-
tioxidant, anticancer, hypoglycemic, and hepatoprotective effects [4–9]. The presence and
concentration of EA within CF are directly associated with the plant’s therapeutic effective-
ness. As a predominant bioactive constituent, EA is fundamental to the medicinal attributes
of the herb. The well-defined chemical characteristics of EA render it a prime candidate
for the standardization and quality assurance of CF preparations, guaranteeing that these
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products meet the requisite standards for the active ingredient’s concentration. Moreover,
the compound’s stability and bioavailability are pivotal in establishing its role as a pivotal
quality marker for CF. The in vitro antitumor effects of EA against a spectrum of cancers,
including nasopharynx [10], lung [11], colon [12], bladder [13], breast [14], and gastric [15]
cancers, highlight its significance in CF and have spurred considerable research interest.
The escalating number of pharmaceutical advancements has propelled research into en-
hancing EA yield, prompting the exploration of diverse advanced extraction techniques
such as UAE (Ultrasonic-Assisted Extraction), MAE (Microwave-Assisted Extraction), and
SWE (Supercritical Water Extraction). Nonetheless, traditional solvent extraction remains a
widely employed technique for EA extraction, favored for its extensive applicability and
cost-effectiveness. A high EA content is contingent upon a multitude of variables, e.g., the
ethanol concentration, extraction time, extraction temperature, and solid–liquid ratio [16].
Consequently, optimizing the extraction yield of this targeted constituent is a crucial initial
consideration in the process.
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Figure 1. Chemical structure of ellagic acid (EA).

Recently, the impact of pivotal factors on phenolic acids, such as chebulinic acid,
chebulagic acid, ellagic acid, etc., has been studied with orthogonal experimental designs
by several investigators [17,18]. However, to the best of our knowledge, no study has
been conducted on the optimization of the EA extraction parameters from CF through
an integrated approach utilizing both the response surface methodology (RSM) and an
artificial neural network (ANN). RSM is acknowledged as a robust experimental design
method for multivariate regression analysis to maximize the desired responses. Nowa-
days, RSM has been extensively applied to improve and optimize procedures across the
food, pharmaceutical, and chemical sectors [19]. Likewise, ANN, inspired by the intricate
architecture of the human brain, serves as a versatile tool for data fitting, optimization,
and predictive analytics [20]. ANN can make predictions by leveraging the relationships
between the input and output variables, owing to its ability to discern and learn intricate
functional relations. The conjunction of RSM and ANN has emerged as a potent strat-
egy for enhancing and predicting the extraction efficiency of bioactive compounds from
botanical sources [21–23]. This integrated approach highlights the synergistic benefits of
RSM and ANN in accurately modeling complex extraction processes and determining the
optimal conditions for extraction. Additionally, the Genetic Algorithm (GA), an efficient
optimization technique for challenges pertaining to bioactive components, can be used to
identify the optimal extremum within a given function [24]. The Backpropagation (BP)
algorithm, proposed in 1986, is widely used for its precision in optimization, particularly in
training artificial neural networks by adjusting the weights through the backpropagation
of errors. The optimization outcomes can be obtained quickly by optimizing the process
accurately with the BP algorithm after initial optimization utilizing GA. As a result, the
application of ANN-GA modeling and optimization in various processes has been a subject
of study in the literature [25,26]. Therefore, the integration of RSM and ANN for process
optimization has garnered increased attention and interest over the past few years.
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In this study, we set out to model and optimize the pivotal processing parameters
(ethanol concentration, extraction temperature, liquid–solid ratio and extraction time)
for the EA content extracted from CF by employing both RSM and ANN-GA models.
Simultaneously, we undertook a comparative evaluation of RSM and ANN-GA modeling
to ascertain their relative efficacy in maximizing the yield of the bioactive component.

2. Results and Discussion
2.1. Experimental Ranges from Screening Study

In the single-factor experiments, the optimal ranges for the ethanol concentration,
extraction temperature, liquid–solid ratio and extraction time were determined based on
different extraction efficiencies for EA (Figure 2). The EA yield escalated with increas-
ing ethanol concentration from 0% to 60%, achieving a peak with 60% ethanol solution
(Figure 2A). As seen from Figure 2B, the extraction temperature that gave the highest EA
content was 90 ◦C; however, considering that a 60% ethanol solution reaches its boiling
point at this temperature, 100 ◦C was not deemed a viable extraction temperature. The EA
yield reached the critical value at a liquid–solid ratio of 25 mL g−1, beyond which a slight
decrease was observed (Figure 2C). Figure 2D illustrates a decline in the EA yield with
extended extraction times from 90 min to 180 min, showing that 90 min is the central point
for subsequent RSM experiments. The effective variable ranges derived from single-factor
experiments were selected for the RSM using the Box–Behnken design (BBD), with ethanol
concentrations ranging from 40% to 80%, extraction temperatures from 70 ◦C to 90 ◦C,
liquid–solid ratios from 20 mL g−1 to 30 mL g−1, and extraction times from 60 min to
120 min. The choice of variable ranges for the extraction of various bioactive components
can vary significantly, as factors such as the ethanol concentration, liquid–solid ratio, ex-
traction temperature, and duration all play a crucial role in determining the extraction
efficiency and facilitating mass transfer [27]. For instance, in the extraction of phenolic
compounds from onion solid waste and Inga edulis leaves, researchers selected a quite
different extraction time [28,29].
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2.2. Response Surface Methodology Statistical Analysis and Model Fitting

According to the experimental design, the independent variables, along with the
experimental and predicted values of EA, are presented in Table 1. The derived quadratic
second-order equation, expressed in coded factors, that describes the EA yield is given in
Equation (1).

Y = 121.52 + 1.80X1 − 2.98X2 + 13.01X3 + 6.78X4 + 1.09X1X2 + 0.2600X1X3 + 5.04X1X4 − 1.20X2X3 −
0.1150X2X4 + 16.47X3X4 − 25.23X1

2 − 18.44X2
2 − 23.29X3

2 − 15.80X4
2 (1)

where X1, X2, X3, X4 represent the ethanol concentration, extraction temperature, liquid–
solid ratio and extraction time, respectively, while Y denotes the EA yield.

Table 1. List of experimental values and predicted values from RSM and ANN.

Run
Independent Variables The Yield of Ellagic Acid (mg g−1)

X1 X2 X3 X4 Actual Values RSM Predicted ANN Predicted

1 40 70 25 90 80.05 80.12 84.78
2 40 90 25 90 87.39 81.54 88.02
3 80 70 25 90 72.95 71.99 72.95
4 80 90 25 90 84.64 77.75 84.23
5 60 80 20 60 89.92 79.11 90.23
6 60 80 30 60 71.11 72.19 72.68
7 60 80 20 120 67.61 59.72 69.70
8 60 80 30 120 114.69 118.69 114.82
9 60 70 25 60 78.68 76.96 78.92
10 60 90 25 60 69.51 70.46 72.41
11 60 70 25 120 78.68 80.42 81.99
12 60 90 25 120 89.69 94.10 92.77
13 40 80 20 90 59.01 68.56 59.54
14 80 80 20 90 63.82 65.00 63.82
15 40 80 30 90 95.48 96.99 94.54
16 80 80 30 90 95.48 88.62 100.85
17 60 70 20 90 56.09 58.45 58.75
18 60 90 20 90 55.91 61.52 56.74
19 60 70 30 90 85.45 83.96 85.66
20 60 90 30 90 86.31 88.07 87.78
21 40 80 25 60 82.81 83.36 83.89
22 80 80 25 60 67.67 77.63 69.01
23 40 80 25 120 102.99 97.15 106.77
24 80 80 25 120 87.39 90.96 87.54
25 60 80 25 90 125.46 121.52 123.39
26 60 80 25 90 123.4 121.52 123.39
27 60 80 25 90 118.58 121.52 123.39
28 60 80 25 90 116.52 121.52 123.39
29 60 80 25 90 123.63 121.52 123.39

The statistical testing of the regression equation was ascertained via an F-test, and the
analysis of the ANOVA results for the quadratic model is depicted in Table 2.

The F value of 16.54 and p value < 0.0001 indicated that the model was highly signif-
icant for predicting the EA yield within the experimental framework. Additionally, the
high R2 and adjusted R2 values of 0.9430 and 0.9409, respectively, confirm a well-fitted
correlation between the experimental data and the quadratic model (Figure 3A). The normal
plot of the residuals further validated the strong relationship between the predicted and
actual data. The p-value for the lack of fit (0.0816 > 0.05) was nonsignificant in comparison
to the pure error, further substantiating the model’s reliability. All of these indicated that
the quadratic model was suitably equipped to evaluate the data derived from the RSM
with a BBD [30].
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Table 2. ANOVA for quadratic model.

Source Sum of Squares df Mean SQUARE F-Value p-Value

Model 11,462.56 14 818.75 16.54 <0.0001 Significant
X1 38.7 1 38.7 0.7817 0.3916
X2 106.68 1 106.68 2.15 0.1642
X3 2032.16 1 2032.16 41.05 <0.0001
X4 551.49 1 551.49 11.14 0.0049
X1X2 4.73 1 4.73 0.0956 0.7618
X1X3 0.2704 1 0.2704 0.0055 0.9421
X1X4 101.81 1 101.81 2.06 0.1735
X2X3 5.78 1 5.78 0.1168 0.7376
X2X4 0.0529 1 0.0529 0.0011 0.9744
X3X4 1085.37 1 1085.37 21.92 0.0004
X1

2 4128.66 1 4128.66 83.39 <0.0001
X2

2 2205.09 1 2205.09 44.54 <0.0001
X3

2 3517.75 1 3517.75 71.05 <0.0001
X4

2 1620.11 1 1620.11 32.72 <0.0001
Residual 693.13 14 49.51

Lack of Fit 635.98 10 63.6 4.45 0.0816 Not
significant

Pure Error 57.15 4 14.29
Cor Total 12,155.69 28
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2.3. Effects of Processing Parameters on Extraction

The ANOVA analysis (Table 2) revealed that the liquid–solid ratio exerts the most sig-
nificant influence on the EA yield (p < 0.0001), while the effects of the ethanol concentration,
extraction temperature and time are statistically insignificant (p > 0.0001). Considering the
F-value of the independent variables, the order of the impact on the EA yield was liquid–
solid ratio > extraction time > extraction temperature > ethanol concentration. The mutual
interactions between the liquid–solid ratio (X3) and extraction time (X4) on the EA yield is
visualized through the three-dimensional response surface and two-dimensional contour
plots, as presented in Figure 4. Initially, the EA yield increased with the liquid–solid ratio,
suggesting that a larger volume of solvent could dissolve more EA. However, a decline in
the EA yield was observed when the liquid–solid ratio reached 30 mL g−1, potentially due
to the decomposition of EA as a result of its strong antioxidant properties [31]. This finding
contrasts with the optimal liquid–solid ratio reported by Wu et al. using ultrasonic-assisted
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extraction, which could be attributed to differences in the extraction methods used and ma-
terial characteristics [32]. Furthermore, a study utilizing microwave-assisted extraction to
isolate a bioactive pigment from chestnut shells achieved an ellagic acid content of 0.48 mg
g−1 under the optimal conditions of an 800 W microwave power, a 12 min extraction time,
and a solvent concentration of 0.115 mol l−1 NaOH [33]. These discrepancies emphasize the
importance of considering the material properties, chemical composition, and other factors
when selecting extraction methods for different medicinal materials. The optimal extraction
conditions for achieving a maximum EA yield of 125.46 mg g−1, as predicted by the RSM,
were determined to be an ethanol concentration of 60.00%, an extraction temperature of
78 ◦C, a liquid–solid ratio of 27 mL g−1, and an extraction time of 101 min.
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Although some parameters are not statistically significant, they may still contribute
to the overall explanatory power of the model. As indicated by Equation (1) and Table 2,
the coefficients for parameters that are not significant are small, while those for significant
parameters are large. We believe that retaining these parameters helps to capture the
complexity and non-linear relationships in the experimental data. In practical applications,
even parameters that are not statistically significant may hold practical importance for
understanding and optimizing the process. Excluding non-significant parameters might
lead to an overly simplified model, potentially missing important information. We have
chosen to maintain a conservative approach to the model to avoid overfitting the data.

2.4. ANN Modeling and ANN Coupled with GA Optimization

The ANN model can be constructed with a 4-9-1 topology within a multilayer percep-
tron framework. The mean squared errors (MSE) for the training, validation and testing
datasets are depicted in Figure 5D. The training process was halted at epoch 8, at which
point the MSE reached its minimum value. A correlation coefficient of determination (R2)
for EA of 0.9970 demonstrated the high-level agreement between the experimentally ob-
tained data and the predictions made by the ANN model. The results indicated that ANN
modeling was a reliable predictor for the nonlinear data associated with EA extraction from
CF, as detailed in Table 3. Subsequently, GA was applied to optimize the input space, with
the aim of achieving the precise optimization of the EA extraction process. As illustrated
in Figure 5C, the fitness metric grew progressively from the initial to the 48th generation,
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after which it plateaued within the range of generations 48 and 100. The optimal extraction
conditions for a maximum EA yield of 125.46 mg g−1, as determined by the ANN-GA
model, were as follows: ethanol concentration of 61.00%, extraction temperature of 77 ◦C,
liquid–solid ratio of 26 mL g−1, and extraction time of 103 min.
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Table 3. Predicted and experimental values of the responses at optimum conditions.

Optimum Condition Extraction Yield (mg g−1)
Relative Error

X1 X2 X3 X4 Actual Value Predicted Value

RSM
ANN

60
61

78
77

27
26

101
103

128.31
130.21

125.46
131

2.85
0.79

2.5. Comparative Analysis of RSM and ANN

An optimized ANN-GA model was utilized to confirm the RSM results and further
optimize the extraction variables for EA using an identical set of experimental data. The
comparative evaluation of the RSM and ANN methods is typically predicated using the
coefficient of determination (R2) and the relative error. The comparative analysis revealed
that the ANN model outperforms RSM in terms of the predictive accuracy for the nonlinear
data associated with EA extraction. The relative error values for the RSM and ANN models
were 2.85 and 0.79, respectively, as presented in Table 3. It is indicated that when the
experimental dataset employed in the RSM is afflicted with considerable error, the ANN
methodology constitutes an advanced strategy for error reduction and the enhancement
of precision. Analogous studies have suggested that the ANN method surpassed the
RSM in predictive capability [34,35]. Consequently, the ANN-GA model can be effectively
employed to provide accurate predictions of the EA content extracted from CF.
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3. Materials and Methods
3.1. Materials and Chemicals

The fruits of Terminalia chebula Retz. (2.0 kg) were purchased from a local marketplace
in Harbin, China, in October 2022. The samples were authenticated by professor Yanbing
Li of the Heilongjiang University of Chinese Medicine, China. The ellagic acid standard
(CAS 476-66-4) [36] was supplied by the National Institute for Food and Drug Control
(Beijing, China). HPLC-grade acetonitrile was purchased from Kemiou Chemical Reagent
(Tianjin, China). All reagents utilized in the extraction process, including ethanol and
formic acid, were of analytical grade.

3.2. EA Extraction

The samples of pulverized CF (5 g) were subjected to reflux extraction under a de-
signed ethanol concentration, solid–liquid ratio, extraction temperature and time according
to the outcomes of preliminary single-factor experiments (Table 4). Immediately after
the extraction procedure, the CF extract was promptly separated using centrifugation
(3000 rpm, 5 min), and the residue was washed with eluent. Subsequently, the supernatant
was filtered through a 0.45 µm millipore syringe filter and then stored in a dark place at
4 ◦C until further analysis.

Table 4. Coding of experimental parameters and related levels.

Experimental Parameters Unit Symbols (Xi)
Coded Values

Low (−1) Medium (0) High (+1)

Ethanol concentration % X1 40 60 80
Extraction temperature ◦C X2 70 80 90
liquid-solid ratio mL g−1 X3 20 25 30
Extraction time min X4 60 90 120

3.3. EA Content Determination

The quantification of EA within the CF extract was ascertained using a validated rapid
HPLC-UV method with minor modification [37]. The analytical process was conducted on
a Shimadzu LC-20 chromatographic system (Shimadzu, Shenyang, China) equipped with a
Dikma Inspire C18 column (100 × 4.6 mm I.D., 5µm, Dikma Technologies, Shenyang, China).
The mobile phase was a mixture of water and formic acid (99.9/0.1 [v/v]), designated as
solvent A, and acetonitrile was designated as solvent B, with a flow rate of 1.0 mL min−1.
The gradient elution program was as follows: initial 0 min, 5% B; 25 min, 63.5% B; and
35 min, 63.5% B. The column oven was maintained at a consistent temperature of 30 ◦C,
and each injection volume was 20 µL. The eluate was detected using a UV-vis detector set
at a wavelength of 254 nm. The quantitative analysis of EA was performed by establishing
a correlation between the concentration and peak area, with the EA content determined
using the linear regression equations derived from the calibration curve.

3.4. Experimental Design and Statistical Analysis of RSM

Design-Expert 12.0.0 was used to ascertain the interaction among variables and to
optimize the extraction conditions. Fischer’s F-test determined the second-order model
equation at a probability (p) of 0.01 or 0.05. The adequacy of the model was determined
by evaluating the lack of fit, the coefficient of determination (R2), and the F-test value
obtained from the ANOVA that was generated. Preliminary single-factor experiments
were conducted to establish the operational boundaries for the key process parameters:
ethanol concentration (0–100%, v/v), extraction temperature (40–90 ◦C), liquid–solid ratio
(5–30 mL g−1) and extraction time (30–180 min). Subsequently, the BBD strategy was
used with four parameters and three levels [higher (+1), middle (0), and lower (−1)] for
experimental design and data analysis (Table 4). A BBD matrix was constructed, comprising
29 independent experimental runs, to assess the impact on the EA content and predict the
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optimum extraction parameters (Table 1). Each experiment was triplicated, with the mean
EA content serving as the experimental responses.

3.5. Artificial Neural Network Model with Genetic Algorithm

In the present study, the available experimental data from the RSM experiment were
used for modeling the extraction of EA from CF using a multilayer perceptron-based
feed-forward ANN in conjunction with GA optimization. The exact BP neural network
architecture featured an input layer with four neurons (ethanol concentration, extraction
temperature, liquid–solid ratio and extraction time), an output layer of one neuron (EA
yield) and a hidden layer comprising nine neurons (Figure 5A). Traingdm was selected as
the training parameter, and Mean Square Error (MSE) was utilized to assess the model’s
precision. Several critical settings, predominantly the learning rate, momentum coefficient,
number of epochs, and the configuration of hidden layers, were pivotal in influencing
the neuronal simulation. The recommended momentum coefficient, learning rate, and
hidden layer values of 0.7, 0.1 and 13, respectively, were used in this study to calculate
the weights [38]. The GA optimization, integrated with the database and the ANN model
trained via BP, delineated the optimal conditions yielding the maximum EA content.
The average fitness values for each generation within the population were calculated
using MATLAB R2019b software, with parameters set for the population size, maximum
evolutionary algebra, crossover probability, mutation probability, and generation gap at
40, 100, 0.7, 0.1 and 0.95, respectively (Figure 5B,C). All computational analyses were
performed using the Neural Network Toolbox of MATLAB version 9.10.0 (R2021a).

4. Conclusions

The present study aimed to choose a better method for optimizing the extraction
process variables of EA from the ripe fruit of T. chebula. To achieve this, both the RSM and
ANN-GA were utilized to investigate the effects of four pivotal parameters: ethanol con-
centration, extraction temperature, liquid–solid ratio, and extraction time. A comparative
analysis based on R2 and the relative error revealed that the ANN model outperformed the
RSM in terms of data fitting and predictive accuracy. The optimal extraction conditions
derived from the ANN model were an ethanol concentration of 61.00%, an extraction
temperature of 77 ◦C, a liquid–solid ratio of 26 mL g−1 and an extraction time of 103 min.
Furthermore, the ANN model exhibited a more robust predictive capacity, with all R values
exceeding 0.992, suggesting that the ANN may offer a more precise approach to EA extrac-
tion. Ultimately, the results of this research contribute to the enhancement of knowledge
regarding the optimization of industrial EA extraction processes from CF. Additionally, this
study demonstrates the potential of combining the ANN with the RSM or other models to
further improve the precision and efficiency of the optimization process.
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