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Abstract: Paper relics, as carrieres of historical civilization’s records and inheritance, could be severely
acidic and brittle over time. In this study, the multi-functional dispersion of nanometer magnesium
oxide (MgO) carried by 3-aminopropyl triethoxysilane-modified bacterial cellulose (KH550-BC) was
applied in the impregnation process to repair aged paper, aiming at solving the key problems of
anti-acid and strength recovery in the protection of ancient books. The KH550-BC/MgO treatment
demonstrated enhanced functional efficacy in repairing aged paper, attributed to the homogeneous
and stable distribution of MgO within the nanofibers of BC networks, with minimal impact on the
paper’s wettability and color. Furthermore, the treatment facilitated the formation of adequate alkali
reserves and hydrogen bonding, resulting in superior anti-aging properties in the treated paper
during prolonged preservation. Even after 30 days of hygrothermal aging tests, the paper repaired
by KH550-BC/MgO was still in a gently alkaline environment (pH was about 7.56), alongside a
32.18% elevation compared to the untreated paper regarding the tear index. The results of this work
indicate that KH550-BC/MgO is an effective reinforcement material for improving the long-term
restoration of ancient books.

Keywords: paper relics; conservation; bacterial cellulose; nano-MgO; aging resistance

1. Introduction

Paper literature has an incalculable significance and serves as a vital conduit for histor-
ical civilization in many eras and nations [1]. Affected by the pulp and paper technology
and the harsh storage environment, a large number of documents and books are irreversibly
acidified and aged, seriously affecting the service and storage life [2–5]. In recent years,
countries around the world have begun to pay attention to and explore the research topic
of the protection and restoration of ancient books. The previous repair process typically
involved a series of step-by-step processes, including deacidification, reinforcement, and
antibacterial and mold prevention [6,7]. These processes were complex and inefficient and
could easily cause secondary damage to the paper. Therefore, multi-functional methods for
restoring ancient books have become a key research direction [8–11].

Bacterial cellulose (BC), as a green natural polymer material, has an ultra-fine three-
dimensional porous fiber structure and excellent mechanical properties [12,13], offering
great prospects in the reinforcement and protection of paper documents [14–16]. In our pre-
vious study, BC-repaired paper exhibited a high folding endurance of 28 times, indicating a
promising application of BC as a restoration material [17]. However, the long-term stability
of BC for the preservation of ancient books is limited by its hydrophilicity and the fact that
BC cannot be deacidified [18]. The unique chemical composition of BC, which is rich in
hydroxyl groups, offers a promising avenue for the development of new materials with
more functionalities [19]. For instance, mineralized BC had been successfully employed in
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the deacidification of paper-based materials, while simultaneously imparting paper with
exceptional flame retardant properties [20]. Another reliable approach for the repurposing
of BC is amino silanization [21–23]; the results of our latest research indicated that this pro-
cess improves the interface bonding between BC and aged paper toward higher mechanical
properties of the treated paper [24].

Furthermore, adequate alkali reserves are usually considered as a guarantee of long-
term acid resistance in paper [25]. Recently, alkaline nanoparticles have been the favored
deacidifying materials because of their smaller particle size and better permeability, which
helps to further extend the durability of paper [26,27]. From a more positive perspective,
nano-magnesia is regarded by conservation scientists as a preferred deacidifier among
magnesium derivatives, primarily due to its milder alkalinity compared to magnesium
hydroxide. However, an inherent limitation of nano-MgO is its tendency to settle out
in the solvent because of its poor dispersion stability. Oleic-acid-modified nano-MgO
was used to promote its dispersion stability in a cyclohexane non-polar solvent for paper
deacidification [28]. He et al. [29] also created a stable organic covering that allowed for
the uniform deposition of nano-MgO particles on paper, based on the co-dispersion of
trimethylsilyl cellulose (TMSC) and isopropyl alcohol (IPA). Our theory posits that the
long-chain network structure of KH550-BC could impede the agglomeration of nano-MgO
particles through steric hindrance while enhancing the alkalinity of KH550-BC, which is
beneficial for the long-term stability of KH550-BC/MgO-reinforced paper.

Herein, a nano-composite dispersion of KH550-BC and MgO was prepared and de-
veloped by adhering to the principle of “repairing old as before”. The repair effect and
anti-aging properties of aged paper were improved using KH550-BC/MgO, and the process
was comprehensively investigated. The anti-aging mechanism of KH550-BC/MgO to aged
paper was studied via ATR-Fourier infrared spectroscopy (ATR-FTIR) and X-ray diffraction
spectroscopy (XRD), and the distribution and deposition of KH550-BC/MgO in paper were
analyzed through field-emission scanning electron microscopy (FESEM) as a supplement
for evaluating the long-term stability of KH550-BC/MgO-reinforced aged paper.

2. Results and Discussion
2.1. Effect of Loading Nano-MgO in KH550-BC on Deacidification

In the KH550-BC/MgO system, the addition of nano-MgO should give the paper enough
alkali storage to extend the service life of the paper, but pH and alkali storage that are too
high would cause the alkaline degradation of the paper fiber and yellowing of the paper after
deacidification [30–32]. To reduce these undesirable changes, we investigated the effect of
nano-MgO at varying concentrations, and the results were compared with KH550-BC.

As shown in Table 1, with an increase in MgO content in the KH550-BC/MgO system,
the pH value of the repaired paper significantly increased, and the alkali reserves, as the
key factor for the anti-acidification of paper, exceeded 0.30 mol/kg. In images of paper
repaired by KH550 loading different contents of MgO, the MgO at 0.1% could distribute on
paper evenly, as shown in Figure 1b. However, at concentrations above 0.1% (as the green
arrows pointed), MgO with a high specific surface energy was prone to agglomeration and
deposition on the paper surface. As a consequence, 0.1% MgO was chosen to be appropriate
for paper restoration in accordance with the lack of interference with paper font ink. At this
point, the grammage of the paper was increased by 3.25 g/m2, and its alkali reserve was
0.36 mol/kg, which was 41.18% higher than that of KH550-BC repair alone (0.26 mol/kg).

Table 1. The influence of MgO contents in the KH550-BC/MgO system on the pH and alkali reserve
of aged paper.

Samples Mass Fraction of MgO/% pH Alkali Reserve/mol kg−1

1 0 7.96 0.26
2 0.1 9.42 0.36
3 0.2 9.98 0.53
4 0.3 10.21 0.82
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Figure 1. The influence of MgO contents in the KH550-BC/MgO system on the appearance of the
paper samples, wherein (a) represented the paper repaired by KH550-BC, (b–d) represented the paper
repaired by KH550-BC/MgO, in which the MgO content was (b) 0.1%, (c) 0.2%, or (d) 0.3%.

2.2. Strengthening Effect of KH550-BC/MgO on Aged Paper

While KH550-BC/MgO had the better deacidification effect on aged paper (Table 1),
the strengthening effects of KH550-BC/MgO on aged paper were also maintained at a high
level (Table 2). P2 outperformed the reference sample (UP) in terms of the tear index, tensile
index, and folding endurance, with values of 6.60 mN m2/g, 35.44 N m/g, and 19 times,
respectively. In addition, the impregnation treatment with KH550-BC/MgO resulted in
a 13.91% increase in the zero-span tensile strength, while the tensile stress also increased
by 88.60%. It could be indicated that KH550-BC/MgO has significantly improved the
strength of the individual fibers and the tensile performance. All of these phenomena may
be induced by the hydrogen bonds between modified bacterial cellulose being opened,
exposing the free hydroxyl groups on its molecules, which form more hydrogen bonds with
paper fibers, thereby increasing the binding force between fibers of aged paper. Meanwhile,
some BC was adsorbed on the surface of fibers, interweaving and winding to form a
network structure, thereby increasing the strength of each paper fiber [17]. This hypothesis
will be verified by subsequent analysis.

Table 2. Comparison of the aged paper repairing effects of two reinforcement systems.

Sample pH
Alkali

Reserve
(mol/kg)

Tear Index
(mN·m2/g)

Tensile
Index

(N·m/g)

Folding
Endurance

(Times)

Zero-Span
Tensile Strength

(kN/m)

Tensile
Stress
(MPa)

UP 6.45 0 3.48 18.70 4.50 68.30 14.27
P1 7.96 0.26 6.65 36.15 19.80 78.60 28.02

The increased
ratio (%) 23.41 — 91.09 93.32 340 15.08 96.36

P2 9.42 0.36 6.60 35.44 19 77.80 27.29
The Increased

ratio (%) 46.05 — 89.66 89.52 322.20 13.91 88.60

2.3. Wettability Analysis of Repaired Paper

Following the repair with KH550-BC/MgO, Figure 2 shows that the contact angle
between the paper and water was 118◦, which was nearly identical to that of the base
paper UP (119◦). The hydrophobicity of UP was correlated with the chemical agent used in
the papermaking process. In order to prevent the paper from being damaged by wetting,
sizing agents were added to enhance the paper’s resistance to liquid penetration and
diffusion ability [33–35]. However, as shown in Figure 2b, the addition of BC, which
contained a large number of hydrophilic hydroxyl groups, rendered the paper susceptible
to deterioration when exposed to humid conditions over an extended duration following
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the repair process, due to the intrinsic hygroscopic nature of BC [36]. This weakness was
improved by modifying BC with the inclusion of nano-MgO [13]. Specifically„ the surface
effect of nano-MgO counterbalanced the hydrophilic effect of BC, resulting in a rougher
surface and decreased porosity of the paper. As a result, the repaired paper was able to
retain its hydrophobicity, ensuring its preservation in various environments for extended
periods of time.
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KH550-BC, and KH550-BC/MgO.

Furthermore, as illustrated in Figure 3, the SEM images of the paper prior to and
following the KH550-BC/MgO repair process confirmed that KH550-BC/MgO effectively
covered the fiber surface and bridged between the fiber, resulting in a notable enhancement
of the paper’s mechanical properties and a reduction in its porosity (Figure 3a,b). At 5000×
magnification, the stable dispersion and uniform adsorption of nano-sized MgO in the
three-dimensional fiber network of BC were clearly observed in Figure 3c, demonstrating
the stable deacidification of KH550-BC/MgO and its potential for durability.
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Figure 3. FESEM images of (a) the untreated paper and (b,c) the paper repaired by KH550-BC/MgO,
which were magnified by (b) 500× and (c) 5000×.

2.4. Aging Resistance and Stability Studies of Repaired Paper

To further confirm the fact that KH550-BC/MgO improves the anti-aging properties
of paper, artificial aging tests were carried out on aged paper before and after repair. The
changes in the physical strength, acid–base property, and color appearance of all of the
repaired paper samples during artificial aging were meticulously analyzed.
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2.4.1. Mechanical Properties Change in Repaired Paper during Aging

A thorough investigation was conducted into the variations in the strength of the
paper reinforced with KH550-BC and KH550-BC/MgO as they aged for different days. The
results are presented in Figure 4. Given that the untreated paper had an acceptable initial
strength (tear index of 3.48 mN·m2/g, tensile index of 18.70 N·m/g, folding endurance of
4.5 times), there was no discernible decrease in the strength of any of the repaired paper
samples after 3 days of artificial aging.
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Figure 4. The change rate of the paper samples strength properties with aging time, in which (a) rep-
resented the tear index, (b) represented the tensile index, and (c) represented the folding endurance.

As illustrated in Figure 4a, during the aging period from 3 d to 15 d, the tear index
of the untreated paper (UP) dropped sharply by 25.00%. This decline was attributed to
the accumulation of acid rather than its consumption over time, leading to the constant
acid degradation of cellulose in UP. Relevant research has also demonstrated a positive
correlation between the concentration of H+ and the rate of cellulose hydrolysis [37,38]. In
comparison to the initial tear index of UP, the tear index of P1 and P2 after 15 days of aging
was 66.38% and 62.64% higher, respectively. The enhancement effect of KH550-BC/MgO
was not only reflected in the significant improvement of the interfacial adhesion between
the BC and the aged paper, but more importantly, it provided enough of an alkali reserve for
the repaired paper to continue to consume acidic substances produced in high-temperature
and high-humidity environments. Therefore even after 30 d of aging, the tear index of P2
(4.60 mN·m2/g) was higher than that of P1(4.22 mN·m2/g), and it was still 32.18% higher
than that of UP. The MgO present in KH550-BC acts as a strengthening agent, significantly
enhancing the paper’s anti-aging ability and prolonging its conservation duration.

The tensile index changes in all paper samples are shown in Figure 4b. On the 15th day
of aging, the tensile index of UP decreased by 19.84%. Simultaneously, the paper enhanced
by KH550-BC and KH550-BC/MgO dispersion showed a slight decrease, yet still retained
a higher tensile index than UP, at 66.42% and 65.24%, respectively. The tensile index of P2
progressively surpassed that of P1 during the aging process of 15–20 days, and its reduction
was the least during the whole aging period, which also indicates that the paper samples
treated with KH550-BC/MgO had a good aging resistance stability [30].

Nonetheless, the changes in folding endurance in the aging experiment were note-
worthy (Figure 4c). After 15 days of aging, the folding endurance of UP decreased by
77.78%, from 4.5 times to 1 time, while P1 demonstrated a 49.49% decrease, and P2 exhib-
ited a 42.11% reduction. Compared to the tear index and the tensile index, the folding
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endurance images of KH550-BC- and KH550-BC/MgO-treated paper intersected between
10 and 15 days, which meant that the folding endurance of the paper was more susceptible
to environmental pH and alkali storage [39]. All the above results underscored that the
anti-aging property of paper can be effectively enhanced by KH550-BC/MgO.

2.4.2. Resistance to Acidification of Repaired Paper

The pH value and alkali reserve were the important indicators for evaluating the
deacidification effect of aged paper samples repaired by KH550-BC and KH550-BC/MgO.
The environment of high temperature and humidity accelerated the degradation of the
primary components of the paper, resulting in the accumulation of acidic substances [40–42].
This was the main factor contributing to the observed decline in the pH value across all
paper samples (Figure 5). In the 30-day artificial aging process, the pH of P1 was gradually
changed from 7.96 to 6.65, confirming that the amino groups of KH550-BC exerted a buffer
effect on the degradation of paper fibers. However, P2 remained weakly alkaline after
30 days of aging, with a pH value of 7.56 and an alkali reserve of 0.25 mol/kg. This further
indicated that the fiber network structure of BC stabilized the nano-MgO and played
a positive role in covering [43], thus allowing for a gradual and continuous process of
resisting acidification compared to KH550-BC.
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Figure 5. The change curves of (a) the pH and (b) the alkali reserves of paper samples with aging time.

2.4.3. Whiteness and Chromatic Aberration Change during Aging

Consistent with the above changes in mechanical properties and pH properties, aging
for 3 days had a negligible impact on the whiteness and color difference of all paper
samples (Figure 6). More chromophoric groups were formed during the accelerated lignin
degradation in the acidifying UP throughout the hygrothermal aging process which was
the cause of the significant yellowing observed in UP [37]. The whiteness decreased from
the initial 49.59% to only 34.49%, along with the color difference increased to 8.20 after
30 days of aging. In contrast, the whiteness of P2 treated with KH550-BC/MgO exhibited
the slowest decrease, as evidenced by a postponed aging process and a decreased yellowing
rate due to the presence of nano-MgO [44]. Aged for 30 days, the values of whiteness
and color difference were 41.09% and 4.16, respectively (Figure 6). What is more, the
macroscopic scanning images of all of the paper samples (Figure 7) during the aging process
corresponded to the change trends of whiteness and chromatic aberration as mentioned
earlier, also illustrating that KH550-BC/MgO dispersion was the optimal repair system.
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Figure 7. The scanning images of the paper samples with aging time, wherein (a,d,g) represented UP,
(b,e,h) represented P1, and (c,f,i) represented P2.

2.5. Anti-Aging Mechanism Analysis

ATR-FTIR spectra were performed on each of the three paper samples to analyze the
changes in the functional groups during the aging process [45]. As shown in Figure 8a–c,
after repair by KH550-BC and KH550-BC/MgO, the C=O stretching vibration peak of
UP at 1650 cm−1 was transferred to 1641 cm−1 and 1644 cm−1, thereby confirming the
existence of hydrogen bonding between the reinforcing agent and the aging paper fiber [46].
New peaks emerged at 1550 cm−1 and 1450 cm−1, which were primarily attributed to the
bending vibration of NH2 and the stretching vibration of C-N in KH550-BC. This indicated
that the modified BC was successfully combined with the paper fibers [24]. Furthermore, in
Figure 8c, peaks corresponding to Mg-O stretching vibration and bending vibration were
evident at 670 cm−1 and 470 cm−1, respectively. The strength of the characteristic peak of
MgO decreased throughout the aging process, suggesting that MgO continued to exert an
anti-acidifying effect during this period.



Molecules 2024, 29, 3959 8 of 14

Molecules 2024, 29, x FOR PEER REVIEW 9 of 15 
 

 

The degree of aging of the different papers can be compard by exploring the crystal-
linity index of the cellulose in Figure 8d–f [47–49]. Following the application of the two 
repair systems, the CrI of P2 (76.21%) was marginally higher than that of UP (74.33%) 
comparable to that of P1 (76.25%). These findings were consistent with the results of the 
mechanical property analysis (Table 2). With the gradual aging of the paper, the decrease 
rate of the crystallinity of P1 was lower than that of UP (Figure 8d,e), suggesting that P1 
had a certain aging resistance provided by the high strength and favorable interface bond-
ing of KH550-BC. Based on these observations, Figure 8f illustrated that the CrI of P2 ex-
hibited a minimal variation; after aging for 30 d, the CrI was 73.12%, with a reduction of 
3.09%. The slowest rate of reduction in the cellulose crystallization index demonstrated 
the inhibition of P2 aging and the durability of KH550-BC/MgO’s protective action [50,51].  

 
Figure 8. FTIR-transform infrared spectra (a–c) and X-ray diffraction patterns (d–f) of the paper 
samples, wherein (a,d) represented UP, (b,e) represented P1, and (c,f) represented P2. 

SEM analysis was employed to assess the distribution of the active ingredients of the 
repaired dispersion on paper. After aging for 3 d, the fillers on the surface of UP were 
observed to have diminished in quantity. However, there were no discernible alterations 
in the morphology of P1 and P2. The smooth KH550-BC and the rough KH550-BC/MgO 
were observed to lie on the surface, with the fiber structure remaining apparent (Figure 
9a–c). With the extension of aging time (Figure 9d–i), the interfiber fillers of UP decreased 
noticeably. P1 also showed a reduction in the content of KH550-BC and an increase in the 
number of pores. However, the fiber morphology of the P2 had the smallest change, the 
aggregated structures of KH550-BC/MgO could always be recognized to be coated on the 
fiber surface and bridge between the fibers, and the pore changes were not obvious. It was 
further noted from Figure 9j,k that the MgO content gradually decreased as it played a 
role in acid resistance, which was in line with the weakening of its characteristic peak 
intensity (Figure 8c). The preceding analyses led to the reasonable conclusion that the 
KH550-BC/MgO is interwoven with the aging paper fiber, forming hydrogen bonds that 
cooperate with the anti-acidifying effect of MgO to jointly ensure the long-term stable 
preservation of the repaired paper. 

Figure 8. FTIR-transform infrared spectra (a–c) and X-ray diffraction patterns (d–f) of the paper
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The degree of aging of the different papers can be compard by exploring the crys-
tallinity index of the cellulose in Figure 8d–f [47–49]. Following the application of the
two repair systems, the CrI of P2 (76.21%) was marginally higher than that of UP (74.33%)
comparable to that of P1 (76.25%). These findings were consistent with the results of the
mechanical property analysis (Table 2). With the gradual aging of the paper, the decrease
rate of the crystallinity of P1 was lower than that of UP (Figure 8d,e), suggesting that P1 had
a certain aging resistance provided by the high strength and favorable interface bonding of
KH550-BC. Based on these observations, Figure 8f illustrated that the CrI of P2 exhibited a
minimal variation; after aging for 30 d, the CrI was 73.12%, with a reduction of 3.09%. The
slowest rate of reduction in the cellulose crystallization index demonstrated the inhibition
of P2 aging and the durability of KH550-BC/MgO’s protective action [50,51].

SEM analysis was employed to assess the distribution of the active ingredients of the
repaired dispersion on paper. After aging for 3 d, the fillers on the surface of UP were
observed to have diminished in quantity. However, there were no discernible alterations in
the morphology of P1 and P2. The smooth KH550-BC and the rough KH550-BC/MgO were
observed to lie on the surface, with the fiber structure remaining apparent (Figure 9a–c).
With the extension of aging time (Figure 9d–i), the interfiber fillers of UP decreased no-
ticeably. P1 also showed a reduction in the content of KH550-BC and an increase in the
number of pores. However, the fiber morphology of the P2 had the smallest change, the
aggregated structures of KH550-BC/MgO could always be recognized to be coated on the
fiber surface and bridge between the fibers, and the pore changes were not obvious. It
was further noted from Figure 9j,k that the MgO content gradually decreased as it played
a role in acid resistance, which was in line with the weakening of its characteristic peak
intensity (Figure 8c). The preceding analyses led to the reasonable conclusion that the
KH550-BC/MgO is interwoven with the aging paper fiber, forming hydrogen bonds that
cooperate with the anti-acidifying effect of MgO to jointly ensure the long-term stable
preservation of the repaired paper.
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3. Material and Methods
3.1. Material

Bacterial cellulose was supplied by Hainan Guangyu Biotechnology Co., Ltd. (Haikou,
China). 3-aminopropyl triethoxysilane (KH550) and nano-MgO were both analytical grade
and provided by Shanghai McLean Biochemical Technology Co., Ltd. (Shanghai, China).
The paper samples were selected from an old book made of bleached hardwood pulp and
published in 1972. After the natural aging process, the pH was found to be 6.45 ± 0.08,
with a gram weight of 56.15 g/m2.

3.2. Preparation of KH550-BC/MgO Dispersion

In total, 1 g dry BC and 5% KH550 solution (pre-hydrolyzed in 160 mL 80% ethanol
solution for 30 min) were added to a 500 mL three-mouth flask, reacted at 80 ◦C and
350 rpm for 4 h. Afterwards, a dispersion of KH550-BC was prepared at 40,000 rpm using a
standard disperser (SKG 1246, SKG, Guangzhou, China) and then homogenized at 45 bar
5 times by a high-pressure nanohomogenizer (NanoGenizer, Genizer, Irvine, CA, USA).

A specific mass of nano-MgO was added into a 0.4% concentration of KH550-BC, and
the mixture was dispersed uniformly by ultrasonic dispersion (JY 99-IIDN, Scientz, Ningbo,
China) for 30 min to obtain a KH550-BC/MgO dispersion. During this experiment, the mass
fraction of MgO in the KH550-BC/MgO system was 0.1%, 0.2%, and 0.3%, respectively.
The preparation diagram of KH550-BC/MgO is illustrated in Figure 10.
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3.3. Artificial Accelerated Aging of Paper Samples

Aged paper that had no fractures or stains on the surface was selected for this study.
Based on our previous reinforcement process [24], the paper samples were individually
impregnated for 5 min in KH550-BC and KH550-BC/MgO dispersion at the same concen-
tration (0.4%). Following impregnation, the paper samples were suspended vertically in a
vacuum drying oven (BGZ-6050, Shanghai Yiheng Technology Co., Ltd., Shanghai, China)
and subjected to a drying process at 50 ◦C for 0.5 h. They were then equilibrated with water
for 24 h, according to ISO 187:1990 [52].

In accordance with ISO 5630-3:1996 [53], the untreated paper (UP), the paper treated
with the KH550-BC dispersion (P1), and the paper treated with the KH550-BC/MgO
dispersion (P2) were subjected to an artificial hydrothermal ageing test for specific days
(3 d, 7 d, 10 d, 15 d, 20 d, 25 d, and 30 d) at 80 ◦C and 65% relative humidity in a constant
temperature and humidity chamber (LHS-100CL, Shanghai Yiheng Technology Co., Ltd.,
Shanghai, China). Prior to characterization, all paper samples were suspended for 24 h at
23 ◦C and 50% relative humidity according to ISO 187:1990 [52]. The repair process and
aging conditions of the aged paper samples are shown in Figure 11.
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3.4. Characterization of Paper Samples

The pH value of the paper samples was determined by cold extraction according to
ISO 6588-1:2021 [54]. The alkali reserve of the paper samples was determined by titration
according to ISO 10716-1994 [55], and the calculation formula was as follows in Equation (1).
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X =
(V 2 − V1)c

m
(1)

where X is the alkali reserve of the paper samples, V1 and V2 represent the volume of NaOH
consumed by the paper sample solution and blank reagent, respectively, m is the absolute
dry mass of the paper samples, and c is the concentration of the NaOH standard solution.

The mechanical properties (tear index, tensile index, folding endurance, and zero-span
tensile strength) testing methods had been reported in detail [17]. The tensile stress of the
paper samples (4 cm × 8 mm) was determined by a material testing machine (INSTRON
3300, INSTRON, Shanghai, China) at 10 mm/min. In addition, the paper samples were
placed on the Surface WCA Tester (OCA40 Micro, Dataphysics, Filderstadt, Germany) to
test the surface wettability, and the drip flow of deionized water was controlled to be 8 µL.

The surface morphology of paper samples was obtained by a scanner (Epson Perfection
V330, Epson, Beijing, China). In accordance with ISO 11476:2010 [56], a whiteness tester
(WSB-2, Xinrui, Shanghai, China) was employed to assess the whiteness, L*, a*, and b*
values of the paper samples. The chromatic aberration (∆E*) was calculated using the
following formula:

∆E∗ =
√
(∆L∗)2 + (∆a∗)2 + (∆b∗)2 (2)

where ∆L* is the difference in lightness and darkness, ∆a* represents the difference in red
and green, and ∆b* represents the difference in yellow and blue.

A field emission scanning electron microscope (FESEM; LEO1530VP, Zeiss, Jena, Ger-
many) was used to assess the microscopic morphology of the paper samples. The chemical
structure of the paper samples with varying degrees of aging was determined by attenuated
total reflection Fourier transform infrared spectroscopy (ATR-FTIR; TENSOR27, Bruker,
Ettlingen, Germany). The ATR-FTIR spectrum was captured in absorption mode with a
resolution of 4 cm−1, a range of 4000–500 cm−1, and 32 scans. The crystallinity spectrum of
the paper samples was obtained by a Bruker X-ray polycrystalline diffractometer (XRD,
D8 ADVANCE, Bruker, Ettlingen, Germany) using a conventional BB focusing light path
with a 2θ range of 5◦~60◦, and the crystallinity index was calculated by the Segal formula.

4. Conclusions

This study examined the application of BC-based composites as paper relics reinforc-
ing agents and their potential mechanism of anti-aging. The incorporation of nano-MgO
into KH550-BC, which plays an integrated role in deacidification and reinforcement, was
found to be an effective method to significantly improve the durability of the paper. The
experimental results demonstrate that the paper repaired by KH550-BC/MgO aged for
30 days still exhibits an adequate strength and acid-resistance ability, with approximately
30% higher mechanical properties than untreated paper and an alkali reserve of 0.25 mol/kg.
ATR-FTIR and SEM analyses demonstrated that a strong interfacial binding force in co-
ordination with sufficient alkali reserves contributed to these observed properties. These
findings offer valuable insights for the long-term stable conservation of ancient books using
BC, and the potential antibacterial property of repaired paper given by KH550-BC/MgO
should be considered in future studies for the optimal conservation of paper relics.
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