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Abstract: Artichokes (Cynara scolymus L.) are valuable foods, thanks to their health benefits, but
they generate significant waste during their production, harvesting, and processing, which poses
sustainability issues. This study applied an agroprospecting approach to convert Tema artichoke
biowaste (TB) into valuable resources, starting from a global perspective of the production chain to the
targeted applications based on chemical and biological analysis. The major TB was identified in the
outer bracts of the immature flower heads, which were collected throughout the harvesting season,
extracted, and analyzed. The most abundant compounds were phenolic acids including chlorogenic
acid and caffeoylquinic derivatives. Among flavonoids, cynaroside was the most abundant com-
pound. Multivariate analysis distinguished batches by collection period, explaining 77.7% of the
variance, with most compounds increasing in concentration later in the harvest season. Subsequently,
TB extracts were analyzed for their potential in wound healing and anti-aging properties. Fibrob-
lasts were used to assess the effect of selected extracts on cell migration through a scratch wound
assay and on cellular senescence induced by etoposide. The results show a significant decrease in
senescence-associated β-galactosidase activity, γH2AX nuclear accumulation, and both p53 and p21
protein levels. Overall, this study ascribes relevant anti-skin aging effects to TB, thus increasing its
industrial value in cosmeceutical and nutraceutical applications.

Keywords: agroprospecting; Cynara scolymus L.; Tema cultivar; biowaste; skin aging; senescence

1. Introduction

Agricultural waste, such as crop residues, peels, leaves, and roots, constitutes a sig-
nificant portion of the organic waste produced, with an estimated 2800 to 3800 million
tonnes/year globally [1]. Without proper disposal or reutilization, this waste can sig-
nificantly contribute to soil and water pollution and can emit greenhouse gases during
decomposition [2]. Therefore, it is essential to develop effective strategies for reusing
and valorizing this waste, transforming it into valuable resources like compost, biogas, or
ingredients for new food products or animal feedstock [3].
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In addition to greater environmental sustainability, the transition to a circular food
system brings direct economic benefits through the valorization of waste and indirect
benefits through the expansion of the production chain [4].

With this work, the authors aim to address the agricultural waste problem by im-
plementing a new way of thinking about crops, summarizing this type of approach as
“Agroprospecting”. In this context, the term agroprospecting refers to the exploration
of agrobiodiversity co-products and organic waste, which are from intensive, extensive,
local, regional, traditional, or technological crops, in search of small- or macro-molecules
that could be developed into materials of commercial value for agriculture, bioremedia-
tion, cosmetics, nanotechnology, or pharmaceutical and food industries. Agroprospecting
(agro-exploration) is fundamental to closing the loop into a circular and sustainable food
system; it analyzes the production chain and assesses the potential reuse, recycling, or
transformation of organic residues, thus minimizing waste production.

Leveraging the principles of agroprospecting, the present study focuses on the ar-
tichoke cultivar Tema (Cynara scolymus L., Asteraceae) and addresses the considerable
waste typical of artichoke cultivation; we aim to transform these byproducts into valuable
co-products within a sustainable circular economy.

Tema cultivar is a commercial artichoke hybrid that represents a variety of Violetto
artichoke and is characterized by a cylindrically shaped head lined with purple bracts
ending in a short thorn [5]. The bracts are fleshy and tender with little bitter flavor. Its
excellent cold resistance allows an extended harvesting period from November until March,
depending on the year. Notably, this cultivar showed good resistance to the browning
processes [6], a feature that makes it suitable for obtaining a fourth-range product.

However, due to the processing steps, it is characterized by a large amount of waste,
namely the leaf portions of the stem and especially the outermost bracts. These aspects
are common in artichoke cultivation; in fact, the edible portion of the artichoke is the
immature flower head, which undergoes further processing to remove the outer bracts,
leaves, and stems. Additionally, waste production in the artichoke’s production chain
increases due to common agricultural practices involving the removal of secondary
and tertiary flower heads. At the end of processing, approximately 80–85% of the total
biomass is discarded [7]. Given the high waste generation, intensive processing, low
yields, and significant field requirements (such as pesticides, fertilizers, and irrigation),
artichoke cultivation is considered one of the least environmentally sustainable agricul-
tural practices. This results in significant greenhouse gas emissions, and recent studies
have calculated that the carbon footprint along the production chain is around 8000 kg
CO2eq per hectare [8].

Despite growing concerns about the environmental footprint of the artichoke supply
chain due to high waste generation and resource requirements, the Mediterranean basin
hosts the largest global production of artichokes, primarily in Egypt, Italy, and Spain [9].
Italy ranks as the world’s second-largest producer, with 378,110 tonnes in 2022, corre-
sponding to a cultivated area of approximately 38,170 hectares [10]. Furthermore, Italy
is recognized as the “primary cultivated gene pool” due to its significant reservoir of
autochthonous germplasm. Numerous recognized cultivars exhibit variations in character-
istics such as morphology (e.g., Spinoso, Romanesco, Catanese, and Violetto) or production
period, which enables early production in autumn–winter and late production and allows
harvesting until spring. Furthermore, ongoing research, which focuses on new hybrid
varieties propagated from seed, has been introduced; these include Tema, Apollo, Madrigal,
and Concerto [11,12].

In addition, artichoke cultivation offers valuable health benefits through its content
of fibers and bioactive compounds like phenolic acids, terpenes, and flavonoids, which
contribute to its status as a potent functional food [13–16]. Collectively, these compounds
reduce the inflammatory processes, regulate sugar and fat metabolism and digestive
processes, and decrease the risk of chronic diseases [17–19]. Among its primary bioactive
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molecules are chlorogenic acid, cynarin, and cynaropicrin, along with various isomers of
caffeoylquinic acid and glycosidic derivatives of luteolin and apigenin [17,20,21].

In particular, chlorogenic acid is associated with antidiabetic and antilipidemic effects;
it helps regulate blood glucose levels by modulating glucose absorption and metabolism,
contributing to lipid-lowering and cholesterol-lowering actions that improve cardiovas-
cular health by managing lipid profiles and reducing the risk of atherosclerosis [22,23].
Another fundamental bioactive metabolite is the sesquiterpene lactone cynaropicrin. De-
spite its low concentration, it is reported to possess robust anti-inflammatory effects by
inhibiting pro-inflammatory cytokines and modulating immune responses, partly through
suppression of the key pro-inflammatory NF-κB pathway [24]. Furthermore, cynaropicrin
exhibits various metabolic regulatory activities, such as choleretic and anti-hyperlipidemic
properties, thus supporting digestive health and fat metabolism [25]. It shows a broad spec-
trum of pharmacological actions, including anti-trypanosomal, anti-malarial, antifeedant,
antispasmodic, anti-aging, anti-tumor and anti-Hepatitis C properties [26–28].

In this context, the comprehensive analysis and characterization of biowaste can
enable the valorization of their bioactive molecules. Indeed, these matrices demonstrated
diverse biological activities such as antimicrobial, antifungal, anticancer, and skin-protective
functions [19,29,30]. This approach not only mitigates waste generation but also enhances
the capacity of edible plant materials to exert positive effects on human, animal, and
ecosystem health. By utilizing these bioactive properties, agricultural byproducts can
be transformed into valuable resources, thereby advancing sustainability and delivering
health benefits across various sectors.

Therefore, the aim of this study is to characterize and explore the biological activities
of Tema cultivar biowaste to further increase its industrial value. The waste material was
collected over the harvesting period and underwent a comprehensive chemical characteri-
zation to determine its concentration in its main bioactive molecules. Subsequently, the
study investigates the waste’s efficacy on pivotal features of skin aging, namely wound
healing (cell migration) and cellular senescence.

Through the chemical characterization and biological evaluation of artichoke waste,
the authors attempt to unveil, for the first time, an innovative process for the sustainable
use of agricultural byproducts of Tema cultivar, thus presenting new opportunities for a
sustainable environmental and economic management of natural resources.

2. Results
2.1. Determination of Dicaffeoylquinic Acid Derivatives, Flavonoids, and Cynaropicrin

The HPLC-DAD analysis allows a comprehensive analysis of caffeoylquinic acid
derivatives, flavonoids, and cynaropicrin across the harvesting season from November
2021 (batch A) to February 2022 (batch H). Eleven compounds were identified based on the
Relative Retention time versus chlorogenic acid (Table 1). Chlorogenic acid and derivatives
were quantified on the chlorogenic acid calibration curve, while the detected flavonoids
were quantified on the cynaroside calibration curve. The spectrum types of the two com-
pounds were type 1 for chlorogenic acid and type 2 for cymaroside (Figure S1). A total of six
phenolic acids and four flavonoids were identified. Moreover, cynaropicrin was detected at
205 nm, which is a sesquiterpene lactone that shows an immunomodulatory effect and a
protective action against certain pathogens and stimulates bile and fat metabolism [24–28].
Cynaropicrin was detected by the RRt versus cynaroside, whose calibration curve was used
for the quantification. The quantification from batch A to H is reported in Table 2.
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Table 1. Identified compounds in test solution chromatogram by means of Relative Retention times
(RRt) versus chlorogenic acid (263 nm) and cynaroside (205 nm).

Compounds Approximate Retention Time a RRt versus
Chlorogenic Acid

Spectrum
Type Quantified as

Chromatographic run at 263 nm

Chlorogenic acid 16.7 1.00 1 Chlorogenic acid
Cynarin 21.0 1.26 1 Chlorogenic acid
Scolymoside 23.3 1.40 2 Cynaroside
Cynaroside 24.5 1.47 2 Cynaroside
Luteolin-7-O-glucorinide 24.8 1.49 2 Cynaroside
3,4-Di-O-caffeoylquinic acid 26.4 1.58 1 Chlorogenic acid
1,5-Di-O-caffeoylquinic acid 27.7 1.66 1 Chlorogenic acid
3,5-Di-O-caffeoylquinic acid 28.2 1.69 1 Chlorogenic acid
Apigenil glucorinide 29.3 1.75 2 Cynaroside
4,5-Di-O-caffeoylquinic acid 30.3 1.81 1 Chlorogenic acid

Chromatographic run at 205 nm

Cynaroside 25.1 1.00 2 Cynaroside
Cynaropicrin 38.3 1.53 2 Cynaroside

a Retention Time expressed in min.

The concentrations of the detected compounds were monitored during the harvesting
period (from batch A to H), and the corresponding concentrations in mg/g are reported
in Table 2. Among the compounds analyzed, the phenolic acids were the most abundant
throughout the collecting period, specifically chlorogenic acid, 3,4-Di-O-caffeoylquinic acid,
and 3,5-Di-O-caffeoylquinic acid.

Chlorogenic acid showed a significant increase from 1.52 mg/g in the first half of
November (A) to a peak of 7.48 mg/g in the first half of January (E) before slightly declining
to 5.91 mg/g at the end of February (H).

3,4-Di-O-caffeoylquinic acid followed a similar trend, starting at 1.60 mg/g in batch A,
peaking at 8.89 mg/g in batch G, and then decreasing to 5.72 mg/g in batch H. 3,5-Di-O-
caffeoylquinic acid also increased from 2.19 mg/g in batch A to a maximum of 3.66 mg/g
in batch E, maintaining relatively high levels until the end of February (3.12 mg/g). Cy-
narin and scolymoside exhibit a similar trend with lower concentrations; both showed a
fluctuating pattern, peaking in the first half of January (E) until the first half of February
(G), at concentrations of 0.48 and 0.18 mg/g, respectively. Cynaroside exhibits its peak
slightly later, in the February batches G-H.

Low quantities of cynaropicrin were found in the samples, indicating an inconsistent
trend over the harvesting period. It was detected in the initial samples, with the highest
concentration observed in batch B at 405.4 µg/g, while it was absent in the later samples
except for batch G, where it showed the second-highest concentration at 153 µg/g. Addi-
tionally, it presents a higher variability within the same batch, as indicated by the higher
standard deviation.

With the cynaropicrin exceptions, the pattern found suggests a general compound
increase as the season progresses toward winter, peaking in January. The data indicate
an accumulation during the harvest season, possibly in response to environmental stress
factors or as part of the plant’s maturation and metabolic processes.
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Table 2. Quantification of the phenolic acids (in green), flavonoids (in orange), and cynaropicrin (in yellow), identified in the hydroalcoholic extracts of Tema
biowaste, from harvesting batches from November (A) to February (H).

Compounds Quantified as A B C D E F G H
Chlorogenic acid 1 1.52 ± 0.05 * 2.14 ± 0.11 * 2.31 ± 0.08 * 3.76 ± 0.03 * 7.48 ± 0.07 * 6.98 ± 0.02 a 7.14 ± 0.03 a 5.91 ± 0.01 *
Cynarin 1 0.09 ± 0.01 cd 0.08 ± 0.00 d 0.06 ± 0.01 d 0.08 ± 0.01 d 0.18 ± 0.00 d 0.12 ± 0.00 ab 0.14 ± 0.01 a 0.11 ± 0.01 bc

3,4-Di-O-caffeoylquinic acid 1 1.60 ± 0.04 * 2.98 ± 0.02 * 3.37 ± 0.03 * 6.48 ± 0.08 * 8.12 ± 0.01 * 7.57 ± 0.04 * 8.89 ± 0.04 * 5.72 ± 0.02 *
1,5-Di-O-caffeoylquinic acid 1 0.63 ± 0.01 * 1.40 ± 0.02 a 1.13 ± 0.01 * 1.04 ± 0.01 * 1.63 ± 0.00 * 0.82 ± 0.02 * 1.84 ± 0.00 * 1.38 ± 0.00 a

3,5-Di-O-caffeoylquinic acid 1 2.19 ± 0.08 a 2.04 ± 0.05 b 2.06 ± 0.04 b 2.91 ± 0.00 * 2.26 ± 0.00 a 3.66 ± 0.01 * 3.27 ± 0.01 * 3.12 ± 0.00 *
4,5-Di-O-Caffeoylquinic acid 1 0.11 ± 0.19 a 0.02 ± 0.02 a - 0.06 ± 0.00 a - 0.07 ± 0.01 a - -
Total Quantified as Chlorogenic Acid

Chlorogenic
acid

263 nm

6.15 ± 0.14 8.67 ± 0.11 * 8.94 ± 0.15 * 14.33 ± 0.08 * 19.66 ± 0.08 * 19.20 ± 0.07 a 21.28 ± 0.03 a 16.25 ± 0.03 *

Scolymoside 1 0.06 ± 0.01 b 0.06 ± 0.01 b 0.18 ± 0.00 * 0.21 ± 0.00 * 0.40 ± 0.00 a 0.40 ± 0.00 a 0.48 ± 0.00 * 0.37 ± 0.00 *
Cynaroside 1 0.30 ± 0.01 * 0.21 ± 0.01 * 0.56 ± 0.01 * 0.58 ± 0.01 a 0.86 ± 0.00 a 1.09 ± 0.01 * 1.15 ± 0.00 * 1.00 ± 0.00 *
Apigenil glucorinide 1 0.02 ± 0.00 a 0.07 ± 0.01 * - - - 0.03 ± 0.00 a 0.04 ± 0.00 * 0.03 ± 0.00 a

Luteolin-7-O-glucorinide 1 0.02 ± 0.00 a 0.02 ± 0.00 a - - - - - -
Total Quantified as Cynaroside

Cynaroside
-

263 nm

0.39 ± 0.00 * 0.35 ± 0.02 * 0.74 ± 0.01 * 0.79 ± 0.01 * 1.26 ± 0.00 a 1.52 ± 0.01 a 1.68 ± 0.00 * 1.40 ± 0.00 *

Cynaropicrin 2 Cynaroside
205 nm 55.51 ± 48.08 a 405.2 ± 1.3 * 36.78 ± 12.63 a 70.83 ± 2.6 a - - 153.34 ± 38.0 * -

1 Values represent the mean value of three experimental replicates ± standard deviation (SD), expressed in mg/g. 2 Values represent the mean value of three experimental replicates
± standard deviation (SD), expressed in µg/g. * Asterisk indicates statistical significance with respect to all comparisons tested, while the absence of statistical significance in the
comparison between two groups is indicated by equal letters.
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2.2. Principal Component Analysis (PCA)

The metabolites were further analyzed using multivariate techniques, including Prin-
cipal Component Analysis (PCA), showed in Figure 1. The first two principal components
explain a significant portion of the variance (54.6% and 23.1%, respectively), indicating
clear metabolic profiles associated with different collection periods (Figure 1A). Dimen-
sion 1 (PC1) effectively differentiated the batches according to their collection time. This
indicates that the primary source of variation captured by Dimension 1 is closely related
to the temporal changes in metabolite concentrations, reflecting seasonal influences or
maturation stages.
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from batches A to H. In the biplot (A), each dot represents a batch of replicates. The PCA (B) indicates
the variable contribution. Colors tending toward red indicate better-represented variables, while
gradually lighter colors toward blue shades indicate less-represented variables.

Dimension 2 (PC2) contributed to further differentiation, explaining a smaller yet
significant proportion of the total variability. In particular, PC2 focuses on metabolites that
deviate from the main seasonal trend, such as apigenin and cynaropicrin, capturing less
dominant differences, such as microenvironmental differences or unique responses to biotic
or abiotic stressors.

The loading of variables (Figure 1B) further explains the most characterizing vari-
ables in the two principal dimensions. As previously highlighted, the most abundant
compounds—chlorogenic acid, 3,4-di-O-caffeoylquinic acid, cynaroside, and scolymoside—
exhibit high loadings and contribute to PC1. The prominence of these compounds in the
loading plot confirms their substantial impact on the overall data structure and highlights
their relevance in driving the main trends observed in the dataset.
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PC2 is distinguished by variables such as apigenin, cynaropicrin, 1,5-di-O-caffeoylquinic
acid, and 4,5-di-O-caffeoylquinic acid, with apigenin and cynaropicrin providing a more
substantial contribution. This differential contribution of PC2 explains the separation
between batches B and A. In fact, B exhibits higher levels of cynaropicrin and 1,5-di-O-
caffeoylquinic acid, whereas sample A shows lower values for these compounds. This
distinction highlights how PC2 captures unique variations not accounted for by the main
seasonal trend, illustrating specific deviations in metabolite profiles that could be driven by
physiological or environmental conditions affecting these metabolites.

Together, these dimensions provide a comprehensive view of how the metabolite
profiles vary with both time and additional influencing factors, thus offering deeper insights
into the complex dynamics of metabolite synthesis and accumulation.

Based on quantification data and multivariate analysis, specific batches have been
chosen to assess the biological potential of the average sample. Batch A, representing the
beginning of the collection, along with batches E and F, representing the second half of the
collection and the beginning of the increasing trend, have been selected.

2.3. Biological Activities
2.3.1. Effect of Cynara Agro-Wastes on Cell Viability

The effect of the hydroalcoholic extracts obtained from the three selected batches (A,
E, and F) on fibroblasts (3T3 cell line) viability, a main target for skin anti-aging therapy,
was assessed. Overall, as shown in Figure 2, no toxicity was observed at the tested
concentrations (800–25 µg/mL), thus highlighting a very safe profile for all the extracts.
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Figure 2. Safety profile of the hydroalcoholic extract from globe artichoke agro-wastes (batches A, E,
and F) on fibroblasts assessed by the resazurin assay.

2.3.2. Effect of Cynara Byproducts on Cell Migration

Bearing in mind the overall safe profile observed for the tested extracts, we selected the
intermediate concentrations of 100 and 200 µg/mL to further assess the bioactive potential
of these byproducts on features related to skin aging. First, the effect of the extracts on cell
migration, a feature highly compromised in aged skin, was tested. As shown in Figure 3,
no significant effects on fibroblast migration were observed, although samples E and F at
200 µg/mL showed a slight tendency to increase this feature (Figure 3A,B).
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fibroblasts migration assessed by the wound healing assay. (A) Images acquired by phase-contrast
microscopy immediately after wound induction (0 h) and after 18 h of incubation; (B) histograms
showing the quantified wound area of the different extracts compared with the control (CT). Scale
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2.3.3. Effect of Cynara Byproducts on Cellular Senescence

To assess the effect of the extracts on cellular senescence, three complementary mark-
ers were considered, related to lysosomal activity, cell cycle arrest, and DNA damage.
Regarding the first, senescence-associated (SA) β-galactosidase activity was determined in
NIH/3T3 fibroblasts. The senescence inducer etoposide was used to induce an increase in
this marker, as observed in Figure 4A,B. Interestingly, all the tested extracts, at 200 µg/mL,
significantly inhibited this increase, pointing out a potential anti-senescent effect of the
extracts, with extracts A and F being more effective (Figure 4B).
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Similarly, the extracts significantly decreased the phosphorylation and nuclear accu-
mulation of γH2AX induced by etoposide (Figure 5A,B), thus pointing out a protective
effect on double-strand DNA damage.
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Figure 5. Effect of the hydroalcoholic extracts from globe artichoke agro-wastes (batches A, E, and
F) on NIH/3T3 fibroblasts nuclear accumulation of the phosphorylated form of H2AX (γ-H2AX).
Representative confocal images (A) and corresponding histograms from quantitave analysis (B).
Statistical significance ** p < 0.01, *** p < 0.001 by one-way ANOVA followed by Dunnett’s multiple
comparisons test. Eto—etoposide (12.5 µM); Scale bar: 10 µm.
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To corroborate these results, the effect of the extracts on cell cycle arrest was determined
by evaluating their capacity to modulate the p53/p21 signaling pathway (Figure 6), which
plays a key role in the initiation of senescence. Overall, the extracts show a tendency to
decrease the protein levels of both p53 (Figure 6A,B) and p21, with extract F attaining
statistical significance for the latter (Figure 6A,C).
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to etoposide. * p < 0.05, ** p < 0.01, *** p < 0.001 by one-way ANOVA, followed by Dunnett’s multiple
comparison test. Eto—etoposide (12.5 µM).

3. Discussion

In the present work, the authors provide a characterization of the variation of the
main phenolic acids, flavonoids, and cynaropicrin of Tema globe artichoke biowaste in
relation to harvest time. Moreover, aiming at a potential valorization of these wastes, their
protective effect against skin aging was investigated, pointing out novel applications in the
cosmeceutical or pharmaceutical fields. Firstly, the outer bracts of the Tema cultivar were
selected as biowaste. This selection was driven by two factors: the amount of available
waste and the location of the collection. While some organic waste is typically left in the
field (e.g., secondary or tertiary head flowers), the outer bracts of this cultivar are processed
on the farm as part of the fourth-range processing, therefore simplifying the collection
operations [7]. The information available in the literature reports different advantages of
the Tema cultivar: Lombardo et al. [5] found the highest number of polyphenols in Tema
out of the other seventeen artichoke cultivars tested. Accordingly, a high polyphenolic
content was found by Cabezas-Serrano et al. [6], which, however, highlighted a low vitamin
C content and a related low antioxidant activity. This cultivar is also sufficiently resistant to
browning, making it suitable for processed products and rendering its waste particularly
amenable to further utilization [6].

The chemical characterization here performed unveiled 11 main compounds belonging
to the classes of phenolic acids and derivatives of caffeoylquinic acids, flavonoids, and
the sesquiterpene lactone cynaropicrin. Based on the literature, these bioactive molecules
are typically more abundant in the heart of the artichoke [31]. In contrast, higher values
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were found here when compared to those typically found in the outer bracts, [30], which
differences may be attributed to the characteristics of this hybrid cultivar.

From a quantitative point of view, the most abundant compounds were chlorogenic
acid (7.14 mg/g in Batch E) and 3,4-di-O-caffeoylquinic acid (8.89 mg/g in Batch G).
Followed by 3,5-di-O-caffeoylquinic acid, scolymoside, and cynaroside. Chlorogenic acid,
the most abundant compound found here and typically abundant in artichoke, is reported
to have potent antioxidant and anti-inflammatory activities [22,29,32].

In addition, the analysis of the biowaste during the harvesting period underscores a
significant variation in polyphenol content. This parallels prior findings on the content of
chlorogenic acid in other crops and their byproducts, including potato [33], faba bean [34],
and tomato [35]. In particular, it was interesting to note a visible trend for the majority of
compounds, resulting in an increase in concentration in the late harvest lots. Specifically,
this was evident in 7 out of 11 compounds, leading to an overall increase of 15.13 mg/g
for chlorogenic acid derivatives and 1.30 mg/g for cynaroside derivatives. Multivariate
analysis clearly highlighted this phenomenon. It clusters the batches based on harvest time
in the first dimension and accounts for 54% of the variability. Many studies investigate
artichoke’s polyphenol variation among different cultivars and different parts of the plant
(e.g., leaves, head, inner and outer bracts), while little is known about phenol trends during
artichoke seasonality [5,6,11,19]. Lombardo et al. (2010) demonstrated that Romanesco
artichokes exhibit higher phenol content in the spring harvest compared to the winter
harvest, with a slight increase in the outer bracts and a pronounced increase toward the
inner parts of the flower head, reaching a maximum in the floral stem (values up to 16 times
higher). Moreover, various forms of stress, such as drought, are known to elevate artichoke
polyphenol levels [36]. Therefore, the increased polyphenol content can be attributed to
progressive lignification during maturation, as well as to biotic and abiotic stresses, in
order to enhance physical resistance: these polyphenols, including chlorogenic acids and
its derivatives, are part of the phenylpropanoid pathway, which are utilized for lignin
production in the outer bracts, whereas in the innermost portions, they remain more
abundant as precursors [30].

Cynaropicrin, a sesquiterpene lactone characterized by a tricyclic structure featuring
a butyrolactone ring, did not show this seasonal pattern: its concentration varied widely
across different batches (the highest concentration was found in batch B, at 405 µg/g, while
it was absent in late batches except for G, at 153.34 µg/g). This observation aligns with the
literature, which reports higher levels of cynaropicrin in the leaves [37]. In contrast, it is
typically present in low quantities in the inflorescence receptacle at the earliest stages of
development, while it disappears at more advanced stages (0.05 mg/g when reaching the
commercial stage) [25]. In contrast, the literature reports no cynaropicrin detection in the
outer bracts. This may indicate a difference in cultivar characteristics; for example, Tema is a
particularly tender cultivar suitable for raw consumption, whereas Romanesco, as tested by
Eljounaidi et al. [25], is generally larger and fibrous, then suitable for cooked consumption.

In particular, in-vitro tests have demonstrated antiproliferative effects at very low
concentrations (5, 7.5, and 10 micrograms per milliliter) against colorectal cancer cells [38].
Additionally, there is evidence of activity against lung, multiple myeloma, and melanoma
cancer cell lines [39–41]. Based on the analyses performed, the outer bracts could still be
a potential target for the industrial recovery of natural bioactive compounds to replace
synthetic ones.

The bioactive studies focused on the anti-aging potential of the hydroalcoholic extracts
of three selected batches (A, E, and F), particularly on features related to skin aging.
Overall, significant anti-senescence effects were observed, thus highlighting a potential
health-promoting effect for these agro-wastes. Indeed, particularly for extract F, one
of the extracts representing the second half of the harvest period, significant inhibition
was attained in all senescence complementary markers, namely in lysosomal activity
(β-galactosidase activity), in cell cycle arrest (p53/p21 pathway) and in DNA damage
(nuclear accumulation of γH2AX). Cynara scolymus is known for its health benefits due
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to its high polyphenolic content, as recently reviewed by Porro and colleagues [42] that
pointed out anti-inflammatory, antioxidant, liver-protective, bile-expelling, antimicrobial,
and lipid-lowering neuroprotective effects. Although the artichoke biowastes showed a
tendency to promote wound healing here, this effect has been shown for other species of the
genus. For example, an ointment made with C. humilis powder extract was able to increase
neovascularization, collagen deposition, and re-epithelialization in an animal model of skin
burn [43]. Moreover, in a different study, the wound healing effects of both ethanolic and
aqueous extracts of this species promoted wound surface recovery, re-epithelization, and
collagen deposition, with a concurrent decrease in wound scarring [44].

Regarding the anti-senescence effects of globe artichoke biowaste herein reported, the
results are in line with a previous study that also highlighted the potential of an artichoke
extract on skin anti-age effects, although resorting to a different approach. This study
focused on the effect of the extract on endothelial cell integrity and functionality [45]. In
addition, Mileo and colleagues showed that long-term exposure to polyphenols from arti-
choke induced cell cycle arrest, as indicated by an increase in p16 and p21 expressions [46].
Although these results seem contradictory, the study was performed on a human breast
cancer cell line, in which inducing senescence is beneficial to avoid cell proliferation, thus
pointing out a potential application in cancer prevention/treatment.

The main compounds present in artichoke biowaste, namely chlorogenic acid and
their derivatives as well as cynaroside, also gather relevant bioactive potential, namely in
what concerns delaying skin aging. For example, it was shown that 4,5-dicaffeoylquinic
acid [47] and chlorogenic acid [48] promote wound healing. In addition, the presence of 3,5-
dicaffeoylquinic acid ameliorated spatial learning and memory in a senescence-accelerated-
prone-mice model [49], suggesting that this compound might have anti-senescent proper-
ties. Moreover, chlorogenic acid and several dicaffeoylquinic acids increased the lifespan of
C. elegans, with 3,5-dicaffeoylquinic acid downregulating the insulin/insulin-like growth
factor signaling (IIS) pathway [50]. Interestingly, this pathway seems to be responsible for
the lifespan-enhancing properties of cynaroside (luteolin-7-O-glucoside) [51], a compound
present in all agro-waste batches tested. This compound, in a model of UVA-induced
photoaging on keratinocytes, decreased metalloproteinase-1 (MMP-1) production by mod-
ulation of the mitogen-activated protein kinases (MAPKs) and activator protein-1 (AP-1)
signaling pathways [52], thus reinforcing its protective effect. Another relevant compound
in artichoke is cynaropicrin. This compound is known to suppress skin photoaging by
inhibiting nuclear factor-kappa B transcription activity [53], as well as the AhR-Nrf2-Nqo1
pathway [54]. However, this compound is not present in sample F and, therefore, does not
contribute to the anti-skin aging effects herein reported.

4. Materials and Methods
4.1. Biowaste Material: Collection and Preparation

This work is based on the collection of the biowaste generated from the production
chain of Cynara scolymus L. “Tema” cultivar from the fall-winter 2021–2022 harvest (Table 3).
The artichokes were harvested from the field and processed for the fresh market (fourth-
range products).

Table 3. Batches and corresponding harvest period.

Batch Harvest Period (2021–2022)

A 1 November 2021
B 15 November 2021
C 1 December 2021
D 15 December 2021
E 1 January 2022
F 15 January 2022
G 1 February 2022
H 15 February 2022
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In brief, artichokes intended for the fourth-range market (Figure S2) were prepared
by removing the outermost bracts from the artichoke’s head. The processed artichokes
were subsequently treated with antioxidant solutions or citric acid to reduce microbial load,
inhibit enzymatic browning, and extend shelf life. This product is primarily allocated to
the large-scale retail trade (GDO). The outer bracts, separated from the capitula during
initial processing, represent the waste material and are discarded. The Tema cultivar
was specifically selected due to its predominant use as a fourth-range product, wherein
processing generates a substantial amount of waste (bracts) on the farm, simplifying
harvesting operations.

The wastes (bracts) were recovered constantly every 15 days during the entire pro-
duction season of the Tema cultivar, starting in November 2021 to the end of February
2022 (Table 3) following the operational activities of a company in the middle Campidano
area of Sardinia region, Italy (coordinates: Samassi 56 m asl., 39◦28′53.48′′ N 8◦ 54′19′′ E).
The biowaste was collected in the farm and transferred to the laboratory, weighed and
oven-dried (FD 115, BINDER) at 40 ◦C, until complete water removal. It was then subjected
to grinding with an electric grinder and vacuum-stored for further processing.

4.2. Biowaste Extraction

The extraction followed the methods proposed by Gonçalves et al. [55] with some
modifications. Briefly, two grams of dry bracts were extracted overnight in constant
agitation by a hydroalcoholic solution EtOH-H20 70/30 (v/v) at 70 ◦C with a total volume
of 250 mL. The extract was filtered through Whatman N.1 filter paper, following the ethanol
remotion using a rotary vacuum evaporator at 40 ◦C. For better preservation, each extract
was frozen and freeze-dried to completely remove the water (LIO 5PDGT lyophylizer,
Cinquepascal S.r.l., Trezzano, Italy, with nXDS6i pump, Edwards Limited, Burges Hill, UK).
The obtained extracts were redissolved in methanol (HPLC-grade), filtered using 0.45 µm
filters, and then analyzed. The extraction was performed in triplicate.

4.3. HPLC-DAD Analysis

HPLC analysis was performed using an HPLC chromatography system (1260, Agilent
Technologies, Santa Clara, CA, USA) equipped with a quaternary pump, a diode array
detector operating at 263 nm and 203 nm, and an auto-injector. Separation was achieved
using a water-reversed phase column (Zorbax Eclipse XDB-C18 RaPID Res 250 × 4.6 mm
I.D.) at 20 ◦C. The mobile phase comprised water (Solvent A) and acetonitrile (Solvent
B), with 0.01% of Trifluoroacetic Acid (TFA). The used gradient program is reported in
Supplementary Materials (Table S1). The chromatographic run was performed at room
temperature, at 1.0 mL/min of flow rate, and 20 µL of sample were injected. The quantifi-
cation of dicaffeoylquinic acid derivates and flavonoids was obtained according to Schütz
et al. [56], using chlorogenic acid and cynaroside as external standards, with UV detection
at 263 nm. The quantification of cynaropricrin was obtained using cynaroside as an external
standard, with UV detection at 205 nm [57].

Chlorogenic acid (Merck Reference Standard) and Cynaroside (Luteolin 7-O-glucoside
− Merck analytical standard) were used as standards and for the preparation of the stock
solutions (respectively with the concentrations of 0.16 mg/mL and 0.06 mg/mL). Several
dilutions from the stock solutions were prepared by the addition of MeOH. All the standard
dilutions were then stored at 4 ◦C and were stable for at least 30 days. Calibration curves
were obtained by comparing the concentration with respect to the response of the peak
area (Figure S3).

4.4. Cell Culture

NIH/3T3 fibroblasts, purchased from the American Type Culture Collection (ATCC
CRL-1658), were cultured as previously described [58]. Briefly, Dulbecco’s Modified Eagle’s
Medium (DMEM, Gibco, Thermo Fisher Scientific, Waltham, MA, USA, Ref 31600-083) con-
taining 25 mM glucose, 3.7 g/L sodium bicarbonate, 100 U/mL penicillin, and 100 µg/mL
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streptomycin and heat-inactivated fetal bovine serum (FBS, 10%) was used. The cells were
subcultured upon reaching 70–80% confluency, and their morphology was monitored using
an inverted light microscope.

4.5. Cell Viability

The effect of the selected hydroalcoholic extracts from globe artichoke agro-wastes on
cell viability was examined using the resazurin reduction assay, as previously reported [59].
In summary, NIH/3T3 fibroblasts were seeded at a density of 50,000 cells/mL in 48-well
plates and allowed to stabilize overnight. After 24 h of exposure to the extracts (800 to
25 µg/mL), the medium was discarded, and a fresh medium with resazurin (1:10) was
added for 2 h. Absorbance was measured at 570 nm using a reference filter of 620 nm on an
automated plate reader (SLT, Salzburg, Austria).

4.6. Cell Migration

The scratch wound assay based on the method described by Martinotti and Ranzato [60]
with slight modifications was used. NIH/3T3 fibroblasts were plated at 300,000 cells/mL in
12-well plates and incubated for 24 h. Then, a scratch was induced in the cell monolayer
using a pipette tip. The detached cells were removed by washing with sterile PBS, and
cells were maintained in a culture medium supplemented with 2% FBS, with or without
the extracts (200 or 100 µg/mL). Phase-contrast microscopy was used to capture images
immediately after wound induction and following 18 h of incubation, and the area of the
wound was quantified using an ImageJ/Fiji plugin [61].

4.7. Anti-Senescence Potential
4.7.1. Senescence-Associated β-Galactosidase Activity

Etoposide was used to induce senescence in NIH/3T3 fibroblasts [62] seeded at 15,000
or 30,000 cells/mL for control or etoposide-treated cells, respectively. Cells were allowed
to stabilize overnight, and then etoposide (12.5 µM) was added for an additional period
of 24 h. Subsequently, etoposide was removed, and cells were further incubated for
24 h with or without the extracts (200 µg/mL). Beta-galactosidase activity was detected
with a commercial kit according to the manufacturer’s instructions (#9860, Cell Signalling
Technology Inc., Danvers, MA, USA). Cells were imaged for quantitative analysis using
ImageJ software (https://imagej.net/ij/), with senescent cells presenting a green stain,
indicative of β-galactosidase activity, a known characteristic of senescent cells.

4.7.2. Nuclear Staining of Histone γH2AX

NIH/3T3 were cultured on glass coverslips, treated as reported in Section 4.7.1, and
fixed for 15 min with 4% paraformaldehyde (PFA), followed by three washing steps with
sterile PBS. 0.1% Triton X-100 for 15 min was used for permeabilization, followed by three
washing steps with PBS. Then, cells were incubated with a blocking solution (3% bovine
serum albumin and 10% goat serum in PBS) for 1 h. γH2AX was detected using a primary
antibody (1:500, Cell Signalling 9718) applied to cells overnight at 4 ◦C. Afterward, cells
were washed three times with PBS and incubated for 1 h at room temperature with a
secondary antibody (1:500, goat anti-rabbit Alexa Fluor 564) and DAPI (1:2000). Following
washes with PBS, coverslips containing the cells were mounted on glass slides with Mowiol
mounting medium. Images were obtained using a confocal point-scanning microscope
(Zeiss LSM710; Carl Zeiss, Jena, Germany) with a 63× objective.

4.7.3. p21 and p53 Protein Levels

NIH/3T3 fibroblasts cultured at 200,000 and 400,000 cells/mL were seeded in 6-well
plates and treated as described in Section 4.7.1. Then, cell lysates were prepared, and
protein separation and immunoblotting were carried out as previously established [63].
Post-blocking, membranes were incubated at 4 ◦C overnight with specific antibodies against
p21 (1:1000, Abcam ab188224, Waltham, MA, USA) and p53 (1:1000, Proteintech 10442-1-AP,

https://imagej.net/ij/
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Chicago, IL, USA). Then, membranes were washed with TBS-T for 10 min, three times, and
incubated for 1 h at room temperature with horseradish peroxidase-conjugated secondary
antibodies (1:20,000). Detection of proteins was performed using a chemiluminescence
scanner (Image Quant LAS 500, Cytiva, Tokyo, Japan). Tubulin (1:20,000; Sigma, St. Louis,
MO, USA) served as a loading control, and ImageLab software version 6.1.0 (Bio-Rad
Laboratories Inc., Hercules, CA, USA) was used for protein quantification.

4.8. Statistics

Statistical analyses were performed using R software version 2023.06.1+524 [64] and
the packages agricolae, car, and ggplot2. All data were initially tested for normal distribu-
tion and homogeneity of variances, using the Shapiro–Wilk test for normality and Levene’s
and Bartlett’s test for analysis of variance, respectively. Based on the results, parametric
or non-parametric tests were used for the chemical profile analysis (ANOVA fb post-
hoc Tukey’s test for parametric data; Krustal–Wallis fb Wilcoxon test for non-parametric
data). Data visualization (PCA) was obtained using R software, with the packages ggplot2
and ggpubr.

Results regarding globe artichoke agro-waste bioactivities were conducted in three
independent experiments, performed in duplicate. Results are presented as mean ± SEM
(standard error of the mean) values. Statistical significance was evaluated by one-way
analysis of variance (ANOVA) followed by a suitable post-hoc analysis using GraphPad
Prism 9.3.0 software. p values below 0.05 were considered statistically significant.

5. Conclusions

The present study not only provides the chemical characterization of the Tema cultivar
but also provides, through the evaluation of its agro-waste biological activity, a useful
insight into its valorization. The application of the agroprospecting concept involved a
crucial step of analyzing the crops’ production chain and their derived biological waste.
In this case, the main advantage was the choice of an artichoke intended for sale as a
fourth-range product, for which on-farm processing allows simplified waste collection.

Chemical characterization provided confirmation of phenolic acid and flavonoid
content, while seasonal monitoring revealed their variability during the harvest season. For
this reason, biological tests covered early and late harvest samples, which reveal similar
action in wound healing, while greater efficacy of late batch F in antisenescence action
highlights the potential anti-aging effects. These findings reveal the need for analysis of
agro-waste during seasonality to make better utilization (e.g., as a supplement, human
food or animal feed, or pharmaceutical or nutraceutical products).

In conclusion, this approach aims to foster a truly sustainable circular economy. An
intriguing direction for future research is to determine how chemical composition varies in
response to different factors such as cultivation environment, crop management practices,
industrial processing, and marketing, all of which can affect the quality of biomolecules in
these crop species. Furthermore, the same concept can easily be exported to different types
of crops and their corresponding agro-wastes.

Supplementary Materials: The following supporting information can be downloaded at https://www.
mdpi.com/article/10.3390/molecules29163960/s1, Figure S1: UV spectra of Chlorogenic Acid and Cy-
naroside, used for the quantification and identification (from Diode Array analysis). Figure S2: (a) Globe
artichoke of Tema cultivar. (b) Tema fourth range product. Figure S3: (A) Cynaroside calibration
curve; (B) Chlorogenic acid calibration curve. Table S1. Gradient programme of HPLC-DAD analysis.
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27. Küskü-Kiraz, Z.; Mehmetçik, G.; Doǧru-Abbasoǧlu, S.; Uysal, M. Artichoke leaf extract reduces oxidative stress and lipoprotein
dyshomeostasis in rats fed on high cholesterol diet. Phytother. Res. 2010, 24, 565–570. [CrossRef]

28. Santos, H.O.; Bueno, A.A.; Mota, J.F. The effect of artichoke on lipid profile: A review of possible mechanisms of action. Pharmacol.
Res. 2018, 137, 170–178. [CrossRef]

29. D’Antuono, I.; Di Gioia, F.; Linsalata, V.; Rosskopf, E.N.; Cardinali, A. Impact on health of artichoke and cardoon bioactive
compounds: Content, bioaccessibility, bioavailability, and bioactivity. In Phytochemicals in Vegetables: A Valuable Source of Bioactive
Compounds; Petropoulos, S.A., Ferreira, I.C.F.R., Barros, L., Eds.; Bentham Science Publishers Ltd.: Sharjah, United Arab Emirates,
2018; p. 373.

30. Ferro, A.M.; Ramos, P.; Guerreiro, O.; Jerónimo, E.; Pires, I.; Capel, C.; Capel, J.; Lozano, R.; Duarte, M.F.; Oliveira, M.M.; et al.
Impact of novel SNPs identified in cynara cardunculus genes on functionality of proteins regulating phenylpropanoid pathway
and their association with biological activities. BMC Genom. 2017, 18, 183. [CrossRef]

31. Ruiz-Cano, D.; Pérez-Llamas, F.; Frutos, M.J.; Arnao, M.B.; Espinosa, C.; López-Jiménez, J.Á.; Castillo, J.; Zamora, S. Chemical
and functional properties of the different by-products of artichoke (Cynara scolymus L.) from industrial canning processing. Food
Chem. 2014, 160, 134–140. [CrossRef]

32. Colak, E.; Ustuner, M.C.; Tekin, N.; Colak, E.; Burukoglu, D.; Degirmenci, I.; Gunes, H.V. The hepatocurative effects of Cynara
scolymus L. leaf extract on carbon tetrachloride-induced oxidative stress and hepatic injury in rats. SpringerPlus 2016, 5, 216.
[CrossRef]

33. Al-Weshahy, A.; Rao, A.V. Isolation and characterization of functional components from peel samples of six potatoes varieties
growing in Ontario. Food Res. Int. 2009, 42, 1062–1066. [CrossRef]

34. Chaieb, N.; González, J.L.; López-Mesas, M.; Bouslama, M.; Valiente, M. Polyphenols Content and Antioxidant Capacity of
Thirteen Faba Bean (Vicia faba L.) Genotypes Cultivated in Tunisia. Food Res. Int. 2011, 44, 970–977. [CrossRef]

35. Vallverdu-Queralt, A.; Medina-Remon, A.; Martínez-Huélamo, M.; Jáuregui, O.; Andres-Lacueva, C.; Lamuela-Raventos, R.M.
Phenolic profile and hydrophilic antioxidant capacity as chemotaxonomic markers of tomato varieties. J. Agric. Food Chem. 2011,
59, 3994–4001. [CrossRef] [PubMed]

36. Montesano, V.; Negro, D.; Sonnante, G.; Laghetti, G.; Urbano, M. Polyphenolic Compound Variation in Globe Artichoke Cultivars
as Affected by Fertilization and Biostimulants Application. Plants 2022, 11, 2067. [CrossRef] [PubMed]

37. Faria, E.L.P.; Gomes, M.V.; Cláudio, A.F.M.; Freire, C.S.R.; Silverstre, A.J.D.; Freire, M.G. Extraction and recovery processes for
cynaropicrin from Cynara cardunculus L. using aqueous solutions of surface-active ionic liquids. Biophys. Rev. 2018, 7, 915–925.
[CrossRef]

38. Zheng, D.; Zhu, Y.; Shen, Y.; Xiao, S.; Yang, L.; Xiang, Y.; Dai, X.; Hu, W.; Zhou, B.; Liu, Z.; et al. Cynaropicrin Shows Antitumor
Progression Potential in Colorectal Cancer Through Mediation of the LIFR/STATs Axis. Front. Cell Dev. Biol. 2021, 8, 605184.
[CrossRef]

39. Boulos, J.C.; Omer, E.A.; Rigano, D.; Formisano, C.; Chatterjee, M.; Leich, E.; Klauck, S.M.; Shan, L.T.; Efferth, T. Cynaropicrin
disrupts tubulin and c-Myc-related signaling and induces parthanatos-type cell death in multiple myeloma. Acta Pharmacol. Sin.
2023, 44, 2265–2281. [CrossRef]

40. De Cicco, P.; Busà, R.; Ercolano, G.; Formisano, C.; Allegra, M.; Taglialatela-Scafati, O.; Ianaro, A. Inhibitory Effects of Cynaropicrin
on Human Melanoma Progression by Targeting MAPK, NF-κB, and Nrf-2 Signaling Pathways In Vitro. Phytother. Res. 2021, 35,
1432–1442. [CrossRef]

https://doi.org/10.3390/nu13082653
https://doi.org/10.3390/nu11081723
https://doi.org/10.3390/molecules22030358
https://doi.org/10.1016/j.bcp.2013.02.008
https://www.ncbi.nlm.nih.gov/pubmed/23416115
https://doi.org/10.1016/j.plantsci.2015.07.020
https://www.ncbi.nlm.nih.gov/pubmed/26398797
https://doi.org/10.1007/s12010-022-04060-x
https://www.ncbi.nlm.nih.gov/pubmed/35838888
https://doi.org/10.3389/fphar.2016.00472
https://doi.org/10.1002/ptr.2985
https://doi.org/10.1016/j.phrs.2018.10.007
https://doi.org/10.1186/s12864-017-3534-8
https://doi.org/10.1016/j.foodchem.2014.03.091
https://doi.org/10.1186/s40064-016-1894-1
https://doi.org/10.1016/j.foodres.2009.05.011
https://doi.org/10.1016/j.foodres.2011.02.026
https://doi.org/10.1021/jf104400g
https://www.ncbi.nlm.nih.gov/pubmed/21395257
https://doi.org/10.3390/plants11152067
https://www.ncbi.nlm.nih.gov/pubmed/35956545
https://doi.org/10.1007/s12551-017-0387-y
https://doi.org/10.3389/fcell.2020.605184
https://doi.org/10.1038/s41401-023-01117-3
https://doi.org/10.1002/ptr.6906


Molecules 2024, 29, 3960 18 of 19

41. Ding, Z.; Xi, J.; Zhong, M.; Chen, F.; Zhao, H.; Zhang, B.; Fang, J. Cynaropicrin induces cell cycle arrest and apoptosis by inhibiting
PKM2 to cause DNA damage and mitochondrial fission in A549 cells. J. Agric. Food Chem. 2021, 69, 13557–13567. [CrossRef]

42. Porro, C.; Benameur, T.; Cianciulli, A.; Vacca, M.; Chiarini, M.; De Angelis, M.; Panaro, M.A. Functional and Therapeutic Potential
of Cynara scolymus in Health Benefits. Nutrients 2024, 16, 872. [CrossRef]

43. Salhi, N.; Bouyahya, A.; Bounihi, A.; Masrar, A.; Bouabdellah, M.; Chabraoui, L.; Zengin, G.; Taghzouti, K.; Rouas, L.; Cherrah, Y.
Investigation of Wound Healing Activity Cynara humilis of Root Extracts. J. Cosmet. Dermatol. 2022, 21, 1596–1609. [CrossRef]

44. Salhi, N.; El Guourrami, O.; Rouas, L.; Moussaid, S.; Moutawalli, A.; Benkhouili, F.Z.; Ameggouz, M.; Alshahrani, M.M.; Al
Awadh, A.A.; Bouyahya, A.; et al. Evaluation of the Wound Healing Potential of Cynara humilis Extracts in the Treatment of Skin
Burns. Evid. Based. Complement. Alternat. Med. 2023, 2023, 5855948. [CrossRef] [PubMed]

45. D’Antuono, I.; Carola, A.; Sena, L.M.; Linsalata, V.; Cardinali, A.; Logrieco, A.F.; Colucci, M.G.; Apone, F. Artichoke Polyphenols
Produce Skin Anti-Age Effects by Improving Endothelial Cell Integrity and Functionality. Molecules 2018, 23, 2729. [CrossRef]
[PubMed]

46. Mileo, A.M.; Di Venere, D.; Abbruzzese, C.; Miccadei, S. Long term exposure to polyphenols of artichoke (Cynara scolymus L.)
exerts induction of senescence driven growth arrest in the MDA-MB231 human breast cancer cell line. Oxid. Med. Cell Longev.
2015, 2015, 363827. [CrossRef]

47. El-Askary, H.; Salem, H.H.; Abdel Motaal, A. Potential Mechanisms Involved in the Protective Effect of Dicaffeoylquinic Acids
from Artemisia annua L. Leaves against Diabetes and Its Complications. Molecules 2022, 27, 857. [CrossRef]

48. Moghadam, S.E.; Ebrahimi, S.N.; Salehi, P.; Moridi Farimani, M.; Hamburger, M.; Jabbarzadeh, E. Wound Healing Potential
of Chlorogenic Acid and Myricetin-3-O-β-Rhamnoside Isolated from Parrotia persica. Molecules 2017, 22, 1501. [CrossRef]
[PubMed]

49. Han, J.; Miyamae, Y.; Shigemori, H.; Isoda, H. Neuroprotective Effect of 3, 5-Di-O-Caffeoylquinic Acid on SH-SY5Y Cells and
Senescence-Accelerated-Prone Mice 8 through the up-Regulation of Phosphoglycerate Kinase-1. Neuroscience 2010, 169, 1039–1045.
[CrossRef]

50. Li, R.; Tao, M.; Wu, T.; Zhuo, Z.; Xu, T.; Pan, S.; Xu, X. A promising strategy for investigating the anti-aging effect of natural
compounds: A case study of caffeoylquinic acids. Food Funct. 2021, 12, 8583–8593. [CrossRef]

51. Xiao, Y.; Zhang, Y.; Li, L.; Jiang, N.; Yu, C.; Li, S.; Zhu, X.; Liu, F.; Liu, Y. Cynaroside extends lifespan and improves the
neurondegeneration diseases via insulin/IGF-1 signaling pathway in Caenorhabditis elegans. Arch. Gerontol. Geriatr. 2024, 122,
105377. [CrossRef]

52. Nam, E.J.; Yoo, G.; Lee, J.Y.; Kim, M.; Jhin, C.; Son, Y.J.; Kim, S.Y.; Jung, S.H.; Nho, C.W. Glycosyl flavones from Humulus japonicus
suppress MMP-1 production via decreasing oxidative stress in UVB irradiated human dermal fibroblasts. BMB Rep. 2020, 53,
379–384. [CrossRef]

53. Tanaka, Y.T.; Tanaka, K.; Kojima, H.; Hamada, T.; Masutani, T.; Tsuboi, M.; Akao, Y. Cynaropicrin from Cynara scolymus L.
suppresses photoaging of skin by inhibiting the transcription activity of nuclear factor-kappa B. Bioorg. Med. Chem. Lett. 2013, 23,
518–523. [CrossRef]

54. Takei, K.; Hashimoto-Hachiya, A.; Takahara, M.; Tsuji, G.; Nakahara, T.; Furue, M. Cynaropicrin attenuates UVB-induced
oxidative stress via the AhR-Nrf2-Nqo1 pathway. Toxicol. Lett. 2015, 234, 74–80. [CrossRef] [PubMed]
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