Waste Point Identification of Frying Oil Based on Gas Chromatography–Ion Mobility Spectrometry (GC-IMS)
Abstract
:1. Introduction
2. Results and Discussion
2.1. Volatile Mass Spectrogram and Fingerprinting of Volatile Compounds in Cottonseed Oil during Frying
2.2. Principal Component Analysis (PCA) of Various Cottonseed Oil Samples at Different Frying Times
2.3. Correlation Analysis of Waste Index and Volatile Substances in Cottonseed Oil during Frying
2.4. Support Vector Machine (SVM) Model Analysis Diagram
3. Materials and Methods
3.1. Materials
3.2. GC-IMS and Acid Value Analysis Method
3.3. Data Processing and Statistical Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Astwood, J. Edible pongamia oil. In Proceedings of the INFORM: International News on Fats, Oils and Related Materials, Shenzhen, China, 2–4 July 2022; Volume 33, pp. 24–26. [Google Scholar]
- Li, P.; Liu, Z.; Li, M.; Zhao, Y.; Li, X.; Wan, S.; Ma, Y.; He, Y. Investigation on the low temperature oxidation of light oil for safely enhancing oil recovery at high temperatures and pressures. Energy 2020, 200, 117546. [Google Scholar] [CrossRef]
- Kumar, M.; Ranga, C.; Chandel, A.K.; Mishra, A.K. Thermal evaluation and oxidation stability of high temperature alternative solid dielectrics of power transformers in mixed oil. Int. Conf. Adv. Energy 2018, 508, 141–149. [Google Scholar]
- Kumar, D.K.; Maanas, S.; Ajita, T. Heat and mass transfer modeling and quality changes during deep fat frying: A comprehensive review. J. Food Process Eng. 2022, 45, e13999. [Google Scholar]
- Pawar, D.P.; Boomathi, S.; Hathwar, S.C.; Rai, A.K.; Modi, V.K. Effect of conventional and pressure frying on lipids and f atty acid composition of fried chicken and oil. J. Food Sci. Technol. 2013, 50, 381–386. [Google Scholar] [CrossRef] [PubMed]
- Mark, A. Oil Crops Outlook: February 2012; Economic Research Service, USDA: Washington, DC, USA, 2012.
- Yang, A.; Zhang, C.; Zhang, B.; Wang, Z.; Zhu, L.; Mu, Y.; Wang, S.; Qi, D. Effects of dietary cottonseed oil and cottonseed meal supplementation on Liver Lipid Content, Fatty acid profile and hepatic function in laying hens. Animals 2021, 11, 78. [Google Scholar] [CrossRef]
- Awais, K.; Muhammad, N.; Muhammad, L.; Anjum, K. Impact of winterization on fatty acids’ composition, isomers, and oxidative stability of conjugated linoleic acids produced from selected vegetable oils. J. Food Process. Preserv. 2021, 45, e15254. [Google Scholar]
- Xu, L.; Yu, X.; Liu, L.; Zhang, R. A novel method for qualitative analysis of edible oil oxidation using an electronic nose-ScienceDirec. Food Chem. 2016, 202, 229–235. [Google Scholar] [CrossRef] [PubMed]
- Aparicio, R.; Rocha, S.M.; Delgadillo, I.; Morales, M.T. Detection of rancid defect in virgin olive oil by the electronic nose. J. Agric. Food Chem. 2000, 48, 853–860. [Google Scholar] [CrossRef]
- Yang, M.Y.; Han, K.Y. Analysis of lipid oxidation ofsoybean oil using the portable electron nose. Food Sci. Biotechnol. 2019, 9, 146–150. [Google Scholar]
- Fritsch, C.W. Measurements of frying fat deterioration: A brief review. J. Am. Oil Chem. Soc. 1981, 58, 272–274. [Google Scholar] [CrossRef]
- Sun, Y.; Zhang, M.; Fan, D. Effect of ultrasonic on deterioration of oil in microwave vacuum frying and prediction of frying oil quality based on low field nuclear magnetic resonance (LF-NMR). Ultrason.-Sonochem. 2019, 51, 77–89. [Google Scholar] [CrossRef] [PubMed]
- Correia, A.C.; Dubreucq, E.; Ferreira-Dias, S.; Lecomte, J. Rapid quantification of polar compounds in thermo-oxidized oils by HPTLC-densitometry. Eur. J. Lipid Sci. Technol. 2015, 117, 311–319. [Google Scholar] [CrossRef]
- Chen, J.; Zhang, H.; Ma, J.; Tuchiya, T.; Miao, Y. Determination of the degree of degradation of frying rapeseed oil using fourier-Transform infrared spectroscopy combined with partial least-squares regression. Int. J. Anal. Chem. 2015, 2015, 185367. [Google Scholar] [CrossRef] [PubMed]
- Farhoosh, R.; Moosavi, S. Carbonyl value in monitoring of the quality of used frying oils. Anal. Chim. Acta. 2008, 617, 18–21. [Google Scholar] [CrossRef]
- Rao, Y.; Xiang, B.; Zhou, X.; Wang, Z.; Xie, S.; Xu, J. Quantitative and qualitative determination of acid value of peanut oil using near-infrared spectrometry. J. Food Eng. 2009, 93, 249–252. [Google Scholar] [CrossRef]
- Armenta, S.; Garrigues, S.; Guardia, M. Determination of edible oil parameters by near infrared spectrometry. Anal. Chim. Acta. 2007, 596, 330–337. [Google Scholar] [CrossRef]
- Arroyo-Manzanares, N.; Martin-Gomez, A.; Jurado-Campos, N.; Garrido-Delgado, R.; Arce, C.; Arce, L. Target vs spectral fingerprint data analysis of Iberian hamsamples for avoiding labelling fraud using headspace-gas chromatography-ion mobility spectrometry. Food Chem. 2018, 246, 65–73. [Google Scholar] [CrossRef]
- Arroyo-Manzanares, N.; Garcia-Nicolas, M.; Castell, A.; Campillo, N.; Vinas, P.; LopezGarcia, I.; Hernandez-Cordoba, M. Untargeted headspace gas chromatography-Ion mobility spectrometry analysis for detection of adulterated honey. Talanta 2019, 205, 120123. [Google Scholar] [CrossRef]
- Garrido-Delgado, R.; Mercader-Trejo, F.; Sielemann, S.; Bruyn, W.; Arce, L.; Valcárcel, M. Direct classification of olive oils by using two types of ion mobility spectrometers. Anal. Chim. Acta. 2011, 696, 108–115. [Google Scholar] [CrossRef] [PubMed]
- Xu, X.; Sun, C.; Liu, B.; Zhou, Q.; Xu, P.; Liu, M.; Wang, A.; Tian, H.; Luo, W.; Jiang, Q. Flesh flavor of red swamp crayfish (Procambarus clarkii Girard, 1852) processing by GS-IMS and electronic tongue is changed by dietary animal and plant protein. Food Chem. 2022, 373, 131453. [Google Scholar] [CrossRef]
- Li, W. GC×GC-ToF-MS and GC-IMS based volatile profile characterization of the Chinese dry-cured hams from different regions. Food Res. Int. 2021, 142, 110222. [Google Scholar] [CrossRef]
- Yang, L.; Liu, J.; Wang, X.; Wang, R.; Ren, F.; Zhang, Q.; Shan, Y.; Ding, S. Characterization of volatile component changes in Jujube fruits during cold storage by ising headspace-gas chromatography-ion mobility spectrometry. Molecules 2019, 24, 3904. [Google Scholar] [CrossRef]
- Gao, Q.; Moschytz, G.S. Fingerprint Feature Extraction Using CNNs. In Proceedings of the European Conference on Circuit Theory and Design, Espoo, Finland, 28–31 August 2001; pp. 97–100. [Google Scholar]
- Yivlialin, R.; Galli, A.; Raimondo, L.; Martini, M.; Sassella, A. Detecting the NIR fingerprint of colors: The characteristic response of modern blue pigments. Heritage 2019, 2, 2255–2261. [Google Scholar] [CrossRef]
- Chelouche, S.; Chelouche, D.; Benlemir, R.; Soudani, A. Principal component analysis of FTIR data to accurately assess the Real/Equivalent In-Service-Times of homogenous solid propellant. Propellants Explos. Pyrotech. 2022, 6, e202100352. [Google Scholar] [CrossRef]
- Wu, Z.; Chen, L.; Wu, L.; Xue, X.; Zhao, J.; Li, Y.; Ye, Z.; Lin, G. Classification of Chinese honeys according to their floral origins using elemental and stable isotopic compositions. J. Agric. Food Chem. 2015, 63, 5388–5394. [Google Scholar] [CrossRef]
- Sun, Z.; Lyu, Q.; Chen, L.; Zhuang, K.; Wang, G.; Ding, W.; Wang, Y.; Chen, X. An HS-GC-IMS analysis of volatile flavor compounds in brown rice flour and brown rice noodles produced using different methods. LWT-Food Sci. Technol. 2022, 161, 113358. [Google Scholar] [CrossRef]
- Dirinck, I.; Van Leuven, I.; Dirinck, P. Dirinck. SDE-GC-MS profiling of green and roasted coffee beans from different origin. Czech J. Food Sci.-UZPI (Czech Repub.) 2000, 18, 50–51. [Google Scholar]
- Hsiao, M.C.; Liao, P.H.; Lan, N.V.; Hou, S.-S. Enhancement of Biodiesel Production from High-Acid-Value Waste Cooking Oil via a Microwave Reactor Using a Homogeneous Alkaline Catalyst. Energies 2021, 14, 437. [Google Scholar] [CrossRef]
- Nguyen, L.P.; Tran, T.; Tran, T.; Ngo, P.; Ha, Q.; Luong, T.N.; Tran, T.; Phan, T. High-efficient production of biofuels using spent fluid catalytic cracking (FCC) catalysts and high acid value waste cooking oils. Renew. Energy 2021, 168, 57–63. [Google Scholar]
- Qazuini, M.; Saloko, S. The influence of heating time of coconut milk on the influence of heating time of coconut milk on free fatty acids formation free fatty acids formation. J. Teknol. Pertan. 2012, 168, 59–63. [Google Scholar]
- Fujimoto, K. The effect of oxygen concentration on oxidative deterioration in frying oil. Food Sci. Biotechnol. 2003, 12, 694–699. [Google Scholar]
- Abe, Y.; Toba, M.; Mochizuki, T.; Yoshimura, Y. Oxidative degradation behavior of fatty acid methyl ester in fish oil biodiesel and improvement of oxidation stability by partial hydrogenation. Bull. Jpn. Pet. Inst. 2009, 52, 307–315. [Google Scholar] [CrossRef]
- Toth, P.P. Triglycerides and Atherosclerosis. J. Am. Coll. Cardiol. 2021, 77, 3042–3045. [Google Scholar] [CrossRef]
- Lin, C.; Rong, L.I.; Tao, L.; Zi-Tao, J. Effects of Cold Pressing and Hot Pressing on Acidic Value and Unsaturated Fatty Acid Contents of Perilla Oil. Food Sci. 2014, 35, 279–282. [Google Scholar]
- Noce, A.; Marrone, G.; Urciuoli, S.; Di Daniele, F.; Di Lauro, M.; Zaitseva, A.P.; Di Daniele, N.; Romani, A. Usefulness of Extra Virgin Olive Oil Minor Polar Compounds in the Management of Chronic Kidney Disease Patients. Nutrients 2021, 13, 581. [Google Scholar] [CrossRef]
- Liu, Y.; Wang, Y.; Zhang, Z.; Yang, S.b. Rapid detection of the polar component content of frying oil by conductivity method. J. Chin. Cereals Oils Assoc. 2015, 30, 53–56. [Google Scholar]
- Gil, B.; Cho, Y.J.; Yoon, S.H. Rapid determination of polar compounds in frying fats and oils using image analysis. LWT-Food Sci. Technol. 2004, 37, 657–661. [Google Scholar] [CrossRef]
- Tata, A.; Massaro, A.; Damiani, T.; Piro, R.; Dall’Asta, C.; Suman, M. Detection of soft-refined oils in extra virgin olive oil using data fusion approaches for LC-MS, GC-IMS and FGC-Enose techniques: The winning synergy of GC-IMS and FGC-Enose. Food Control 2022, 133, 108645. [Google Scholar] [CrossRef]
No. | Compounds | Formula | RI | Rt (s) | Dt (RIP Relative) | Comment |
---|---|---|---|---|---|---|
1 | (E)-non-2-enal | C9H16O | 1193 | 629 | 1.4138 | |
2 | Nonyl aldehyde | C9H18O | 1112 | 512 | 1.4750 | Monomer |
3 | Nonyl aldehyde | C9H18O | 1111 | 511 | 1.9491 | Dimer |
4 | Trans-2-Octen-1-al | C8H14O | 1058 | 435 | 1.3391 | Monomer |
5 | Trans-2-Octen-1-al | C8H14O | 1058 | 434 | 1.8250 | Dimer |
6 | Octyl aldehyde | C8H16O | 1008 | 362 | 1.4036 | Monomer |
7 | Octyl aldehyde | C8H16O | 1007 | 361 | 1.8284 | Dimer |
8 | 2-pentylfuran | C9H14O | 997 | 346 | 1.2560 | |
9 | Trans-2-Heptenal | C7H12O | 956 | 311 | 1.2575 | Monomer |
10 | Trans-2-Heptenal | C7H12O | 959 | 314 | 1.6738 | Dimer |
11 | Heptaldehyde | C7H14O | 901 | 264 | 1.3286 | Monomer |
12 | Heptaldehyde | C7H14O | 902 | 265 | 1.7013 | Dimer |
13 | 2-Heptanone | C7H14O | 894 | 258 | 1.2632 | Monomer |
14 | 2-Heptanone | C7H14O | 893 | 258 | 1.6372 | Dimer |
15 | Trans-2-hexenal | C6H10O | 849 | 234 | 1.1847 | Monomer |
16 | Trans-2-hexenal | C6H10O | 852 | 235 | 1.5234 | Dimer |
17 | 2-Furaldehyde | C5H4O2 | 832 | 224 | 1.0866 | Monomer |
18 | 2-Furaldehyde | C5H4O2 | 829 | 223 | 1.3361 | Dimer |
19 | Hexanal | C6H12O | 795 | 205 | 1.2574 | Monomer |
20 | Hexanal | C6H12O | 795 | 205 | 1.5651 | Dimer |
21 | 1-Pentanol | C5H12O | 769 | 193 | 1.2556 | Monomer |
22 | 1-Pentanol | C5H12O | 766 | 192 | 1.5138 | Dimer |
23 | 1-Octen-3-ol | C8H16O | 985 | 336 | 1.1616 | |
24 | Trans,trans-2,4-Heptadienal | C7H10O | 1014 | 371 | 1.1914 | |
25 | Tetrahydrothiophen-3-one | C4H6OS | 943 | 300 | 1.1802 | |
26 | (E)-pent-2-en-1-al | C5H8O | 755 | 187 | 1.1076 | Monomer |
27 | (E)-pent-2-en-1-al | C5H8O | 755 | 187 | 1.3636 | Dimer |
28 | Trans,trans-2,4-Heptadienal | C7H10O | 1013 | 369 | 1.6262 | |
29 | Cyclohexanone | C6H10O | 898 | 262 | 1.1523 | |
30 | Hexa-2,4-dienal | C6H8O | 913 | 274 | 1.1118 | Dimer |
31 | 2-Hexanone | C6H12O | 787 | 200 | 1.5056 | |
32 | Ethyl acetoacetate | C6H10O3 | 917 | 278 | 1.1479 | |
33 | Allylmethyl disulphide | C4H8S2 | 937 | 295 | 1.1441 | |
34 | Valeraldehyde | C5H10O | 696 | 163 | 1.1830 | |
35 | Valeraldehyde | C5H10O | 699 | 164 | 1.4278 | |
36 | Crotonaldehyde | C4H6O | 655 | 151 | 1.0363 | |
37 | Crotonaldehyde | C4H6O | 650 | 150 | 1.2045 | |
38 | 2-Methacrylaldehyde | C4H6O | 583 | 131 | 1.2210 | |
39 | Ethyl vinyl ketone | C5H8O | 682 | 158 | 1.3167 | |
40 | 2-Butanone | C4H8O | 592 | 134 | 1.2495 | |
41 | 2-Acetylthiazole | C5H5NOS | 1006 | 360 | 1.1301 | |
42 | Gamma-butyrolactone | C4H6O2 | 918 | 279 | 1.3050 | |
43 | n-Butyric acid | C4H8O2 | 817 | 216 | 1.1620 | |
44 | Propanoic acid | C3H6O2 | 684 | 159 | 1.2641 | |
45 | 2-n-Butylfuran | C8H12O | 894 | 258 | 1.1835 | |
46 | 2-Pentanone | C5H10O | 693 | 162 | 1.3728 | |
47 | Butyraldehyde | C4H8O | 597 | 135 | 1.2911 | |
48 | Acetic acid | C2H4O2 | 593.2 | 134 | 1.1543 |
Acid Value | 2-Methyl-2-propen-1-ol | Empirical Formula | 2-n-Butylfuran | 2-Butanone | Allylmethyl Disulphide | Butyraldehyde | 2-Butanone | (E)-Non-2-enal | (E)-Pent-2-en-1-al Monomer | (E)-Pent-2-en-1-al Dimer | |
---|---|---|---|---|---|---|---|---|---|---|---|
Acid value | 1 | ||||||||||
2-Methyl-2-propen-1-ol | 0.793 ** | 1 | |||||||||
Empirical Formula | 0.891 ** | 0.964 ** | 1 | ||||||||
2-n-Butylfuran | 0.858 ** | 0.962 ** | 0.970 ** | 1 | |||||||
2-Butanone | 0.954 ** | 0.771 ** | 0.891 ** | 0.817 ** | 1 | ||||||
Allylmethyl disulphide | 0.912 ** | 0.909 ** | 0.945 ** | 0.927 ** | 0.882 ** | 1 | |||||
Allylmethyl disulphide | 0.937 ** | 0.720 * | 0.812 ** | 0.808 ** | 0.889 ** | 0.879 ** | 1 | ||||
2-Butanone | 0.753 ** | 0.419 | 0.541 | 0.478 | 0.771 ** | 0.612 * | 0.591 | 1 | |||
(E)-non-2-enal | 0.843 ** | 0.709 * | 0.801 ** | 0.706 * | 0.889 ** | 0.717 * | 0.641 * | 0.808 ** | 1 | ||
(E)-pent-2-en-1-al Monomer | −0.374 | −0.099 | −0.104 | −0.138 | −0.184 | −0.202 | −0.26 | −0.535 | −0.321 | 1 | |
(E)-pent-2-en-1-al Dimer | 0.676 * | 0.680 * | 0.770 ** | 0.711 * | 0.792 ** | 0.705 * | 0.533 | 0.632 * | 0.759 ** | 0.187 | 1 |
Polar Components | 2-Methyl-2-propen-1-ol | Empirical Formula | 2-n-Butylfuran | 2-Butanone | Allylmethyl Disulphide | Butyraldehyde | 2-Butanone | (E)-Non-2-enal | (E)-Pent-2-en-1-al Monomer | (E)-Pent-2-en-1-al Dimer | |
---|---|---|---|---|---|---|---|---|---|---|---|
Polar components | 1 | ||||||||||
2-Methyl-2-propen-1-ol | 0.849 ** | 1 | |||||||||
Empirical Formula | 0.939 ** | 0.964 ** | 1 | ||||||||
2-n-Butylfuran | 0.872 ** | 0.962 ** | 0.970 ** | 1 | |||||||
2-Butanone | 0.959 ** | 0.771 ** | 0.891 ** | 0.817 ** | 1 | ||||||
Allylmethyl disulphide | 0.936 ** | 0.909 ** | 0.945 ** | 0.927 ** | 0.882 ** | 1 | |||||
Allylmethyl disulphide | 0.850 ** | 0.720 * | 0.812 ** | 0.808 ** | 0.889 ** | 0.879 ** | 1 | ||||
2-Butanone | 0.741 ** | 0.419 | 0.541 | 0.478 | 0.771 ** | 0.612 * | 0.591 | 1 | |||
(E)-non-2-enal | 0.880 ** | 0.709 * | 0.801 ** | 0.706 * | 0.889 ** | 0.717 * | 0.641 * | 0.808 ** | 1 | ||
(E)-pent-2-en-1-al Monomer | −0.249 | −0.099 | −0.104 | −0.138 | −0.184 | −0.202 | 0−0.26 | −0.535 | −0.321 | 1 | |
(E)-pent-2-en-1-al Dimer | 0.797 ** | 0.680 * | 0.770 ** | 0.711 * | 0.792 ** | 0.705 * | 0.533 | 0.632 * | 0.759 ** | 0.187 | 1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ye, L.; Song, L.; Zhang, L.; Cui, R. Waste Point Identification of Frying Oil Based on Gas Chromatography–Ion Mobility Spectrometry (GC-IMS). Molecules 2024, 29, 3979. https://doi.org/10.3390/molecules29163979
Ye L, Song L, Zhang L, Cui R. Waste Point Identification of Frying Oil Based on Gas Chromatography–Ion Mobility Spectrometry (GC-IMS). Molecules. 2024; 29(16):3979. https://doi.org/10.3390/molecules29163979
Chicago/Turabian StyleYe, Lin, Lijun Song, Li Zhang, and Ruiguo Cui. 2024. "Waste Point Identification of Frying Oil Based on Gas Chromatography–Ion Mobility Spectrometry (GC-IMS)" Molecules 29, no. 16: 3979. https://doi.org/10.3390/molecules29163979
APA StyleYe, L., Song, L., Zhang, L., & Cui, R. (2024). Waste Point Identification of Frying Oil Based on Gas Chromatography–Ion Mobility Spectrometry (GC-IMS). Molecules, 29(16), 3979. https://doi.org/10.3390/molecules29163979