Changes of Potent Odorants in Salted Duck Egg Yolk before and after Roasting
Abstract
:1. Introduction
2. Results and Discussions
2.1. Identification of Volatile Compounds in SDEY and RDEY
2.2. Odor-Active Compounds Screened from the Volatiles in SDEY and RDEY
2.3. Quantitation of Important Odor-Active Constituents in SDEY and RDEY
2.4. Calculations of OAVs
3. Materials and Methods
3.1. Materials
3.2. Chemicals
3.3. Sample Pretreatment
3.4. Isolation of Volatiles of RDEY (or SDEY) by Solvent Extraction Coupled with Solvent-Assisted Flavor Evaporation (SE-SAFE)
3.5. GC-MS-O Analysis
3.6. Qualitative Analysis of Odor-Active Compounds
3.7. Aroma Extract Dilution Analysis (AEDA)
3.8. Quantitative Analysis of Odor-Active Compounds
3.9. Calculation of OAV
3.10. Analysis of Free Amino Acids
3.11. Determination of Fatty Acids
3.12. Data Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ganesan, P.; Kaewmanee, T.; Benjakul, S.; Baharin, B.S. Comparative study on the nutritional value of pidan and salted duck egg. Korean J. Food Sci. Anim. Resour. 2014, 34, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Li, X.Z.; Huang, M.Y.; Song, J.L.; Shi, X.F.; Chen, X.; Yang, F.X.; Pi, J.S.; Zhang, H.; Xu, G.Y.; Zheng, J.X. Analysis of fishy taint in duck eggs reveals the causative constituent of the fishy odor and factors affecting the perception ability of this odor. Poult. Sci. 2019, 98, 5198–5207. [Google Scholar] [CrossRef] [PubMed]
- Li, X.Z.; Yuan, G.J.; Chen, X.; Guo, Y.Y.; Yang, N.; Pi, J.S.; Zhang, H.; Zheng, J.X. Fishy odor and TMA content levels in duck egg yolks. J. Food Sci. 2018, 83, 39–45. [Google Scholar] [CrossRef]
- Sun, N.; Liu, H.; Wen, Y.; Yuan, W.; Wu, Y.; Gao, J.; Li, C. Comparative study on Tianjin and Baiyangdian preserved eggs pickled by vacuum technology. J. Food Process. Preserv. 2020, 44, e14405. [Google Scholar] [CrossRef]
- Liu, Y.N.; Chen, J.; Zou, B.; Sun, Y.Y.; Zhao, Y.J.; Duan, M.L.; Wang, Y.H.; Dai, R.T.; Li, X.M.; Jia, F. Evaluation of the quality and flavor of salted duck eggs with partial replacement of NaCl by non-sodium metal salts. LWT-Food Sci. Technol. 2022, 172, 114206. [Google Scholar] [CrossRef]
- Yuan, Z. Processing Technology of Roasted Duck Egg. CN Patent 107439996, 8 December 2017. [Google Scholar]
- Kaewmanee, T.; Benjakul, S.; Visessanguan, W. Effects of salting processes and time on the chemical composition, textural properties, and microstructure of cooked duck egg. J. Food Sci. 2011, 76, S139–S147. [Google Scholar] [CrossRef]
- Sun, Y.; Sheng, L.; Wang, C.; Cai, Z.X. Comparison of fatty acids and volatile compounds of three local characteristic fresh raw duck eggs based on GC-MS. Chin. Food Sci. Technol. 2020, 45, 344–351. [Google Scholar] [CrossRef]
- Deng, W.H. Determination of volatile flavor compounds in boiled duck eggs by GC-MS. Chin. J. Food Saf. 2023, 18, 54–57. [Google Scholar] [CrossRef]
- Zhou, Q.; Li, W.Z. Volatiles compounds in chicken egg yoly, duck egg yolk, salty chicken egg yolk and salty duck egg yolk. China Condiment 2012, 37, 35–39. [Google Scholar] [CrossRef]
- Gao, X.J.; Li, J.H.; Chang, C.H.; Gu, L.P.; Xiong, W.; Su, Y.J. Characterization of physical properties, volatile compounds and aroma profiles of different salted egg yolk lipids. Food Res. Int. 2023, 165, 112411. [Google Scholar] [CrossRef]
- Zhao, Y.; Tu, Y.G.; Deng, W.H.; Li, J.K.; Wang, J.J.; Luo, X.Y. Analysis of volatile flavor compounds of preserved egg white. Chin. Sci. Technol. Food Ind. 2013, 34, 289–294. [Google Scholar] [CrossRef]
- Deng, W.H.; Zhao, Y.; Tu, Y.G.; Li, J.K.; Wang, J.J.; Luo, X.Y. Analysis of volatile compounds in preserved egg yolk by simultaneous distillation extraction and gas chromatography-mass spectrometry. Chin. Food Sci. 2012, 33, 212–220. [Google Scholar]
- Zhang, Y.; Liu, Y.P.; Yang, W.X.; Huang, J.; Liu, Y.Q.; Huang, M.Q.; Sun, B.G.; Li, C.L. Characterization of potent aroma compounds in preserved egg yolk by gas chromatography-olfactometry, quantitative measurements, and odor activity value. J. Agric. Food Chem. 2018, 66, 6132–6141. [Google Scholar] [CrossRef]
- Ren, L.Y.; Ma, J.; Lv, Y.; Tong, Q.G.; Guo, H.Y. Characterization of key off-odor compounds in thermal duck egg gels by GC-olfactometry-MS, odor activity values, and aroma recombination. LWT-Food Sci. Technol. 2021, 143, 111182. [Google Scholar] [CrossRef]
- Yu, P.L.; Li, W.Z.; Wang, W.; Wu, J.; Ruan, M.J. Composition and comparative study of free amino acids in different duck egg yolk. China Codiment 2016, 41, 25–27. [Google Scholar] [CrossRef]
- Miranda, J.M.; Anton, X.; Redondo-Valbuena, C.; Roca-Saavedra, P.; Rodriguez, J.A.; Lamas, A.; Franco, C.M.; Cepeda, A. Egg and egg-derived foods: Effects on human health and use as functional foods. Nutrients 2015, 7, 706–729. [Google Scholar] [CrossRef]
- Scalone, G.L.L.; Ioannidis, A.G.; Lamichhane, P.; Devlieghere, F.; Kimpe, N.D.; Cadwallader, K.; Meulenaer, B.D. Impact of whey protein hydrolysates on the formation of 2,5-dimethylpyrazine in baked food products. Food Res. Int. 2020, 132, 109089. [Google Scholar] [CrossRef] [PubMed]
- Hwang, H.I.; Hartman, T.G.; Rosen, R.T.; Ho, C.T. Formation of pyrazines from the Maillard reaction of glucose and glutamine-amide-15N. J. Agric. Food Chem. 1993, 41, 2112–2115. [Google Scholar] [CrossRef]
- Yu, A.N.; Deng, Q.H. Volatiles from the Maillard Reaction of L-Ascorbic Acid and L-Alanine at Different pHs. Food Sci. Biotechnol. 2009, 18, 1495–1499. [Google Scholar] [CrossRef]
- Ong, O.X.H.; Seow, Y.X.; Ong, P.K.C.; Zhou, W.B. High-intensity ultrasound production of Maillard reaction flavor compounds in a cysteine-xylose model system. Ultrason. Sonochem. 2015, 26, 399–407. [Google Scholar] [CrossRef]
- Cerny, C. Origin of carbons in sulfur-containing aroma compounds from the Maillard reaction of xylose, cysteine and thiamine. LWT-Food Sci. Technol. 2007, 40, 1309–1315. [Google Scholar] [CrossRef]
- Wang, X.Y.; Ma, Y.J.; Guo, Y.; Luo, X.L.; Du, M.; Dong, L.; Yu, P.; Xu, X.B. Reinvestigation of 2-acetylthiazole formation pathways in the Maillard reaction. Food Chem. 2021, 345, 128761. [Google Scholar] [CrossRef] [PubMed]
- Yaylayan, V.A.; Keyhani, A. Origin of carbohydrate degradation products in L-alanine/D-[13C] glucose model systems. J. Agric. Food Chem. 2000, 48, 2415–2419. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Wang, Z.Y.; Hui, T.; Fang, F.; Zhang, D.Q. New insight into the formation mechanism of 2-furfurylthiol in the glucose-cysteine reaction with ribose. Food Res. Int. 2021, 143, 110295. [Google Scholar] [CrossRef]
- Luo, Y.; Zhu, S.Y.; Peng, J.; Cui, H.P.; Huang, Q.R.; Xu, B.J.; Ho, C.T. Feasibility study of amadori rearrangement products of glycine, diglycine, triglycine, and glucose as potential food additives for production, stability, and flavor formation. J. Agric. Food Chem. 2023, 72, 657–669. [Google Scholar] [CrossRef]
- Xiao, Z.J.; Lu, J.R. Generation of acetoin and its derivatives in foods. J. Agric. Food Chem. 2014, 62, 6487–6497. [Google Scholar] [CrossRef]
- Van Gemert, L.J. Odour Thresholds-Compilation of Odour Threshold Values in Air, Water and Other Media, 2nd ed.; E-Oliemans Punter & Partner BV: Zeist, The Netherlands, 2011. [Google Scholar]
- Van Den Dool, H.; Kratz, P.D. A generalization of the retention index system including linear temperature programmed gas-liquid partition chromatography. J. Chromatogr. A 1963, 11, 463–471. [Google Scholar] [CrossRef]
- Fountoulakis, M.; Lahm, H.W. Hydrolysis and amino acid composition of proteins. J. Chromatogr. A 1998, 826, 109–134. [Google Scholar] [CrossRef]
- GB 5009.168-2016; China National Food Safety Standards Determination of Fatty Acids in Food. Standards Press of China: Beijing, China, 2016.
No. | Compound | CAS | RI | Samples | Identification a | ||
---|---|---|---|---|---|---|---|
DB-Wax | HP-5 | SDEY | RDEY | ||||
Pyrazines (7) | |||||||
1 | Pyrazine | 290-37-9 | 1199 | 723 | − b | + c | MS, RI, S, O |
2 | Methylpyrazine | 109-08-0 | / d | 816 | − | + | MS, RI, S |
3 | 2,5-Dimethylpyrazine | 123-32-0 | 1309 | 905 | − | + | MS, RI, S, O |
4 | 2,6-Dimethylpyrazine | 108-50-9 | 1316 | / | − | + | MS, RI, S, O |
5 | Ethylpyrazine | 13925-00-3 | 1321 | / | − | + | MS, RI, S |
6 | 2-Ethyl-5-methylpyrazine | 13360-64-0 | 1379 | 996 | − | + | MS, RI, S, O |
7 | 2-Ethyl-3,6-dimethylpyrazine | 13360-65-1 | 1433 | 1073 | − | + | MS, RI, S, O |
Containing thiophene ring compounds (7) | |||||||
1 | Thiophene | 110-02-1 | 1014 | / | − | + | MS, RI, S |
2 | 2-Methylthiophene | 554-14-3 | 1081 | 762 | − | + | MS, RI, S, O |
3 | Dihydro-3-(2H)-thiophenone | 1003-04-9 | / | 945 | − | + | MS, RI |
4 | Dihydro-2-methyl-3(2H)-thiophenone | 13679-85-1 | 1509 | 983 | − | + | MS, RI, S, O |
5 | 3-Acetylthiophene | 1468-83-3 | 1759 | / | − | + | MS, S |
6 | 2-Acetyl-3-methylthiophene | 13679-72-6 | 1851 | 1150 | − | + | MS, S, O |
7 | 2-Thiophenemethanol | 636-72-6 | 1930 | / | − | + | MS, RI, S |
Containing furan ring compounds (7) | |||||||
1 | 2-Pentylfuran | 3777-69-3 | 1222 | 986 | − | + | MS, RI, S |
2 | 2-Furanmethanol | 98-00-0 | 1652 | 859 | − | + | MS, RI, S, O |
3 | 5-methyl-2-furanmethanol | 3857-25-8 | 1710 | / | − | + | MS, RI, S, O |
4 | 3-Hydroxy-4,4-dimethyldihydro-2(3H)-furanone | 79-50-5 | 2015 | 1032 | − | + | MS, S, O |
5 | Dihydro-5-hydroxymethyl-2(3H)-furanone | 32780-06-6 | 2479 | 1202 | + | + | MS, S, O |
6 | Dihydro-4-hydroxy-2-(3H)-furanone | 5469-16-9 | 2595 | 1173 | + | + | MS, RI, S, O |
7 | 7,9-Di-tert-butyl-1-oxaspiro(4,5)deca-6,9-diene-2,8-dione | 82304-66-3 | 2699 | 1920 | + | + | MS, RI, S |
Alcohols (5) | |||||||
1 | β-Butoxyethanol | 111-76-2 | 1392 | / | + | + | MS, RI, S, O |
2 | 1-octen-3-ol | 3391-86-4 | 1442 | / | + | − | MS, RI, S, O |
3 | 2-Ethyl-1-hexanol | 104-76-7 | 1482 | / | + | + | MS, RI, S, O |
4 | Carbitol | 111-90-0 | 1610 | / | + | + | MS, RI, S, O |
5 | Phenylethyl alcohol | 60-12-8 | 1898 | / | + | + | MS, RI, S |
Aldehydes (4) | |||||||
1 | Hexanal | 66-25-1 | 1073 | 790 | + | + | MS, RI, S |
2 | Nonanal | 124-19-6 | 1382 | 1097 | + | + | MS, RI, S |
3 | Benzaldehyde | 100-52-7 | 1503 | / | − | + | MS, RI, S |
4 | (Z)-9-Octadecenal | 2423-10-1 | 2364 | / | − | + | MS, S, O |
Ketones (4) | |||||||
1 | Acetoin | 513-86-0 | 1270 | / | + | + | MS, RI, S, O |
2 | 1-Hydroxy-2-propanone | 116-09-6 | 1286 | / | − | + | MS, RI, S, O |
3 | 2-Cyclopenten-1-one | 930-30-3 | 1338 | 828 | + | + | MS, RI, S |
4 | 2-Hydroxy-3-methyl-2-cyclopenten-1-one | 80-71-7 | 1814 | / | − | + | MS, RI, S |
Acids (3) | |||||||
1 | 2-Hydroxy-2-methylpropanoic acid | 594-61-6 | 1327 | / | − | + | MS, S |
2 | Acetic acid | 64-19-7 | 1435 | / | + | + | MS, RI, S, O |
3 | n-Hexadecanoic acid | 57-10-3 | / | 1950 | + | + | MS, RI, S |
Phenols (2) | |||||||
1 | Phenol | 108-95-2 | / | 1990 | + | + | MS, RI, S |
2 | 2,4-Di-tert-butylphenol | 96-76-4 | 2300 | 1504 | + | + | MS, RI, S, O |
Ester (1) | |||||||
1 | Dibutyl phthalate | 84-74-2 | 2694 | / | − | + | MS, RI, S |
Other heterocycle compounds (3) | |||||||
1 | Pyrrole | 109-97-7 | 1499 | / | − | + | MS, RI, S |
2 | 2-Acetylthiazole | 24295-03-2 | 1633 | 1014 | − | + | MS, RI, S, O |
3 | Indole | 120-72-9 | 2435 | / | + | + | MS, RI, S, O |
Other sulfur-containing compounds (2) | |||||||
1 | meta-Methoxybenzenethiol | 15570-12-4 | 1720 | / | − | + | MS, S |
2 | Dimethyl sulfone | 67-71-0 | 1881 | / | + | − | MS, S |
Total: 45 |
No. | Compounds | Odor Characteristics a | FD Factor b | |
---|---|---|---|---|
SDEY | RDEY | |||
1 | 2-methylthiophene | meaty, roasty | - | 9 |
2 | pyrazine | nut | - | 9 |
3 | acetoin | butter, creamy | 81 | 27 |
4 | 1-hydroxy-2-propanone | butter, malty | - | 6561 |
5 | 2,5-dimethylpyrazine | cocoa, meaty, nutty | - | 9 |
6 | 2,6-dimethylpyrazine | cocoa, meaty, roasted | - | 9 |
7 | 2-ethyl-5-methylpyrazine | fruit, green, nutty | - | 9 |
8 | β-butoxyethanol | sweet | 81 | 3 |
9 | 2-ethyl-3,6-dimethylpyrazine | potato, roasted | - | 243 |
10 | acetic acid | acid, sour | 9 | 3 |
11 | 1-octen-3-ol | mushroom, earthy | 729 | - |
12 | 2-ethyl-1-hexanol | green, rose, fruity | 81 | 243 |
13 | dihydro-2-methyl-3(2H)-thiophenone | cabbage, must, onion | - | 3 |
14 | Carbitol | sweet, burnt | 27 | 243 |
15 | 2-acetylthiazole | nut, roasted, sulfur | - | 3 |
16 | 2-furanmethanol | burnt, caramel, cooked | - | 243 |
17 | 5-methyl-2-furanmethanol | roasted, sweet, caramel | - | 81 |
18 | 2-acetyl-3-methylthiophene | phenolic | - | 243 |
19 | 3-hydroxy-4,4-dimethyldihydro-2(3H)-furanone | sweet, caramel | - | 6561 |
20 | 2,4-di-tert-butylphenol | phenolic, leather | 243 | 729 |
21 | (Z)-9-octadecenal | fatty | - | 729 |
22 | indole | fecal, jasmine | 9 | 243 |
23 | dihydro-5-hydroxymethyl-2(3H)-furanone | burnt | 729 | 2187 |
24 | dihydro-4-hydroxy-2-(3H)-furanone | caramel | 9 | 243 |
No. | Name | Concentrations (μg/g) | |
---|---|---|---|
SDEY | RDEY | ||
1 | Asp | 605.19 ± 4.53 | 506.77 ± 39.04 |
2 | Glu | 1332.06 ± 16.99 | 1353.94 ± 73.93 |
3 | Ser | 591.83 ± 13.15 | 872.95 ± 54.73 |
4 | Gly | 238.9 ± 7.51 | 442.02 ± 30.82 |
5 | Thr | 453.43 ± 8.5 | 605.81 ± 22.84 |
6 | Arg | 805.09 ± 63.84 | 736.47 ± 42.14 |
7 | Ala | 588.78 ± 30.24 | 646.28 ± 26.18 |
8 | Tyr | 860.7 ± 136.42 | 1054.23 ± 92.34 |
9 | Val | 521.67 ± 10.43 | 3063.92 ± 51.74 |
10 | Met | 381.99 ± 4.62 | 675.51 ± 12.15 |
11 | Phe | 423.32 ± 19.7 | 910.22 ± 47.9 |
12 | Lys | 390.77 ± 9.06 | 482.01 ± 10.81 |
13 | Leu | 1069 ± 28.23 | 1262.79 ± 31.4 |
14 | Pro | 96.35 ± 14.83 | 816.3 ± 45.9 |
Total | 8359.08 | 13,429.23 |
No. | Fatty Acids | Concentrations (mg/kg) | |
---|---|---|---|
SDEY Oil | RDEY Oil | ||
1 | Lauric acid (C12:0) | 195.81 ± 1.44 | 196.28 ± 5.98 |
2 | Myristic acid (C14:0) | 4675.05 ± 0.08 | 4302.53 ± 101.1 |
3 | Myristoleic acid (C14:1) | 100.73 ± 1.27 | 87.94 ± 1.88 |
4 | n-Pentadecanoic acid (C15:0) | 381.3 ± 0.51 | 363.68 ± 5.09 |
5 | Palmitic acid (C16:0) | 240,713.5 ± 272.11 | 233,379.95 ± 11,532.77 |
6 | Palmitoleic acid (C16:1) | 19,566.61 ± 65.31 | 12,834.28 ± 1117.97 |
7 | Margaric acid (C17:0) | 14.1 ± 0.01 | 12.15 ± 1.14 |
8 | cis-10-Heptadecenoic acid (C17:1) | 10.43 ± 0.17 | 8.5 ± 0.39 |
9 | Oleic acid (C18:1n9c) | 248,608.41 ± 30,523.47 | 246,942.24 ± 37,745.7 |
10 | Linoleic acid (C18:2n6c) | 40,767.13 ± 108.92 | 74,238.73 ± 2636.37 |
11 | γ-Linolenic acid (C18:3n6) | 1486.76 ± 163.51 | 1755.16 ± 17.3 |
12 | Linolenic acid (C18:3n3) | 1453.39 ± 103.08 | 2598.92 ± 205.41 |
13 | Arachidic acid (C20:0) | 521.19 ± 27.78 | 2.51 ± 1.92 |
14 | 11,14-Eicosadienoic acid (C20:2) | 1191.17 ± 9.93 | 235.36 ± 31.11 |
15 | Arachidonic acid (C20:4n6) | 5509 ± 1.46 | 4142.26 ± 285.4 |
16 | 11,14,17-Eicosatrienoic acid (C20:3n3) | 21.48 ± 0.08 | 32.72 ± 3.83 |
17 | (all-Z)-4,7,10,13,16,19-Docosahexaenoic acid (C22:6n3) | 78.24 ± 3.52 | 70.78 ± 27.29 |
Total | 565,294.30 | 581,203.99 |
No. | Compounds | IS a | f b | Concentrations (mg/kg) | |
---|---|---|---|---|---|
SDEY | RDEY | ||||
1 | 2-methylthiophene | IS1 | 0.43 | - | 5.9 ± 0.26 |
2 | pyrazine | IS1 | 0.67 | - | 441.54 ± 2.05 |
3 | acetoin | IS1 | 1.34 | 136.31 ± 0.3 | 70.77 ± 3.71 |
4 | 1-hydroxy-2-propanone | IS1 | 1.31 | - | 1072.91 ± 70.62 |
5 | 2,5-dimethylpyrazine | IS1 | 0.98 | - | 45.73 ± 1.95 |
6 | 2,6-dimethylpyrazine | IS2 | 0.84 | - | 14.45 ± 0.26 |
7 | 2-ethyl-5-methylpyrazine | IS2 | 2.46 | - | 7.82 ± 0.75 |
8 | β-butoxyethanol | IS2 | 0.50 | 7.73 ± 0.29 | - |
9 | 2-ethyl-3,6-dimethylpyrazine | IS2 | 3.46 | - | 126.99 ± 1.44 |
10 | acetic acid | IS2 | 1.00 | 28.2 ± 0.36 | - |
11 | 1-octen-3-ol | IS2 | 0.46 | 3.58 ± 0.01 | - |
12 | 2-ethyl-1-hexanol | IS2 | 1.27 | 8.22 ± 0.29 | 18.59 ± 0.21 |
14 | carbitol | IS2 | 3.41 | 2.96 ± 0.18 | 20.81 ± 0.62 |
16 | 2-furanmethanol | IS2 | 4.22 | - | 60.28 ± 1.12 |
17 | 5-methyl-2-furanmethanol | IS2 | 2.70 | - | 26.33 ± 0.54 |
18 | 2-acetyl-3-methylthiophene | IS3 | 31.05 | - | 262.98 ± 47.91 |
19 | 3-hydroxy-4,4-dimethyldihydro-2(3H)-furanone | IS3 | 1.00 | - | 41.61 ± 0.94 |
20 | 2,4-di-tert-butylphenol | IS3 | 0.62 | 66.7 ± 0.34 | 216.86 ± 4.56 |
21 | (Z)-9-octadecenal | IS3 | 1.00 | - | 2.03 ± 0.19 |
22 | indole | IS3 | 1.07 | 4.37 ± 0.27 | 26.38 ± 9.46 |
23 | dihydro-5-hydroxymethyl-2(3H)-furanone | IS3 | 0.51 | 123.77 ± 1.29 | 628.64 ± 10.88 |
24 | dihydro-4-hydroxy-2(3H)-furanone | IS3 | 5.75 | 23.60 ± 1.26 | 2613.04 ± 54.75 |
No. | Compounds | Threshold mg/kg a | OAV b | |
---|---|---|---|---|
SDEY | RDEY | |||
3 | acetoin | 0.014 | 9737 | 5055 |
11 | 1-octen-3-ol | 0.015 | 238 | - |
20 | 2,4-di-tert-butylphenol | 0.5 | 113 | 434 |
24 | dihydro-4-hydroxy-2(3H)-furanone | 3.741 | 33 | 698 |
22 | indole | 0.3 | 14 | 88 |
8 | β-butoxyethanol | 0.88 | 8 | - |
12 | 2-ethyl-1-hexanol | 1.5 | < 1 | 12 |
10 | acetic acid | 99 | < 1 | - |
14 | carbitol | 1.6 | < 1 | 13 |
9 | 2-ethyl-3,6-dimethylpyrazine | 0.0086 | - | 14,766 |
18 | 2-acetyl-3-methylthiophene | 0.1 | - | 2630 |
2 | pyrazine | 2.5 | - | 177 |
4 | 1-hydroxy-2-propanone | 10 | - | 107 |
7 | 2-ethyl-5-methylpyrazine | 0.1 | - | 78 |
5 | 2,5-dimethylpyrazine | 1.75 | - | 26 |
6 | 2,6-dimethylpyrazine | 0.718 | - | 20 |
16 | 2-furanmethanol | 4.5 | - | 14 |
1 | 2-methylthiophene | 3 | - | 2 |
17 | 5-methyl-2-furanmethanol | / | - | / |
19 | 3-hydroxy-4,4-dimethyldihydro-2(3H)-furanone | / | - | / |
21 | (Z)-9-octadecenal | / | - | / |
23 | dihydro-5-hydroxymethyl-2(3H)-furanone | / | / | / |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hao, X.; Liang, M.; Xin, R.; Liu, Y. Changes of Potent Odorants in Salted Duck Egg Yolk before and after Roasting. Molecules 2024, 29, 3984. https://doi.org/10.3390/molecules29173984
Hao X, Liang M, Xin R, Liu Y. Changes of Potent Odorants in Salted Duck Egg Yolk before and after Roasting. Molecules. 2024; 29(17):3984. https://doi.org/10.3390/molecules29173984
Chicago/Turabian StyleHao, Xiaofan, Miao Liang, Runhu Xin, and Yuping Liu. 2024. "Changes of Potent Odorants in Salted Duck Egg Yolk before and after Roasting" Molecules 29, no. 17: 3984. https://doi.org/10.3390/molecules29173984
APA StyleHao, X., Liang, M., Xin, R., & Liu, Y. (2024). Changes of Potent Odorants in Salted Duck Egg Yolk before and after Roasting. Molecules, 29(17), 3984. https://doi.org/10.3390/molecules29173984