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Abstract: Acidic amino acid peptides have a high affinity for bone. Previously, we demonstrated that
radiogallium complex-conjugated oligo-acidic amino acids possess promising properties as bone-seeking
radiopharmaceuticals. Here, to elucidate the effect of stereoisomers of Glu in Glu-containing peptides
[(Glu)14] on their accumulation in the kidney, the biodistributions of [67Ga]Ga-N,N′-bis-[2-hydroxy-
5-(carboxyethyl)benzyl]ethylenediamine-N,N′-diacetic acid-conjugated (L-Glu)14 ([67Ga]Ga-HBED-CC-
(L-Glu)14), [67Ga]Ga-HBED-CC-(D-Glu)14, [67Ga]Ga-HBED-CC-(DL-Glu)14, and [67Ga]Ga-HBED-CC-
(D-Glu-L-Glu)7 were compared. Although the accumulation of these compounds in the bone was
comparable, their kidney accumulation and retention were strikingly different, with [67Ga]Ga-HBED-CC-
(D-Glu-L-Glu)7 exhibiting the lowest level of kidney accumulation among these compounds. Repeated
D- and L-peptides may be a useful method for reducing renal accumulation in some cases.

Keywords: kidney accumulation; bone imaging; glutamic acid; bone metastases; gallium

1. Introduction

Bone scintigraphy using bone-seeking radiopharmaceuticals, such as [99mTc]Tc-MDP,
has been a longstanding and effective method for detecting bone metastases because of
its high sensitivity [1–3]. [99mTc]Tc-MDP is a multinuclear complex that consists of a
bisphosphonate compound with a remarkable affinity for bone, which is coupled with
99mTc, a gamma ray-emitting radionuclide used for imaging. In the case of [99mTc]Tc-MDP,
99mTc seamlessly coordinates with the bisphosphonate, serving as a carrier that specifically
targets bone metastases [4].

In pursuit of advancing bone-seeking radiopharmaceuticals via innovative drug de-
sign, our and other research groups and have successfully synthesized and assessed sta-
ble radiometal complex-conjugated bisphosphonate compounds [5–17]. They exhibited
superior pharmacokinetics as bone-seeking radiopharmaceuticals. Concurrently, the po-
tential of acidic amino acid peptides, specifically oligo-aspartic acids and oligo-glutamic
acid molecules, which exhibit a notable affinity for bone, was explored [18,19]. Impor-
tantly, we demonstrated that radiogallium complex-conjugated oligo-aspartic acids and
radiogallium complex-conjugated oligo-γ-carboxyglutamic acid molecules containing
1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA) or N,N′-bis-[2-hydroxy-
5-(carboxyethyl)benzyl]ethylenediamine-N,N′-diacetic acid (HBED-CC) as a chelator, to ob-
tain a stable gallium complex, possess promising properties as bone-seeking radiopharma-
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ceuticals [20–22]. Moreover, radiogallium-labeled hybrid types of peptides (between tumor-
targeting and bone-seeking oligo-aspartic acids molecules) were also developed [23–25].

In our investigations, the bone accumulation patterns were comparable among [67Ga]Ga-
DOTA-(L-Asp)14, [67Ga]Ga-DOTA-(D-Asp)14, [67Ga]Ga-DOTA-(L-Glu)14, and [67Ga]Ga-DOTA-
(D-Glu)14, as they exhibited a similar high affinity for hydroxyapatite. Conversely, a distinct
order emerged regarding their kidney accumulation: [67Ga]Ga-DOTA-(L-Asp)14 = [67Ga]Ga-
DOTA-(D-Asp)14 < [67Ga]Ga-DOTA-(D-Glu)14 < [67Ga]Ga-DOTA-(L-Glu)14 [21]. In addition,
a recent study reported by our group revealed that [67Ga]Ga-HBED-CC-(L-Glu)14 exhibited
a higher kidney accumulation than [67Ga]Ga-HBED-CC-(DL-Gla)14 [22]. That is to say, Glu
peptides are more highly accumulated in the kidney than other acidic acid peptides. There
could be differences in renal accumulation depending on the optical activity of Glu. However,
the mechanism underlying these differences remains unclear.

In this study, to elucidate the effect of stereoisomers of Glu in radiogallium complex-
conjugated (Glu)n on their accumulation in the kidney and to find a strategy to reduce the
renal accumulation in some peptide-based radiolabeled compounds, the biodistribution
of [67Ga]Ga-HBED-CC-(L-Glu)14, [67Ga]Ga-HBED-CC-(D-Glu)14, [67Ga]Ga-HBED-CC-(DL-
Glu)14 (which is composed of racemic Glu), and [67Ga]Ga-HBED-CC-(D-Glu-L-Glu)7 (which
is composed of repeated D-Glu and L-Glu) was compared. The structure of them is shown
in Figure 1. Although we were interested in 68Ga (t1/2 = 68 min) for PET imaging, 67Ga
(t1/2 = 3.3 days) was used in this essential study as an alternative radionuclide because of
its long half-life.
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Figure 1. A chemical structure of [67Ga]Ga-HBED-CC-(Glu)14. [67Ga]Ga-HBED-CC-(L-Glu)14,
[67Ga]Ga-HBED-CC-(D-Glu)14, [67Ga]Ga-HBED-CC-(DL-Glu)14, and [67Ga]Ga-HBED-CC-(D-Glu-
L-Glu)7 are stereoisomers of [67Ga]Ga-HBED-CC-(Glu)14.

2. Results

2.1. Synthesis of [67Ga]Ga-HBED-CC-(D-Glu)14, [67Ga]Ga-HBED-CC-(DL-Glu)14, and
[67Ga]Ga-HBED-CC-(D-Glu-L-Glu)7

All [67Ga]Ga-HBED-CC-conjugated Glu peptides were synthesized with radiochemical
yields greater than 95%; thus, they were used for further experiments without purification
as having a radiochemical purity > 95%. Their radiochromatograms are shown in Figure S1.

2.2. Hydroxyapatite-Binding Assay

To determine the affinity of the compounds for hydroxyapatite, the hydroxyapatite-
binding assay was performed. The hydroxyapatite-binding rates of [67Ga]Ga-HBED-CC-
(L-Glu)14, [67Ga]Ga-HBED-CC-(D-Glu)14, [67Ga]Ga-HBED-CC-(DL-Glu)14, and [67Ga]Ga-
HBED-CC-(D-Glu-L-Glu)7 are illustrated in Figure 2. The binding profiles of each tracer
were similar.
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Figure 2. Binding ratios of [67Ga]Ga-HBED-CC-(L-Glu)14, [67Ga]Ga-HBED-CC-(D-Glu)14, [67Ga]Ga-
HBED-CC-(DL-Glu)14, and [67Ga]Ga-HBED-CC-(D-Glu-L-Glu)7 to hydroxyapatite beads. Binding of
each [67Ga]Ga-HBED-CC-(Glu)14 to hydroxyapatite beads increased with the amount of hydroxyap-
atite. Data are expressed as the mean ± SD for four samples. Data of [67Ga]Ga-HBED-CC-(L-Glu)14

from reference [22].

2.3. Biodistribution Experiments

The accumulations of [67Ga]Ga-HBED-CC-(L-Glu)14, [67Ga]Ga-HBED-CC-(D-Glu)14,
[67Ga]Ga-HBED-CC-(DL-Glu)14, and [67Ga]Ga-HBED-CC-(D-Glu-L-Glu)7 in the bones and
kidneys of normal mice are reported in Figure 3, and detailed data pertaining to their
biodistribution are displayed in Tables S1–S3 and a previous paper [22]. All 67Ga-labeled
peptides accumulated and were retained in the bone at high levels, and their accumulation
rates were similar (Figure 3a). In turn, the renal accumulation of the tracers was largely
dependent on the optical isomer of the constituent amino acid, Glu (Figure 3b). In all
[67Ga]Ga-HBED-CC-(Glu)14 compounds, radioactivity in all tissues except the bones and
kidneys was low (Tables S1–S3).
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3. Discussion

Generally, peptides composed of D-type amino acids are more stable in vivo than
peptides composed of L-type amino acids because peptidases recognize and metabolize the
latter [26]. Therefore, studies have often been performed to improve the stability of peptides
by replacing L-amino acids with D-amino acids [27]. In our previous study, repeated D-Asp,
i.e., (D-Asp)n, was initially synthesized in an attempt to achieve a higher bone accumulation
compared to (L-Asp)n as bone-targeting carriers. However, the accumulation of [67Ga]Ga-
DOTA-(D-Asp)n and [67Ga]Ga-DOTA-(L-Asp)n in bone was hardly different because the
two types of tracers showed extremely rapid clearance from the blood [21]. Similarly, in
the present study, [67Ga]Ga-HBED-CC-(L-Glu)14, [67Ga]Ga-HBED-CC-(D-Glu)14, [67Ga]Ga-
HBED-CC-(DL-Glu)14, and [67Ga]Ga-HBED-CC-(D-Glu-L-Glu)7 exhibited a similar bone
accumulation (Figure 3) caused by rapid clearance and a similar affinity for hydroxyapatite
as expected.

Several studies have investigated the differences in the renal accumulation of peptides
composed of L-amino acids and D-amino acids. One study reported that the antimicrobial
peptide composed of D-amino acid named danalexin resulted in prolonged retention in
the rat kidney compared with the counterpart peptide, ranalexin, which is composed of L-
amino acid [28]. That article indicates that the observed prolonged retention is attributable
to the increased stability of the peptide and its increased resistance to peptidolysis. In turn,
the initial renal uptake of D-amino acid peptides compared with L-amino acid peptides
tends to be lower. This difference is primarily caused by the altered stereochemistry of
D-amino acids, which affects their recognition and transport by renal uptake mechanisms,
such as specific transporters and receptors [29]. In this study, [67Ga]Ga-HBED-CC-(L-Glu)14
exhibited a very high initial uptake into the kidney, with the accumulation gradually
decreasing thereafter in a time-dependent manner. In contrast, [67Ga]Ga-HBED-CC-(D-
Glu)14 showed a moderate uptake in the kidney and the accumulation was retained. These
results are consistent with the above-mentioned descriptions provided in previous articles.

[67Ga]Ga-HBED-CC-(D-Glu-L-Glu)7 was synthesized as a peptide in which the D-
Glu and L-Glu were alternately repeated. [67Ga]Ga-HBED-CC-(D-Glu-L-Glu)7 exhibited
the lowest radioactivity in the kidney among all [67Ga]Ga-HBED-CC-(Glu)14 compounds,
although the explanation for this observation remains unknown. It is known that poly-L-
glutamic acid could be α-helical or have random coil peptide conformation depending on
conditions [30]. The presence of D-type amino acids induces conformational preferences not
followed by peptides consisting of naturally abundant L-type amino acids [31]. Therefore,
we assume that repeating the D-Glu and L-Glu may have a very different conformation
from oligo-L-glutamic acid, making it less susceptible to transporter recognition for kidney
uptake. This is only speculation; further studies are needed to elucidate the mechanism.

Because [67Ga]Ga-HBED-CC-(D-Glu-L-Glu)7 showed an equivalent bone accumula-
tion compared with the remaining [67Ga]Ga-HBED-CC conjugated (Glu)14 compounds,
[67Ga]Ga-HBED-CC-(D-Glu-L-Glu)7 possessed the most ideal pharmacokinetics as a bone-
seeking radiopharmaceutical. Although the compounds assessed in this study targeted
hydroxyapatite in the bone and, therefore, no difference in target directivity should exist
between D-Glu and L-Glu, the D- and L-peptides may not be easily interchangeable when
targeting receptors and enzymes, etc. This is the reason for the limited number of targets
that can be used. If target directivity is maintained, repeated D- and L-peptides may be a
useful method for reducing the renal accumulation of peptides. However, the reduction of
renal uptake using repeated D- and L-peptides has only been confirmed for Glu-peptides in
this study. Therefore, future studies are needed to determine whether this strategy can be
applied to other peptides.

A typical method of reducing the renal accumulation of radiopharmaceuticals includes
coinfusion of lysine and arginine [32]. This method is used in clinical [177Lu]Lu-DOTATATE
for radiation protection of kidneys [33]. Administration of the mixture of lysine and arginine
is a relatively safe and effective method. However, the long time required to administer the
mixture of lysine and arginine and its high dosage volume are problems. Another method
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to reduce renal radioactivity is introducing a cleavable linkage by enzymes on the renal
brush border membrane [34,35]. This method is an excellent scientific approach; however,
the drug design is complex. The method suggested in this study may overcome these
problems. However, as mentioned, it is expected to be used in limited cases. It may be an
option for reducing renal accumulation of radiopharmaceuticals.

A [67Ga]Ga-HBED-CC-(DL-Glu)14 peptide composed of racemic glutamic acid was
also synthesized and evaluated. [67Ga]Ga-HBED-CC-(DL-Glu)14 exhibited a similar kidney
uptake to [67Ga]Ga-HBED-CC-(D-Glu)14, and its radioactivity decreased gradually. As
[67Ga]Ga-HBED-CC-(DL-Glu)14 is a mixture of various isomers, it was difficult to assess
the relationship between its structure and renal radioactivity. It seems to be reasonable
to assume that the radioactivity of [67Ga]Ga-HBED-CC-(DL-Glu)14 in the kidney was
intermediate compared with the remaining [67Ga]Ga-HBED-CC-(Glu)14 compounds.

[67Ga]Ga-DOTA-(L-Glu)14 also showed a very high initial uptake in the kidney, and its
accumulation was retained in a previous report [20]. The difference in retention observed
between [67Ga]Ga-HBED-CC-(L-Glu)14 and [67Ga]Ga-DOTA-(L-Glu)14 may have been
depended on the difference in the lipophilicity of their complexes. In turn, the renal
accumulation and retention of [67Ga]Ga-DOTA-(L-Asp)14 and [67Ga]Ga-DOTA-(D-Asp)14
were not high and were similar. The mechanisms of uptake of oligo-aspartic acid and
oligo-glutamic acid may be different.

4. Materials and Methods
4.1. Materials

Electrospray ionization mass spectra (ESI-MS) were obtained with a JEOL JMS-T100TD
(JEOL Ltd., Tokyo, Japan). Purification of peptides was performed using an HPLC sys-
tem (LC-20AD pump, SPD-20A UV detector at a wavelength of 220 nm, and CTO-20A
column oven maintained at 40 ◦C; Shimadzu, Kyoto, Japan). Thin layer chromatography
(TLC) analyses were performed with silica plates (Art 5553, Merck, Darmstadt, Germany).
Fmoc-L-Glu(OtBu)-OH and Fmoc-D-Glu(OtBu)-OH were purchased from AmBeed (Ar-
lington Heights, IL, USA). 2-Chlorotrityl chloride resin was purchased from Watanabe
Chemical Industries, Ltd. (Hiroshima, Japan). N,N-Diisopropylethylamine (DIEA) was
purchased from Nacalai Tesque (Kyoto, Japan). 1,3-Diisopropylcarbodiimide (DIPCDI) and
1-hydroxybenzotriazole hydrate (HOBt) were purchased from Kokusan Chemical Co., Ltd.
(Tokyo, Japan). Other reagents were of reagent grade and used as received.

4.2. Synthesis of HBED-CC-(D-Glu)14, HBED-CC-(DL-Glu)14, and HBED-CC-(D-Glu-L-Glu)7

HBED-CC-(D-Glu)14, HBED-CC-(DL-Glu)14, and HBED-CC-(D-Glu-L-Glu)7 were syn-
thesized according to a previous report [22]. Namely, the protected peptidyl resin was
manually constructed using an Fmoc-based solid-phase methodology based on a previ-
ously described method [25]. After the construction of the peptide chain on the resin,
the Fmoc protecting group was removed using 20% piperidine in DMF. Subsequently,
a mixture containing 2.5 equivalents of HBED-CC-tris(tert-butyl) ester (which was syn-
thesized according to the previous report [36]), DIPCDI, and HOBt in DMF was added
and allowed to react at room temperature for 1.5 h. After the cleavage of the peptides
from the resin and the deprotection using triisopropylsilane and trifluoroacetic acid (TFA)
(5:95), the crude products were purified using reversed-phase (RP) HPLC on a Cosmosil
5C18-AR-II column (10 × 150 mm; Nacalai Tesque) at a flow rate of 4 mL/min with a
gradient mobile phase of 20–60% methanol in water containing 0.1% TFA over 20 min,
respectively. Chromatograms were obtained by monitoring the UV absorption at a wave-
length of 220 nm. The fractions containing HBED-CC-(D-Glu)14, HBED-CC-(DL-Glu)14,
and HBED-CC-(D-Glu-L-Glu)7 were determined by mass spectrometry and collected. The
solvent was removed by lyophilization to provide HBED-CC conjugated Glu peptides as
white powders.

MS (ESI+) analysis of HBED-CC-(D-Glu)14 calcd for C96H132N16O52 [M + 2H]2+:
m/z = 1170.9 found 1170.8, yield: 3%.
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MS (ESI+) analysis of HBED-CC-(DL-Glu)14 calcd for C96H132N16O52 [M + 2H]2+:
m/z = 1170.9 found 1170.9, yield: 3%.
MS (ESI+) analysis of HBED-CC-(D-Glu-L-Glu)7 calcd for C96H132N16O52 [M + 2H]2+:
m/z = 1170.9 found 1170.7, yield: 1%.

4.3. Preparation of [67Ga]Ga-HBED-CC-(D-Glu)14, [67Ga]Ga-HBED-CC-(DL-Glu)14, and
[67Ga]Ga-HBED-CC-(D-Glu-L-Glu)7

[67Ga]Ga-citrate was purchased from Nihon Medi-Physics Co., Ltd. (Tokyo, Japan),
and converted [67Ga]GaCl3 by using Sep-Pak® Silica Plus Light Cartridge (Waters Co.,
Ltd., Milford, MA, USA) according to a previous report [37,38]. Approximately 50 µg of
HBED-CC-(D-Glu)14, HBED-CC-(DL-Glu)14, or HBED-CC-(D-Glu-L-Glu)7 was dissolved
in 80 µL of 1 M N-2-hydroxyethylpiperazine-N-2-ethanesulfonic acid (HEPES) solution
(pH 5.0), and 20 µL of [67Ga]GaCl3 solution in 0.1 M HCl was added and allowed to
react at 80 ◦C for 10 min. The radiochemical purities of 67Ga-HBED-CC conjugated Glu
peptides were determined via TLC analyses using silica plates with acetonitrile and H2O
(1:1) as a developing solvent. RP-HPLC was performed with a Cosmosil 5C18-II column
(4.6 × 150 mm) at a flow rate of 1 mL/min with a gradient mobile phase of 20% ethanol in
water containing 10 mM tetrabutylammoniumhydroxide (TBAH) to 55% ethanol in water
containing 10 mM TBAH for 20 min.

4.4. Hydroxyapatite-Binding Assays

Hydroxyapatite-binding assays were performed according to procedures described
previously [7]. Briefly, hydroxyapatite beads (Bio-Gel; Bio-Rad, Hercules, CA, USA)
were suspended in Tris/HCl-buffered saline (50 mM, pH 7.4) at 1 mg/mL, 2.5 mg/mL,
10 mg/mL, and 25 mg/mL. For the solutions of [67Ga]Ga-HBED-CC-(D-Glu)14, [67Ga]Ga-
HBED-CC-(DL-Glu)14, and [67Ga]Ga-HBED-CC-(D-Glu-L-Glu)7, the ligand concentrations
were adjusted to 19.5 µM by adding the corresponding HBED-CC conjugated Glu peptides.
A solution of each [67Ga]Ga-HBED-CC-(D-Glu)14, [67Ga]Ga-HBED-CC-(DL-Glu)14, and
[67Ga]Ga-HBED-CC-(D-Glu-L-Glu)7 (200 µL each) was added to 200 µL of the hydroxyap-
atite suspension, and the samples were gently shaken for 1 h at room temperature. After
centrifugation at 10,000× g for 5 min, the radioactivity of the supernatants was measured
using an auto well gamma counter (ARC-7010B, ALOKA Co., Ltd., Tokyo, Japan). Control
experiments were performed using the same procedure without hydroxyapatite beads,
which resulted in an adsorption of radioactivity to vials of less than 0.1%. The ratios of
binding were determined as follows:

Hydroxyapatite binding (%) = (1 − [sample supernatant radioactivity]/[control supernatant
radioactivity]) × 100

4.5. Animals

Experiments with animals were conducted in strict accordance with the Guidelines for
the Care and Use of Laboratory Animals of Kanazawa University. The animal experimental
protocols used were approved by the Committee on Animal Experimentation of Kanazawa
University (AP-204165, 5 April 2023). The animals were housed with free access to food
and water at 23 ◦C with a 12 h alternating light/dark schedule.

4.6. Biodistribution Experiments

Biodistribution experiments were performed after an intravenous administration of
each tracer solution diluted in saline (37 kBq/100 µL) to 6-week-old male ddY mice (weight,
27–32 g, Japan SLC, Inc., Hamamatsu, Japan). Four mice were sacrificed at each time
point for each compound at 10, 60, and 180 min post-injection. The tissues of interest
were dissected and weighed. Complete left femurs were isolated as representative bone
samples, radioactivity counts were determined using an auto well gamma counter (ARC-
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7010, ALOKA Co., Ltd.), and counts were corrected for the background radiation and
physical decay that occurred during counting.

5. Conclusions

In this study, we compared [67Ga]Ga-HBED-CC-(L-Glu)14, [67Ga]Ga-HBED-CC-(D-
Glu)14, [67Ga]Ga-HBED-CC-(DL-Glu)14, and [67Ga]Ga-HBED-CC-(D-Glu-L-Glu)7. In the
case of radiopharmaceuticals that use (Glu)14 as a bone-directing peptide, the optical
isomerism of the constituent amino acids resulted in comparable bone affinity, whereas
significant differences in the kidney uptake and retention were observed. Among the
[67Ga]Ga-HBED-CC complex-conjugated–(Glu)14 compounds, [67Ga]Ga-HBED-CC-(D-Glu-
L-Glu)7 exhibited the lowest kidney accumulation. The conformation of repeating D-Glu
and L-Glu may differ significantly from that of oligo-L-glutamic acid, potentially reducing
its recognition by transporters for kidney uptake. Although further studies are needed to
elucidate the mechanism, in some cases, the strategy of using repeated D- and L-peptides
may be a useful method for reducing their renal accumulation.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/molecules29173993/s1, Figure S1: HPLC radiochromatograms
of 67Ga-labeled compounds; Table S1: Biodistribution of [67Ga]Ga-HBED-CC-(D-Glu)14; Table S2:
Biodistribution of [67Ga]Ga-HBED-CC-(DL-Glu)14; Table S3: Biodistribution of [67Ga]Ga-HBED-CC-
(D-Glu-L-Glu)7.
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