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Abstract: Developing multifunctional flexible composites with high-performance electromagnetic
interference (EMI) shielding, thermal management, and sensing capacity is urgently required but
challenging for next-generation smart electronic devices. Herein, novel nacre-like aramid nanofibers
(ANFs)-based composite films with an anisotropic layered microstructure were prepared via vacuum-
assisted filtration and hot-pressing. The formed 3D conductive skeleton enabled fast electron and
phonon transport pathways in the composite films. As a result, the composite films showed a high
electrical conductivity of 71.53 S/cm and an outstanding thermal conductivity of 6.4 W/m·K when the
mass ratio of ANFs to MXene/AgNWs was 10:8. The excellent electrical properties and multi-layered
structure endowed the composite films with superior EMI shielding performance and remarkable
Joule heating performance, with a surface temperature of 78.3 ◦C at a voltage of 2.5 V. Additionally, it
was found that the composite films also exhibited excellent mechanical properties and outstanding
flame resistance. Moreover, the composite films could be further designed as strain sensors, which
show great promise in monitoring real-time signals for human motion. These satisfactory results may
open up a new opportunity for EMI shielding, thermal management, and sensing applications in
wearable electronic devices.

Keywords: aramid nanofibers; composite films; electromagnetic interference shielding; thermal
conductivity; strain sensing

1. Introduction

With the rapid progress of highly integrated electronic telecommunication technology,
the inevitable electromagnetic interference (EMI) radiation pollution and undesirable
heat accumulation have emerged as intractable issues in recent years [1–4]. These issues
relating to electronic devices will severely reduce their working performance, shorten
their life span, and even harm human health. Meanwhile, the flourishing growth of smart
wearable technology poses more requirements of flexibility and sensing performance for
electronic devices [5,6]. Therefore, developing multifunctional flexible materials with
high-performance EMI shielding, thermal management, and sensing capability is urgently
required for next-generation smart electronics.

Aramid nanofibers (ANFs), well known as nanoscale Kevlar fibers, are composed
of aligned poly(paraphenylene terephthalamide) (PPTA) chains, which can be derived
from the deprotonation of macroscopic Kevlar fabrics or synthesized through a bottom–up
approach [7–9]. Owing to their high anisotropy ratio and the strong interactions between
PPTA chains, such as hydrogen bonding, π–π stacking, and van der Waals forces, ANFs
exhibit exceptional mechanical properties and thermal resistance, serving as promising
candidates for reinforcing phases and high-performance polymer substrates in flexible
electronic materials [10–12]. However, the intrinsic non-conductive and non-magnetic
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characteristics render ANFs unable to shield against EMI. Currently, various conductive
nanomaterials, including graphene, carbon nanotubes, Ag nanowires (AgNWs), and carbon
dots, have been widely employed to enhance the conductivity of ANFs matrices [13–15].
Among these fillers, two-dimensional MXene (Ti3C2Tx) has emerged as a popular material
for fabricating conductive composites due to its excellent metallic conductivity, abundant
surface functional groups, and good mechanical properties [16–18]. Great efforts have been
devoted to improving the EMI shielding and thermal management capabilities of fibers with
MXene. Additionally, the introduction of MXene can also endow fibers with various new
functionalities, such as sensing physical deformations for monitoring human motion [19,20].
For instance, Li et al. successfully prepared wearable strain/pressure sensors with excellent
sensing performance based on flexible and conductive MXene/cellulose nanocrystal (CNC)-
coated thermoplastic polyurethane (TPU) nonwoven fabrics (NWFs) [21]. Similarly, Luo
et al. reported a waterproof and breathable smart textile with a multicore shell structure
via polydimethylsiloxane (PDMS) modifying MXene/elastomeric textiles, which exhib-
ited excellent and durable photothermal and electrothermal conversion properties [22].
Although great progress has been made in improving the versatility of polymer composites
by using MXene, several challenging issues remain. On the one hand, MXene nanosheets
covering the gaps between fibers can reduce the conductive stability. On the other hand,
achieving high electrical conductivity in polymer composites usually requires a large
amount of MXene, which will cause poor interfacial interaction and thus reduce mechanical
flexibility [23–25]. Consequently, the optimization of the conductive network in polymer
matrices has attracted widespread attention [26–29]. Cheng et al. constructed a continuous
thermal conductivity network by dip-coating magnetized nickel (Ni)/MXene (NiM) on a
melamine foam (MF) template [30]. The synergistic effect of the magnetic Ni chain and
MXene enables suitable thermal conductivity, high electrical conductivity, an excellent EMI
shielding effect, and high latent heat storage capabilities. Zhao et al. prepared thin and
flexible multi-layer alternating conductive gradient cellulose nanocomposite paper (CNF-
MXene/AgNWs) using the alternating vacuum filtration process. The paper exhibited
high mechanical strength, excellent EMI shielding performance, and outstanding thermal
management performance [31]. The above studies fully demonstrate that constructing
hybrid conductive networks with different structured fillers is a highly effective approach
for achieving electron and phonon transport pathways in polymer matrices and enhancing
their comprehensive performance.

Nature has imaginatively designed a variety of impressive and unique layered struc-
tures during the long-term processes of natural selection and evolution, providing inspi-
ration for us in the manufacturing of anisotropic multifunctional composite films [32,33].
Herein, inspired by the highly oriented hierarchical architecture of natural nacre, nacre-like
multifunctional ANFs/MXene/AgNW films with EMI shielding, thermal management,
flame retardant, and strain-sensing capabilities were successfully prepared via vacuum-
assisted filtration and hot-pressing. The formed three-dimensional (3D) anisotropic hybrid
conductive networks between adjacent layered ANFs, AgNWs, and MXene facilitated a
short electron transport path and fast phonon transport channel, thus resulting in high
electron conductivity and exceptional in-plane thermal conductivity. As a result, owing to
the strong internal multiple scattering of electromagnetic waves and reduced phonon scat-
tering, the optimized films showed superior EMI shielding effectiveness (25 dB) and high
thermal conductivity (6.4 W/m·K) when the mass ratio of ANFs to MXene/AgNWs was
10:8. Additionally, the compact and ordered structure endowed ANFs/MXene/AgNWs
films with a high tensile strength of 83.86 MPa and an elongation at break of 8.41%. Mean-
while, the fabricated films also exhibited excellent Joule heating capabilities, outstanding
nonflammability, and strain-sensing capabilities. Theoretically, these functions endow our
designed films with great potential applications in wearable electronic devices.
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2. Results and Discussion
2.1. Preparation and Structural Characterization of ANFs/MXene/AgNWs Composite Films

The preparation process of the ANFs/MXene/AgNWs composite films is depicted in
Figure 1a and described in detail in the Materials and Methods. The hydrogen bond force
between ANFs, AgNWs, and MXene facilitates the formation of highly stable and homoge-
neous dispersions. In addition, 1D structured fibers and nanowires can be well dispersed in
2D layered structured materials. Therefore, ANFs, MXene, and AgNWs can be intertwined
to form nacre-like layered structure composite films via vacuum filtration. After hot-
pressing, a dense 3D conductive network was constructed in the ANFs/MXene/AgNWs
composites. Benefiting from the advantages of a hybrid conductive network, the prepared
films can be applied in a wearable electronic device for EMI shielding, thermal management,
human motion monitoring, flame retardancy, and Joule heating (Figure 1b).
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Figure 1. (a) The fabrication process of ANFs/MXene/AgNWs composite films. (b) A schematic
diagram of the application of ANFs/MXene/AgNWs composite films in a wearable electronic device
with excellent EMI shielding, thermal management, human motion monitoring, flame retardancy,
and Joule heating abilities.

As shown in Figure S1a, ANFs present a large aspect ratio with a radial size of ~10 nm
and a length of several micrometers. Through the wet chemical method, Ti3AlC2 can
be effectively exfoliated into a few layered Ti3C2Tx (MXene) nanosheets (Figure S1b).
Additionally, AgNWs exhibit a small average diameter of ~30 nm (Figure S1c). Notably, the
obtained ANFs, MXene and AgNWs dispersions show the typical Tyndall effect, indicating
their colloidal characteristic and good uniformity. The mixing of ANFs, MXene, and
AgNWs dispersions enables the uniform wrapping and twining of ANFs and AgNWs on
MXene nanosheets with restrained self-aggregation, leading to a homogeneous and stable
ANFs/MXene/AgNWs dispersion. As illustrated in Figure S2, the mixed composite films
show almost the same deep black color on the upper and lower surfaces. Furthermore,
good flexibility is observed in the films (Figure 2a). Figure 2a–c and Figure S2 show the
surface and cross-sectional SEM images of the ANFs/MXene/AgNWs composite films. The
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surface SEM images reveal that the MXene nanosheets are densely stacked. Additionally,
the fracture surface of the films possesses a dense and oriented layered structure, with
MXene, ANFs and AgNWs being inserted in the composites, which is similar to the “brick-
and-mortar” structure of nacre. The highly oriented hierarchical architecture endows the
natural nacre with excellent mechanical properties. Inspired by a biomimetic structure, the
fabricated filler network can prevent cracks from propagating to the whole film, and it is
responsible for enhancing the mechanical properties. It is worth noting that the layered
structure becomes more obvious and denser with increasing filler, and more filamentous
materials can be observed on the fractured surface of the films (Figure S2). MXene acts
as the skeleton of the layered structure. ANFs, as a “bonding agent”, can bridge the
layered structures composed of MXene due to the formed hydrogen bond interactions.
Additionally, 1D AgNWs are embedded into the whole film as conductive filler. In addition,
the elemental distribution of representative C, O, Ti, and Ag suggests that ANFs, MXene,
and AgNWs are uniformly dispersed in the films (Figure 2d–g). Additionally, the dense
distribution of Ti elements indicates that the MXene nanosheets form a continuous network,
further confirming the nacre-like layered structure of composite films [34,35]. Thus, the
complementary integration of MXene and AgNWs builds a continuous and highly efficient
3D conductive network under the linkage of ANFs, resulting in effective electron transport
and electrical conductivity [14].
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Figure 2. (a) Surface and (b,c) cross-section SEM images of ANFs-4 films; insert corresponds to
optical photograph of ANFs-4 films with bending. (d–g) EDS mapping images of fractured surfaces
of ANFs-4 films. (h) XRD patterns of pure ANFs and ANFs/MXene/AgNWs films.

Figure 2h shows the XRD patterns of pure ANFs films and uniformly mixed films
with different filler contents. It is clear that the ANFs/MXene/AgNWs films inherit the
physical characteristics of ANFs, MXene, and AgNWs. Additionally, the diffraction peak
corresponding to the (002) crystal planes of MXene has a negative shift compared to
pure MXene nanosheets, which is ascribed to the expansion in interlayer spacing through
embedding ANFs [14,36,37]. Compared to ANFs-2, ANFs-4, and ANFs-6, one can see
that the peaks of (002) crystal planes of MXene move from 5.88◦ to 6.13◦ for ANFs-8 films,
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indicating that the interlayer filling by ANFs and AgNWs has reached saturation, and the
residual MXene nanosheets become dense, leading to the decreased interlayer spacing
of MXene. In addition, pure ANFs present the typical diffraction peaks assigned to the
(110), (200) and (004) crystal planes. The appearance of the (200) crystal face in pure ANFs
demonstrates the regular arrangement of the molecular chain structure in ANFs and the
abundant hydrogen bond interaction [38,39], while the intensity of the crystallization peak
of ANFs is greatly reduced with increases in MXene and AgNWs. This indicates that
the hydrogen bond in ANFs is broken and recombined with MXene, which results in the
dissociated molecular chains of ANFs [40].

2.2. Mechanical Property, Electrical Conductivity and EMI Shielding Performance of
ANFs/MXene/AgNWs Composite Films

The superior mechanical performance of composite films is the prerequisite for their
wide application. In this work, a nacre-like layered structure was designed to optimize the
mechanical properties of ANFs composite films. The typical tensile stress–strain curves
of pure ANFs films and ANFs/MXene/AgNWs films with different filler loadings are
shown in Figure 3a. It is clear that adding MXene and AgNWs can significantly increase
the mechanical strength and slightly increase the fracture strain of the composite films.
For example, the tensile strength of ANFs-4 films enhanced from 63.64 MPa to 83.86 MPa
compared to pure ANFs films due to the strong interfacial interaction between MXene and
ANFs/AgNWs (Figure S3). Meanwhile, a large loading of MXene/AgNWs will result in a
decrease in mechanical properties. This is because the continuous increase in MXene may
cause insufficient ANFs filling, resulting in weakened interlayer bonding and decreased
mechanical properties.
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High electrical conductivity favors excellent EMI shielding performance. For ANFs/
MXene/AgNWs composite films, the robust 3D conductive network of the multi-layer
structures facilitates fast electron transport, contributing to high electrical conductivity. As
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shown in Figure 3b, the electrical conductivity of the composite films increases with increas-
ing filler content. In particular, the electrical conductivity sharply increases from 7.98 to
33.98 S·cm−1 as the mass ratio of ANFs to MXene/AgNWs changes from 10:4 to 10:6 due to
the formation of numerous junction points and more efficient MXene/AgNWs conductive
networks. As a result, the optimized films have a high electrical conductivity of 71.53 S/cm
with a mass ratio of 10:8 for ANFs/filler. The evolution of conductivity was further verified
by examining the brightness of the LED lamp under different filler contents. Figure 3c,d
display the EMI shielding performance of the nacre-like ANFs/MXene/AgNWs films in the
X-band (8.2–12.4 GHz). As expected, the excellent EMI SE of the ANFs/MXene/AgNWs
composite films is mainly attributed to the high electrical conductivity and their unique
layered structure. The pristine ANFs had almost no capability to shield EM waves due to
their insulation. The EMI SE of the ANFs-6 films reaches 25 dB, which is similar to that of
ANFs-8 films. To study the shielding mechanism of ANFs/MXene/AgNWs films, data on
the SET, SEA and SER are plotted in Figure 3d. It can be observed that the SER value of the
composite films is obviously higher than the SEA value, indicating that EM wave reflection
is the main shielding mechanism [36]. It is noteworthy that the reflection of EM waves
increases slowly after the mass ratio of ANFs and fillers increases to 10:4, which is ascribed
to the perfect 3D network that formed inside the ANFs/MXene/AgNWs composite films.
Moreover, the shielding efficiency also reflects the EM wave shielding capacity of the mate-
rials. As depicted in Figure S4, the composite films with ANFs/filler mass ratios of 10:6 and
10:8 are capable of blocking 99.99% of EM waves, suggesting that ANFs/MXene/AgNWs
films possess excellent shielding properties [41]. The possible EMI shielding mechanism
of the composite films is shown in Figure S5. When the electromagnetic wave irradiates
the surface of the composite films, impedance mismatch occurs due to the large number of
free electrons. Some of the incident electromagnetic wave is immediately reflected when it
encounters the conductive layer, and the other part penetrates the films into the layered
structure. The absorbed EM waves interact with the high density of carriers, resulting in
many ohmic losses and the attenuation of the EM wave energy by the induced current.
At the same time, the multi-layer structure will increase the propagation distance of the
electromagnetic waves, and multiple internal reflections between layers also promote the
absorption of EM waves. In addition, the local defects of MXene with abundant functional
groups (-O, -OH, and -F) can lead to an asymmetric charge density distribution, thus
forming local dipoles, resulting in the relaxation of polarization and an enhanced overall
shielding effect [37,42,43]. The above mechanisms act simultaneously and result in the
excellent capacity to attenuate and dissipate incident EM waves, thus inducing excellent
EMI SE with a relatively high SEA value.

2.3. Thermal Management and Joule Heating Performance of ANFs/MXene/AgNWs
Composite Films

Undesired heat generated during EMI shielding can significantly damage the perfor-
mance of electronic devices. It is necessary to significantly enhance the thermal conductivity
of EMI shielding materials. Figure 4a shows the in-plane and out-plane thermal conductiv-
ity (TC) values of pure ANFs and ANFs/MXene/AgNWs composite films. It was found
that the TC displays an overall increasing tendency with the increasing filler content. Typi-
cally, ANFs-8 achieves an optimal in-plane TC of 6.4 W/(m·K), which is about six times
higher than that of pure ANFs films. The fabricated composite films showed higher TC
than many MXene/AgNWs-based composite films (Table S1). This is attributed to the fact
that the parallel and close-contacting multi-layer structure of MXene can enhance planar
heat conduction pathways, which contributes to high in-plane TC. Moreover, the out-plane
TC of ANFs-8 also reached 0.19 W/(m·K) because ANFs and AgNWs can serve as the
bridge between adjacent MXene to form a promising phonon and electron transportation
channel (Figure 4b).

Profiting from good electrical and thermal conductivity, ANFs/MXene/AgNWs composite
films exhibit exceptional Joule heating capacity for thermal management applications, such as
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thermotherapy and self-heating smart garments. Figure S6 shows the surface temperature of
the composite films and corresponding infrared thermal images, which vary depending on the
voltages. As the voltage increases to 2.5 V, the maximum temperature of the composite films
reaches 78.3 ◦C. Meanwhile, the obtained thermal infrared images show a uniform temperature
distribution, which indicates that ANFs/MXene/AgNWs films can act as electric heaters.
Figure 4d illustrates the surface temperature change in the composite films with different
supplied voltages. During the process of electrical heating, the temperature rapidly reaches
saturation as the input voltage increases (Figure 4c). The surface temperature of the films quickly
exceeds a high temperature of 75 ◦C within 11 s at 2.5 V, which is attributed to the highly efficient
and conductive 3D layered structure. Meanwhile, owing to the superior thermal conductivity of
the ANFs-8 composite film, the surface temperature can drop to room temperature within 20 s
as the voltage is turned off [14]. Figure 4d reveals that the surface temperatures of the composite
films can be rapidly switched by applying different voltages, indicating their quick response to
the change in voltage. Additionally, the saturation temperature is nearly proportional to the
square of the input voltage, conforming to Joule’s law and demonstrating a highly controllable
Joule heating capacity by tuning the supplied voltage (Figure S7) [44]. In addition, the obtained
temperature change curves are almost identical when a voltage of 2 V is repeatedly supplied
and removed, illustrating that the electrothermal properties of the composite films are highly
stable and reliable (Figure 4e). Moreover, the ANFs/MXene/AgNWs films demonstrate a
saturation temperature of 63 ◦C for 4000 s at an applied voltage of 2.0 V (Figure 4f), confirming
their remarkable heating stability and durability under repeated, long-term working conditions.
Ultimately, only a low voltage is required to achieve an excellent electrothermal effect, ensuring
human safety in practical use and suggesting promising thermotherapy and self-heating smart
garment applications.
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ANFs/MXene/AgNWs composite films. (c,d) Surface temperature response of ANFs-8 films with
different supplied voltages. (e) Surface temperature response of ANFs-8 films during five cycles at
2 V. (f) Long-term durability test of ANFs-8 films at 2 V.
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2.4. Thermal Stability and Flame Retardancy of ANFs/MXene/AgNWs Composite Films

The thermal stability of composite films in high-temperature environments is of
paramount importance for their practical application [45–47]. The thermal decomposition
behavior of pure ANFs films and composite films was investigated using TGA and deriva-
tive thermogravimetry (DTG). As depicted in Figure 5a, all of the samples display similar
three-step weight loss from 100 ◦C to 800 ◦C. For pure ANFs films, the weight loss occurring
at 350 ◦C is due to the evaporation of absorbed water and hydroxyl functional groups. The
degradation of ANFs after 350 ◦C is attributed to the breakdown of the polymer backbone,
leaving about 35% char residues at 800 ◦C. After adding MXene/AgNWs, the composite
films show low decomposition rates in the range of 100–600 ◦C. Additionally, the weight
loss of composite films decreased with an increase in the filler content, benefiting from
the excellent thermal stability of MXene and AgNWs. Notably, the DTG curves reveal
a significantly reduced peak weight loss rate with an increase in filler (Figure 5b). The
decomposition temperature of ANFs undergoes an obvious increase with an increasing
amount of filler. Typically, the T10% value of ANFs-6 composite films increases from 143
to 485 ◦C compared to pure ANFs films due to the high thermal stability of the filler as
well as the strong interfacial interactions between MXene and ANFs/AgNWs. Meanwhile,
the residual mass of ANFs-6 composite films at 800 ◦C increases from 35.03% to 64.76%
in comparison with pure ANFs films (Table S2). This is mainly attributed to the barrier
effect caused by multi-layered MXene nanosheets, which hinders thermal diffusion and
the transport of volatile species, simultaneously providing additional heat dissipation
pathways [48,49].
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To further evaluate the flame resistance of ANFs/MXene/AgNWs composite films,
their burning behaviors were studied, as detailed in Figure 5c,d. Pure ANFs films are ignited
immediately upon contacting the flame (within 1 s), showing complete incineration by 3 s
(Figure S8). In contrast, the ANFs/MXene/AgNWs composite films retained their original
shape and did not ignite after being exposed to the flame for 7 s (Figure 5c). A modest
amount of white smoke was generated while burning, and white residual material gradually
appeared under a prolonged flame of 47 s, indicating the oxidation and degradation
of MXene to form TiO2. Furthermore, the flame would quickly be extinguished after
removing the heat source, demonstrating excellent flame retardance and self-extinguishing
properties [50].
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2.5. Sensing Performance and Application of ANFs/MXene/AgNWs Composite Films

The internal structure of the composite films will be deformed to different degrees when
stimulated by external forces. In this study, the as-prepared ANFs/MXene/AgNWs films
could be fabricated as strain sensors. ∆R/R0 was used to represent the relative resistance
changes during the bending process, where ∆R refers to the resistance change before and
after bending, and R0 is the original resistance. Fabricated sensors attached to the finger and
wrist were employed to monitor motion (Figure 6a). A fast and stable resistance response was
observed when the finger was bent from 30◦ to 90◦ due to the slippage of the layered structure
(Figure 6b). Similarly, the wrist bending angles can be judged based on the resistance change
(Figure 6c). Moreover, the sensor attached to the cheek can recognize the pronunciations of
different words, such as can, nature, and believe (Figure 6d–f). Obviously, single, double, and
multi-syllable words show different peak characteristics of ∆R/R0. In addition, service life
is also an important indicator of the sensor’s performance. As shown in Figure 6g, ∆R/R0
remains almost stable during the cycling test for 1000 s under 10◦ bending, demonstrating the
long-time durability as a wearable electronic device. In practical applications, the movement
statuses of firefighters or various special staff who need to act alone can be monitored using
the designed sensor in real time or remotely sensed through a human–computer interaction
system, which is conducive to timely rescue actions.
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the sensor while monitoring the bending of the finger and wrist. (d–f) The resistance response of the
sensor when monitoring the pronunciation of the words can, nature, and believe. (g) The resistance
response of the sensor over 1000 s cyclic tests under 10◦ bending.



Molecules 2024, 29, 4000 10 of 14

3. Materials and Methods
3.1. Materials

Dispersed ANFs (0.6 wt.%) were purchased from Houpu Fiber Technology Co., Ltd
(Kunshan, China). Titanium aluminum carbide powder (Ti3AlC2, 400 mesh) was supplied
by Xiyan New Material Technology Co., Ltd (Heze, China). Lithium fluoride (LiF, AR,
99%) was purchased from Adamas. Hydrochloric acid (HCl, ~38%) and NaOH (AR, 99.5%)
were obtained from Chemical Reagent Co., Ltd (Guangzhou, China). Dispersed AgNWs
(5 mg/mL) were acquired from Leadernano Technology Co., Ltd (Jining, China).

3.2. Synthesis of MXene Nanosheets

MXene (Ti3C2Tx) was prepared following the method described in our previous
study [34]. First, 4.8 g of LiF was dispersed in 60 mL of 9 M HCl solution; 3 g of Ti3AlC2
powder was then slowly added and stirred for 24 h. Subsequently, the suspension was
centrifuged several times until the pH of the supernatant was over 5. The obtained sediment
was ultrasonically dispersed in water and then centrifuged for 1 h. Finally, the dark green
supernatant was filtrated to obtain MXene.

3.3. Fabrication of the ANFs/MXene/AgNWs Composite Films

An amount of 10 g of ANFs was dispersed in water and stirred using a high-speed
mixer to form a homogeneous and stable ANFs dispersion. To determine the effect of the
hybrid filler on the comprehensive properties of the ANFs composites, a different content
of hybrid filler was emphasized. Thus, the definite mass ratio of MXene to AgNWs (1:1)
was determined to better study the role of hybrid filler in ANFs composites. MXene and
AgNWs were added to the above dispersion and stirred with a magnetic mixer for 1 h (the
mass ratios of ANFs to MXene/AgNWs were 10:2, 10:4, 10:6, and 10:8 and the mass ratio of
MXene to AgNWs was 1:1). Then, the solution was filtrated with a 1.2 µm filter membrane
and hot-pressed at 60 ◦C for 3 h to obtain the ANFs/MXene/AgNWs films. The samples
were denoted as pure ANFs, ANFs-2, ANFs-4, ANFs-6, and ANFs-8, respectively, which
correspond to the mass ratios of 10:0, 10:2, 10:4, 10:6, and 10:8.

3.4. Characterization

The morphologies of ANFs, MXene, and AgNWs were observed with a transmis-
sion electron microscope (TEM, JEM-F200, JEOL, Akishima, Japan). The surface and
cross-section morphologies of the pure ANFs and ANFs/MXene/AgNWs films were
obtained using a scanning electron microscope (SEM, FEI, NoVoTM nano SEM 430, Hills-
boro, OR, USA). In addition, energy-dispersive X-ray spectrometry (EDS, Sigma 500 Ox-
ford, Arlen, Germany) mapping was used to obtain the elemental distribution in the
ANFs/MXene/AgNWs films. X-ray diffraction (XRD, X’Pert3Powder, PANalytical B.V.,
Eindhoven, The Netherlands) was used to observe the structure and composition of the
samples. The electrical conductivity of the films was determined using a Hall effector
(Ecopia HMS-5000, Seoul, Korea). Thermogravimetric analysis (TGA) using a thermal ana-
lyzer (TGA/DSC3+ LF/1100, METTLER TOLEDO, Zurich, Switzerland) was performed
to verify the thermal stability of the samples at a temperature ranging from 25 to 800 ◦C
and a heating rate of 10 ◦C/min under a nitrogen atmosphere. The real-time resistance
of the ANFs/MXene/AgNWs films under various bending angles and pressures was
recorded using a digital multimeter (Keithley 2450, Washington, DC, USA). The mechanical
stability was investigated by using a tensile testing machine (TestometricX250-1, Rochdale,
UK) with a stretch rate of 100 mm/min. The surface temperature of the composite films
was recorded using an infrared thermal imager (InfReC R550, Avio, Japan). A laser-flash
technique (LFA; NanoFlash 467, Netzsch, Bavaria, Germany) was used to measure the
thermal conductivity of the ANFs/MXene/AgNWs films. The electromagnetic interference
shielding effectiveness (EMI SE) of the ANFs/MXene/AgNWs films in the frequency range
of 8.2–12.4 GHz (X-band) was performed using a vector network analyzer (Agilent PNA-
N5234A, Washington, DC, USA). The reflection coefficient (R), absorption coefficient (A)
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and transmission coefficient (T) were calculated by measuring the scattering parameters
(S11 and S21). The reflection shielding (SER), absorption shielding (SEA), and total EMI
shielding effectiveness (SET) were obtained using the following formulas:

R = |S11|2, A = |S21|2 (1)

A = 1 − R − T (2)

SER(dB) = −10lg(1 − R) (3)

SEA(dB) = −10lg[T/(1 − R)] (4)

SET(dB) = −10lgT = SER + SEA (5)

4. Conclusions

In summary, we successfully prepared nacre-like multifunctional flexible ANFs/MXene/
AgNWs composite films with an anisotropic layered structure via vacuum-assisted filtra-
tion and hot-pressing. Benefiting from the hydrogen bonding interaction between ANFs,
AgNWs, and MXene, the conductive fillers were uniformly dispersed in the NF matrix.
The obtained composite films showed good flexibility, a high tensile strength of 83.86 MPa
and an elongation at break of 8.41%. Meanwhile, ANFs and AgNWs acted as the bridge
between the neighboring MXene nanosheets to form a robust 3D conductive network and
thus provide an effective electron and phonon conduction pathway, which enables a high
electrical conductivity of 71.53 S/cm and a superior thermal conductivity of 6.4 W/(m·K)
when the mass ratio of ANFs to filler is 10:8. The composite films achieved outstanding
EMI shielding performance due to their excellent electrical properties and multi-layer
structure. Additionally, the composite films were found to have superior Joule heating
properties, with a high surface temperature of 78.3 ◦C at a low voltage of 2.5 V, indicating
their potential application in thermotherapy and self-heating smart garments. Furthermore,
the composite films are fireproof and can maintain good structural integrity in the case
of fire, thus expanding their application under harsh conditions. Additionally, composite
films can be designed as strain sensors, monitoring real-time signals for human motion. The
bio-inspired design of multifunctional ANFs composite films with superior EMI shielding,
thermal management, flame retardancy, and sensing capabilities offers a new insight into
expanding the widespread application of multifunctional composite films in wearable
electronic devices.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/molecules29174000/s1. Figure S1: TEM images of ANFs, MXene
and AgNWs; Figure S2: Optical and SEM images of ANFs/MXene/AgNWs films; Figure S3: Tensile
strength of ANFs films with different loading of MXene/AgNWs; Figure S4: Shielding efficiency
of ANFs/MXene/AgNWs films; Figure S5: Schematic diagram of EMI shielding mechanism of
ANFs/MXene/AgNWs films; Figure S6: Infrared images of ANFs-8 films at different voltages; Figure
S7: Linear fitting of saturation temperature versus the U2 of the ANFs-8 films; Figure S8: Digital
images of the burning behavior of pure ANFs. Table S1: EMI SE and TC of MXene/AgNWs-based
composite films; Table S2: DTG results of pure ANFs and ANFs/MXene/AgNWs composite films.
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