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Abstract: High-quality Piper laetispicum (Piper laetispicum C. DC) is the key to the development of
foods, natural medicines, and cosmetics. Its crude fat, ash, piperine, protein, and aroma compounds
were determined in this experiment. Principal component (PCA) and hierarchical cluster analy-
ses (HCA) were used to evaluate the aroma compounds at different developmental stages. The
main aroma compounds identified using steam distillation combined with GC-MS were sabinene
(34.83–76.14%), α-copaene (5.11–19.51%), linalool (2.42–15.70%), trans-caryophyllene (2.37–6.57%),
α-pinene (1.51–4.31%), and germacrene D (1.30–4.10%). The aroma metabolites at different develop-
mental stages were analysed using non-targeted metabolomes, and linalool was found to be the most
abundant. Based on the experimental results, there were more nutrient compounds in young Piper
laetispicum than in the last three developmental stages. The aromatic metabolites contributed the
most to PC1. There were also more different metabolites of aroma between the young and expanding
stages. Therefore, regarding quality, young fruits have great potential.

Keywords: Piper laetispicum; volatile oil compounds (VOCs); aroma metabolite; GC-MS

1. Introduction

Piper laetispicum C. DC. (Piperaceae), a wood-climbing vine and a wild species of
piper, is commonly known as mountain or wild pepper and widely used in traditional
Chinese medicine to treat small intestine bloating. It grows in the jungles in Guangdong,
Guangxi, and Hainan Provinces, China. It can improve blood circulation, remove blood
stasis, reduce swelling, and relieve pain. In Dai medicine, boiling and consuming the entire
plant positively impacts heart problems, stomach and abdominal pain, diarrhoea, and
indigestion [1–3]. Laetispicine from P. laetispicum stems is a new amide alkaloid that can
promote the production and development of new antidepressants, which are used to help
people overcome depression [4].

Piper nigrum L. is the “king of spices” and has attracted widespread interest from
researchers. It has a flavour and serves as a medicinal resource for relieving nerve pain
and the treatment of influenza and fever, with both anti-bacterial and anti-inflammatory
activities [5,6]. There are reference standards for the quality trait evaluation of pepper, its
genome, and the utilisation and preservation of the effective parts of pepper. The flavour
and unique aroma of pepper are mostly dependent on piperine and the aroma ingredi-
ents [7]. The volatile compounds of 10 pepper varieties cultivated in Hainan Province,
China, mainly include benzaldehyde, cinnamaldehyde, β-caryophyllene, ocimene, lavan-
dulol, myrcene, cubebene, terpinene, linalool, α-caryophyllene, β-elemene, and germacrene.
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These compounds determine the bitterness and astringency of pepper [8]. The active
compounds extracted from P. laetispicum have attracted much attention. For example, the
antidepressant efficacy of Laetispicine was determined [4,9]. However, few studies have
characterised the chemical composition of P. laetispicum fruit.

Essential oils have a pleasant taste and smell and have antioxidant, anti-corrosion,
and other effects. The chemical and functional properties and composition of volatile oil
compounds extracted using steam distillation are important [10,11]. The function of the
compounds of the volatile oil of P. laetispicum was elucidated using steam distillation and
GC-MS analysis. Metabolites can be divided into primary and secondary ones, which
affect the growth and development of plants and their responses to the surrounding envi-
ronment [12]. The aim of metabolomics is to determine the biological processes cells and
tissues undergo by analysing metabolite changes over time. Non-targeted metabolomes
systematically and comprehensively represent material information for the detection and
analysis of endogenous metabolites [13]. The aroma compounds of P. laetispicum were anal-
ysed at four developmental stages based on non-targeted metabolomes. This is conducive
to understanding the diversity, functions, and pathways of natural metabolites, ensuring
food health and safety. It also promotes the development and application of plant metabolic
engineering in the production of drugs and new materials [14–16].

The aroma components in the fruit of P. laetispicum have been determined by many
scientists and technologists. The aim of this study was to determine the composition and
content of the resulting compounds and to screen and analyse their differential metabolites
using non-targeted metabolomic methods. The biological significance of the metabolites at
different developmental stages was clarified through the analysis of metabolic pathways.
We not only comprehensively analysed the aroma components of fruits but also further
explored the differential metabolic pathways of the aroma components. Finally, we provide
data for the aroma characteristics of P. laetispicum to inform the selection, processing, and
growth of fruits in different harvesting periods.

2. Results and Discussion
2.1. Crude Fat, Ash, Piperine and Protein Contents

As shown in Table 1, the contents of crude fat, ash, and protein in the young and
expanding fruit stages were minimally different, and the contents were at the highest in
the whole fruit stage. The contents in the yellow fruit stage showed a decreasing trend. In
addition to the continuous decline in the crude fat content in the red fruit stage, the protein
and ash contents slightly increased. The content of piperine was very low in P. laetispicum
fruits (Figure A5).

Table 1. The contents of crude fat, ash, piperine and protein at different stages.

Matter (%) YG PD Yellow Red

Crude fat 13.9 14.34 11.15 7.31
Ash 10.97 9.56 6.59 6.89

Piperine 0.00 0.00 0.08 0.00
Protein 20.24 19.57 11.57 13.71

2.2. VOCs
2.2.1. Steam Distillation Combined with GC-MS Analysis of VOCs

A total of 49 compounds were identified in volatile oil at the four stages, includ-
ing young (34), expanding (30), yellow (30), and red (37) fruits. The functional group
had five categories: alkenes, alcohols, ketones, esters, and benzene (Tables 2 and A2,
and Figures A1–A4). Alkenes and alcohols contributed more to the P. laetispicum aroma,
with lower contents of ketones, benzene, and esters. The contents of the following aro-
matic compounds were high: sabinene (34.83–76.14%), α-copaene (5.11–19.51%), linalool



Molecules 2024, 29, 4008 3 of 16

(2.42–15.70%), trans-caryophyllene (2.37–6.57%), α-pinene (1.51–4.31%), and germacrene D
(1.30–4.10%).

Sabinene is a monoterpene with an anti-inflammatory effect. This substance was de-
tected in Piper nigrum, but there was only approximately 2% [17]. Its contents in “Jinguang-
shanshuo”, “Bingsham”, and “Honglou” were 5.87%, 4.61%, and 11.07%, respectively [18].
The relative contents of the P. laetispicum fruits in the four development stages were all
between 30% and 80%, which was higher than that in most pepper plants. This may be one
of the main factors for its utilisation as a Chinese medicine resource. Linalool has a fresh
floral scent and self-oxidises in the air to facilitate the production of hydroperoxide, which
is a strong allergen [19,20]. Trans-caryophyllene is the most representative compound in
the essential oils of pepper fruits and has a spicy, woody, citrus, and camphor taste [21].
α-pinene is abundant in turpentine. Perfumers have a special interest in it, and it also has
significant anti-tumour and anti-cardiotoxicity activities [22].

The following list is of specific compounds at the young fruit stage and their uses:
(Z)-linalool oxide (furanoid) has a strong woody flower aroma and is a commonly used
chemical flavouring. α-bisabolol sesquiterpene alcohol, with anticancer activity, has an
anti-ageing effect and can treat inflammatory acne [23]. Guaiazulene is a special anti-
inflammatory ingredient in essential oils and is only present at the red fruit stage. Its
strong oxidation has great potential in the field of medicine [24,25]. P. laetispicum fruit is
rich in aroma compounds with analgesic, anti-inflammatory, and anticancer effects. In
conclusion, it also has excellent potential in the development of natural drugs, in addition
to the production of cosmetics and perfumes.

The content of alcohols gradually decreased as the P. laetispicum fruit matured, while
the content of alkenes gradually increased. Alcohol accumulation in Cabya mainly occurs
at the expanding and yellow fruit stages [26], while it slows down at the young and red
fruit stages. The relative content of alcohols is different between different species of pepper
and in fruits at different developmental stages. This may be due to the differences in the
growing environment or the growth pattern of the plant [27]. The alkenes in Cabya were
found to be enriched at the red fruit stage, indicating that alkenes may contribute to most
to the aroma of the most ripe pepper fruits.

2.2.2. Principal Component Analysis (PCA) of VOCs

The VOCs were analysed using PCA (Tables 3 and 4). The first three principal compo-
nents with eigenvalues greater than one were selected, and the cumulative contribution
rate reached 100%, indicating that the three principal components comprehensively char-
acterised all the information of the 49 compounds. The contribution rate of principal
component 1 was 54.67%. Alcohols, alkenes, ketones, and esters, the characteristic volatile
components of the fruit, all had large positive and negative loads. The contribution rate of
principal component 2 was 28.36%. The β-myrcene load coefficient was −0.98. β-myrcene
has antioxidant, anti-bacterial, and analgesic effects and is found in many plants, including
lemongrass, hops, verbena, and bay. It is often used as a raw material in the production of
cosmetics [28]. Principal component 2 reflected the aroma volatiles of some monoterpenes.
The contribution rate of principal component 3 was 16.98%. The maximum load coefficient
of α-caryophyllene was 0.917, and it is a colourless or micro-buttery liquid with a faint
butyl flavour. Principal component 3 reflected some sesquiterpenes.

The young fruit stage is shown in the upper right corner of the score chart (Figure 1a),
while the red fruit stage is represented in the upper left corner. The difference in aromatic
compounds between the young and red fruit stages was the most significant. Alkenes were
found to have a highly positive correlation with principal component 1, and alcohols had a
highly positive correlation with principal component 2 (Figure 1b).
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Table 2. Components and contents of volatile oil compounds (VOCs) at four developmental stages.

No. Category LRI Type ID Component Relative Percentage (%) ± SD Percentage

YG PD Yellow Red

1 Alcohols 1084.48 Alcohols1 Trans-β-Terpineol 0.19 ± 0.07 a 0.49 ± 0.32 a 0.14 ± 0.00 a 0.09 ± 0.03 a

2 1624.20 Alcohols2 Linalool 15.70 ± 2.43 a 8.54 ± 0.00 b 6.24 ± 0.16 b 2.42 ± 0.02 c

3 1624.20 Alcohols3 (E)-p-2-menthen-1-ol 0.10 ± 0.03 a 0.06 ± 0.00 ab —— 0.03 ± 0.00 b

4 1140.63 Alcohols4 4-terpineol 2.87 ± 0.37 a 1.94 ± 0.06 b 0.70 ± 0.01 c 0.75 ± 0.01 c

5 1624.20 Alcohols5 α-terpineol 0.30 ± 0.07 a 0.18 ± 0.10 ab 0.06 ± 0.00 c 0.04 ± 0.00 c

6 1296.34 Alcohols6 (Z)-linalool oxide (furanoid) 0.13 ± 0.05 a —— —— ——
7 1624.20 Alcohols7 α-bisabolol 0.21 ± 0.17 a —— —— ——

8 Alkenes 936.87 Alkenes1 (−)-α-pinene 0.57 ± 0.07 a 0.33 ± 0.02 b 0.33 ± 0.01 b ——
9 979.49 Alkenes2 Sabinene 34.83 ± 8.19 b 67.52 ± 0.43 a 70.64 ± 1.24 a 76.14 ± 0.38 a

10 997.47 Alkenes3 β-pinene 0.62 ± 0.28 a —— —— 0.24 ± 0.01 a

11 1010.10 Alkenes4 α-phellandrene 0.15 ± 0.07 a 0.08 ± 0.00 a 0.11 ± 0.01 a 0.06 ± 0.00 a

12 1022.66 Alkenes5 Terpinolene 0.29 ± 0.15 a 0.09 ± 0.02 ab 0.06 ± 0.01 b 0.10 ± 0.00 ab

13 1036.45 Alkenes6 α-pinene 3.72 ± 1.73 a 2.16 ± 0.12 a 1.51 ± 0.85 a 4.31 ± 0.08 a

14 1067.00 Alkenes7 γ-terpinene 0.96 ± 0.22 a 0.25 ± 0.00 b 0.06 ± 0.00 b 0.19 ± 0.02 b

15 1347.75 Alkenes8 1-ethenyl-1-methyl-2,4-bis(1-methylethylidene)-cyclohexane 0.61 ± 0.06 a 0.33 ± 0.01 b 0.56 ± 0.10 a 0.12 ± 0.00 c

16 1390.39 Alkenes9 α-copaene 19.51 ± 3.52 a 10.53 ± 0.17 b 7.06 ± 0.03 bc 5.11 ± 0.02 c

17 1402.87 Alkenes10 β-cubebene 1.36 ± 0.89 a 0.32 ± 0.01 a 0.95 ± 0.02 a 0.09 ± 0.10 a

18 1407.01 Alkenes11 1-ethenyl-1-methyl-2,4-bis(1-methylethenyl)-cyclohexane 0.32 ± 0.24 a 0.20 ± 0.16 a 0.12 ± 0.01 a 0.04 ± 0.00 a

19 1436.62 Alkenes12 trans-caryophyllene 6.57 ± 0.21 a 3.38 ± 0.00 c 4.20 ± 0.12 b 2.37 ± 0.01 d

20 1448.41 Alkenes13 (E)-α-bergamotene 0.99 ± 0.56 a —— 0.16 ± 0.00 a 0.06 ± 0.00 a

21 1452.23 Alkenes14 Aromadendrene 0.06 ± 0.03 a 0.12 ± 0.07 a 0.05 ± 0.03 a ——
22 1472.29 Alkenes15 α-caryophyllene 0.88 ± 0.04 b 0.44 ± 0.01 c 1.19 ± 0.06 a 0.51 ± 0.02 c

23 1494.59 Alkenes16 α-amorphene 0.11 ± 0.09 a 0.12 ± 0.08 a 0.06 ± 0.02 a 0.02 ± 0.00 a

24 1500.00 Alkenes17 Germacrene D 3.74 ± 1.32 a 1.30 ± 0.29 b 4.10 ± 0.32 a 3.64 ± 0.05 a

25 1518.92 Alkenes18 α-muurolene 0.31 ± 0.16 a —— —— 0.06 ± 0.00 a

26 1525.34 Alkenes19 β-bisabolene 0.35 ± 0.01 a 0.16 ± 0.01 b 0.12 ± 0.01 c 0.10 ± 0.00 c

27 1542.91 Alkenes20 (+)-δ-cadinene 3.69 ± 0.22 a 1.49 ± 0.07 bc 1.22 ± 0.06 c 1.65 ± 0.02 b

28 998.16 Alkenes21 β-myrcene —— 0.13 ± 0.00 a 0.13 ± 0.00 a ——
29 1347.45 Alkenes22 Santolina triene —— 0.16 ± 0.11 a —— ——
30 925.35 Alkenes23 4-methyl-1-(1-methylethyl) bicyclo[3.1.0]hexane didehydro deriv —— —— —— 1.42 ± 0.01 a

31 1686.12 Alkenes24 Guaiazulene —— —— —— 0.01 ± 0.00 a

32 Esters 1239.44 Esters1 2-ethylhexyl acrylate 0.10 ± 0.02 a 0.06 ± 0.00 a 0.08 ± 0.00 a ——

33 Ketones 1293.80 Ketones1 2-undecanone 0.52 ± 0.23 a 0.14 ± 0.00 b 0.13 ± 0.01 b 0.05 ± 0.00 b

34 Benzenes 1025.12 Benzenes1 o-cymene —— —— —— 0.10 ± 0.01 a

Different lowercase letters in the same column indicate significant differences between treatments (p < 0.05). ——, not detected.
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Table 3. The eigenvalues and variance contributions of the four principal components.

Principal
Component

Initial Eigenvalues Extraction Sums of Squared Loadings

Total Variance Contribution
Rate (%)

Cumulative
(%) Total Variance Contribution

Rate (%)
Cumulative

(%)

1 26.79 54.67 54.67 26.79 54.67 54.67
2 13.90 28.36 83.02 13.90 28.36 83.02
3 8.32 16.98 100.00 8.32 16.98 100.00

Table 4. Principal component loading matrix.

VOCs PC1 PC2 PC3

Alcohols2 0.998 −0.019 −0.064
Alcohols4 0.914 0.098 −0.393
Alcohols5 0.949 0.038 −0.314
Alcohols9 0.937 0.134 −0.322
Alcohols6 0.908 0.410 0.089
Alcohols7 0.908 0.410 0.089

Alcohols11 −0.025 −0.581 −0.814
Alcohols12 −0.197 −0.553 0.81
Alcohols14 −0.686 0.723 −0.085

Alkenes1 0.949 −0.293 0.112
Alkenes2 −0.971 −0.239 −0.03
Alkenes4 0.938 −0.027 0.345
Alkenes5 0.859 0.511 −0.042
Alkenes6 0.026 0.976 −0.216
Alkenes7 0.895 0.433 −0.109
Alkenes9 0.984 0.132 −0.122
Alkenes11 0.980 −0.081 −0.179
Alkenes25 0.909 0.403 0.105
Alkenes12 0.956 0.036 0.290
Alkenes15 0.291 −0.273 0.917
Alkenes16 0.772 −0.479 −0.419
Alkenes17 0.022 0.447 0.894
Alkenes19 0.964 0.263 −0.036
Alkenes20 0.857 0.515 −0.014
Alkenes21 −0.195 −0.98 0.029

Esters1 0.854 −0.43 0.293
Esters2 −0.197 −0.553 0.810

Ketones1 0.969 0.232 0.085
Ketones3 −0.686 0.723 −0.085

Benzenes1 −0.686 0.723 −0.085

2.2.3. Cluster Analysis of VOCs

The four samples were classified into three categories based on the aroma components,
among which the expanding and yellow fruit stages were similar and were placed in the
same category. In subsequent clustering, the expanding, yellow, and red fruit stages were
grouped together. The samples in the young fruit stage were found to be significantly
different from those from the other groups (Figure 2), which is consistent with the results
of the score charts (Figure 1a).
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2.3. Aroma Metabolites
2.3.1. Identification of Aroma Metabolites

The fruit aroma metabolites in the biological repeats were clustered together, indi-
cating that the duplicate sample was stable and reliable. The fruits at the different stages
of development were distinct (Figure 3), suggesting that there were some differences in
metabolites between them. A total of 143 metabolites from the P. laetispicum fruit were iden-
tified with non-targeted metabolome analysis using GC-MS. Linalool, copaene, sabinene,
germacrene D, β-cadinene, (−)-β-pinene, and α-pinene, (+)- were the main metabolites in
P. laetispicum fruits. The linalool content was the highest among them (Table A2). PCA
found that the main components accounted for 60.43%. The young fruit was significantly
different from the expanding, yellow, and red fruits, which was consistent with the GC-MS
results of the volatile oil.
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2.3.2. Identification and Analysis of Differential Aroma Metabolites

Metabolome analysis based on GC is useful for describing the changes in metabolites
at different stages [29]. In this experiment, the fold change (FC) in pepper fruit in the
comparison group, the p-value obtained using the t-test, and the variable projection VIP
value obtained using PLS-DS were used to screen the different metabolites. The differential
metabolites must have FC > 1.2, VIP > 1.0, and p < 0.05. A total of 41 differential metabolites
were identified in P. laetispicum fruit at the four stages. “A” had the most differential
metabolites, with four downregulated metabolites and sixteen upregulated metabolites;
“C” took second place, with four downregulated metabolites and one upregulated metabo-
lite; and “B” had the least, with three downregulated metabolites and one upregulated
metabolite. As the fruits developed and ripened, the metabolites gradually changed, which
was the most obvious from the young to the expanding fruit stages, with most metabolites
being upregulated. After the expanding fruit stage, the metabolites changed more slowly
(Figure 4a–c). The quantitative analysis results show that the content of the differential
metabolite trans-2-pentenal gradually decreased from the young to the red fruit stages
(Table A2). Trans-2-pentenal is mainly found in spices and has a significant inhibitory effect
on cancer cell growth and almost no effect on normal cells [30].

2.3.3. Metabolic Pathways of Differential Aroma Metabolites

According to the KEGG database, at p < 0.5, the enrichment pathways of the dif-
ferential metabolites of “A”, “B”, and “C” were analysed. As shown in Figure 4d,e, the
differential metabolites of “A” were involved in propionate and carbon metabolism and
indole alkaloid synthesis, while the differential metabolites of “B” were involved in pheny-
lalanine metabolism. In these metabolic pathways, the differential metabolites methanol
and propionaldehyde were upregulated, and phenacetaldehyde was downregulated. Pro-
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pionate [31], phenylalanine [32], carbon metabolism [33], and indole alkaloid synthesis [34]
are important metabolic pathways for the development of P. laetispicum fruit.
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levels of metabolites in the different groups (log2FoldChange), and the vertical coordinates represent
the significance level of the differences (−log10p-value). Each point in the volcanic map repre-
sents a metabolite. The red dots represent the significantly upregulated metabolites, and the green
dots represent the significantly downregulated metabolites. The dot size represents the VIP value.
(d,e) A KEGG-enriched bubble diagram. The horizontal coordinate is x/y (the number of differential
metabolites in the corresponding metabolic pathway/the total number of identified metabolites
in the pathway). A higher value indicates a higher concentration of differential metabolites in the
pathway. The colour of the dots represents the p-value of the hypergeometric test, and a smaller value
represents a more reliable and statistically significant test. The dot size represents the number of
differential metabolites in the corresponding pathway, and a larger point represents more differential
metabolites in the pathway.

3. Materials and Methods
3.1. Materials

Fresh young (60 days after pollination), expanding (90 days after pollination), yellow
(120 days after pollination), and red fruits (150 days after pollination) of P. laetispicum were
collected from a germplasm nursery at the Institute of Spices and Beverage Research, the
Chinese Academy of Tropical Agricultural Sciences, Hainan, China. The four developmen-
tal stages were recorded as YG, PD, Yellow, and Red (Figure 5). After being collected, the
fruits were washed, dried, ground, screened, and then stored in closed hermetic bags at
25 ◦C.
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3.2. Crude Fat Determination

The crude fat content was determined by using ultrasonic-assisted extraction. Briefly,
3 g (M0) of P. laetispicum fruit powder was put into a centrifuge tube (M2), 27 mL of
petroleum ether was added, and the mixture was then placed into a 25 ◦C ultrasonic
machine for 20 min. It was then centrifuged at 8000 r/min and 25 ◦C for 10 min. Ultrasound
treatment and centrifugation were performed twice. The supernatant was taken, the excess
petroleum ether was volatised, and the precipitate was dried in a 95 ◦C drum for 4 h. It was
then weighed after cooling (M1). The crude fat content was calculated using Equation (1)
(mass accurate to the tens of thousands):

X =
(M1 − M2)

M0
× 100% (1)
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where X represents the percentage of crude fat, M1 denotes the centrifuge tube and residual
masses, M2 indicates the centrifugal tube weight, and M0 represents the P. laetispicum
powder weight.

3.3. Total Ash Content Measurement

The total ash content was determined based on the National Standard [35]. Briefly,
2 g of P. laetispicum powder was put into a crucible and then placed on an electric stove to
carbonise the sample. After, it was baked in a furnace at 550 ◦C for 4 h. The ash left in the
crucible was weighed.

3.4. Determination of Piperine Level

The piperine content was measured based on the National Standard [36]. Briefly,
3 g of P. laetispicum powder was heated at 80 ◦C for 3 h before being put into a 100 mL
volumetric bottle. Then, 3 mL was placed into a 25 mL volumetric bottle, and the content of
piperine was detected using high-performance liquid chromatography (HPLC). The HPLC
conditions were as follows: We used an Eclipse XDB C18 column (4.6 mm × 250 mm, 5 µm)
(Agilent Technologies, Palo Alto, CA, USA); a mixture of methanol and water at a volume
ratio of 77:23 was used as a mobile phase; the column temperature was 30 ◦C; the flow rate
was 1.0 mL/min; the detection wavelength was 343 nm; and the sample size was 10 µL.
The piperine standard concentration gradients were 0.4 mg/mL, 0.8 mg/mL, 1.2 mg/mL,
1.6 mg/mL, and 2.0 mg/mL. A standard curve was drawn, and the results were calculated.

3.5. Steam Distillation Combined with GC-MS Analysis of Volatile Oil Compound (VOCs)

The fruit essential oil was extracted using steam distillation [37]. Briefly, 30 g of
P. laetispicum powder was added to 300 mL of pure water. Distillation was then performed
under continuous boiling conditions (approximately five drops per minute, dripped from
the condenser) for 3 h, and the essential oil was collected. Hexane was diluted 200 times
and detected using GC-MS.

The GC conditions were as follows: We used TG-WAXMS (30 m × 0.25 mm × 0.25 m)
(Thermerscheer Technology, Shanghai, China); splitless injection was performed; the injec-
tion port temperature was 250 ◦C; the injection volume was 0.5 uL; the solvent delay was
4 min; the carrier (helium) purity was 99.999%; and the flow rate was 1 mL/min. The initial
column temperature was 40 ◦C, which was maintained for 5 min. It was then increased
to 220 ◦C at a rate of 4 ◦C/min, maintained for 5 min, and then increased to 300 ◦C at
10 ◦C/min for 5 min.

The MS conditions were as follows: the electron impact energy was 70 eV; the ion
source temperature was 230 ◦C; the transmission line temperature was 300 ◦C; and the
scanning range was 30-400 amu.

An NIST14 spectral library search and retention index qualitative determination were
conducted to identify the volatile compounds. The area normalisation approach was used
to calculate the relative content of each of the chemicals. The formula for calculating the
linear retention index (LRI), where the number of carbon atoms in n-alkanes was C7–C30,
was as follows:

LRI = 100 × (n +
t − tn

tn+1 − tn
)

where n and n + 1 represent the number of carbon atoms of n-alkane before and after the
compound was measured, respectively. tn and tn+1 denote the peak retention time of the
corresponding n-paraffin, and this was the peak retention time of the component that was
measured (tn < t < tn+1).

3.6. Solid-Phase Extraction Combined with GC-MS for the Analysis of Aroma Metabolites

Metabolite extraction: The fruits were placed into a sterile centrifuge tube, and then
quickly frozen in liquid nitrogen for 15 min. They were then stored at −80 ◦C for later
use. Firstly, an appropriate amount of sample was added to a 20 mL headspace vial,
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and 4 mL saturated sodium chloride aqueous solution was added. Then, 10 µL of an
internal standard solution was added to each sample and then incubated at 60 ◦C for
10 min. An SPME fibre was put into a chamber at 270 ◦C for 10 min before each sample
was extracted. The SPME was incubated at 60 ◦C for 40 min, and it was desorbed at 250 ◦C
for 5 min in a GC injector. Finally, the SPME fibre was put in a chamber at 270 ◦C for
10 min after the injection step.

GC-MS analysis: Analyses were conducted using a LECO Pegasus® 4D instrument
(LECO, St. Joseph, MI, USA) consisting of an Agilent 8890A GC (Agilent Technologies,
Palo Alto, CA, USA) system equipped with a split/spitless injector and a dual-stage
cryogenic modulator (LECO) coupled with a TOF-MS detector (LECO). An Rxi-5Sil MS
(30 m × 250 µm I.D., 0.5 µm) (Restek, Bellefonte, PA, USA) was used as the first-dimension
column (1 D) and an Rxi-17Sil MS (2.0 m × 150 µm I.D., 0.15 µm) (Restek, USA) was used
as the second-dimension column (2 D). The carrier gas was high-purity helium (>99.999%)
with a constant flow rate of 1.0 mL/min. The oven temperature was maintained at 50 ◦C for
1 min and then raised to 170 ◦C at a rate of 2 ◦C/min and held for 1 min. It was then raised
to 230 ◦C at a rate of 30 ◦C/min and maintained for 1 min. The second oven temperature
was 5 ◦C higher than that of the first oven. The temperature of the modulator was 3 ◦C
higher than the temperature of the second column. The modulator was operated with a 0-s
modulation period and the GC injector temperature was 250 ◦C.

The acquisition frequency was 20 spectra/s. The mass spectrometer was operated in
the EI mode at 70 eV with a range of m/z 35–550 and a detector voltage of 1984 V.

3.7. Statistical Analysis

All the experiments were repeated three times, and the results are presented as
means ± standard deviation (SD). The data were analysed using one-way ANOVA, fol-
lowed by Spass to determine the differences between the samples (p < 0.05). Following
Excel 2021 selection and the treatment of detected volatiles, principal component analysis
(PCA) was performed, and stacked bar charts were created using Origin2022. TBtools was
used for hierarchical clustering. The analysis of aroma metabolite raw data, including
peak extraction, baseline adjustment, deconvolution, alignment and integration, was per-
formed using Chroma TOF (V4.72.0.0) software, and the NIST2017 database was used for
metabolite identification by matching the mass spectrum and retention index.

4. Conclusions

P. laetispicum was found to have high contents of protein and fat, and it was rich
in VOCs and metabolites. VOCs can be divided into alcohols, alkenes, ketones, esters,
and benzenes based on their functional groups. The principal component analysis found
that alcohols, alkenes, and esters contributed the most to PC1. Non-targeted metabolome
analysis found the metabolites to be the most abundant in linalool. There were more
different aromatic metabolites from the young to expanding fruit stages. The contents of
protein, crude fat, and ash in the young fruit stage were higher than those in the other three
growth stages. The differences in the VOCs and aroma metabolites between the young
and red fruit stages were the greatest. Nutrient composition is the carrier of many drugs’
metabolism in the human body, and too few nutrients affect the human body’s ability to
accept drugs. In this study, the nutrient content of young fruit was higher, so it can be
better utilised. Most of the aroma components of P. laetispicum have medicinal effects and
can be used to extract essential oils. The four fruit stages were dominated by alkenes. The
relative content of alcohols in the young fruit stage and the relative content of alkenes in the
red fruit stage were the highest in the four fruit stages. The extraction of oil from fruits at
different growth stages is essential. The results of this study demonstrate the differences in
the nutrients and aroma components in the four developmental stages of P. laetispicum fruit.
This study may accelerate subsequent research on the effective utilisation of P. laetispicum.
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7 Copaene 19.3107 9.11 ± 0.79 a 6.07 ± 1.63 a 4.02 ± 2.73 a 10.65 ± 1.29 a 
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11 2-undecanone 21.87925 4.43 ± 0.14 a 3.90 ± 0.07 a 4.59 ± 0.34 a 4.04 ± 0.28 a 
12 β-caryophyllene 21.9228 1.66 ± 0.20 c 2.24 ± 0.29 bc 1.62 ± 0.8 b 4.02 ± 0.57 a 
13 α-terpineol 23.8872 1.14 ± 0.09 a 0.95 ± 0.69 a 0.24 ± 0.15 a 0.17 ± 0.15 a 
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Table A1. Content table of volatile oil compounds in P. laetispicum fruit at four developmental stages (few aroma compounds).

No. Category LRI Type ID Component Relative Percentage (%) ± SD Percentage

YG PD Yellow Red

1 1160.95 Alcohols8 (Z)-p-2-menthen-1-ol 0.08 ± 0.02 a 0.04 ± 0.00 a —— 0.02 ± 0.00 a

2 1230.99 Alcohols9 (Z)-piperitol 0.03 ± 0.01 a 0.02 ± 0.00 a —— ——
3 1602.14 Alcohols10 (+)-viridiflorol 0.04 ± 0.00 a —— —— 0.02 ± 0.00 a

4 1623.13 Alcohols11 Nerolidol —— 0.03 ± 0.01 a —— ——
5 1585.47 Alcohols12 (±)-trans-nerolidol —— —— 0.05 ± 0.00 a ——
6 1584.46 Alcohols13 1,7-dimethyl-4-propan-2-ylcyclodeca-2,7-dien-1-ol —— —— —— 0.01 ± 0.00 a

7 1656.94 Alcohols14 α-muurolol —— —— —— 0.01 ± 0.00 a

8 1421.97 Alkenes25 (−)-α-gurjunene 0.06 ± 0.04 a 0.01 ± 0.00 b 0.01 ± 0.00 b 0.01 ± 0.00 b

9 1609.61 Alkenes26 Caryophyllene oxide 0.07 ± 0.01 a —— 0.06 ± 0.01 a 0.07 ± 0.00 a

10 945.62 Alkenes27 Camphene —— —— —— 0.03 ± 0.00 a

11 1348.95 Alkenes28 (−)-α-cubebene —— —— —— 0.08 ± 0.00 a

12 1438.85 Alkenes29 α-guaiene —— —— —— 0.01 ± 0.00 a

13 1264.51 Esters2 Linalyl anthranilate —— —— 0.02 ± 0.00 a ——

14 1184.43 Ketones2 2,6,6-trimethyl-2,4-Cycloheptadien-1-one —— —— 0.02 ± 0.00 a ——
15 1172.96 Ketones3 Umbellulon —— —— —— 0.01 ± 0.00 a

Different lowercase letters in the same column indicate significant differences between treatments (p < 0.05). ——, not detected.
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Table A2. Table of fruit aroma content components of P. laetispicum at developmental stage detected
by using non-targeted metabolome (Some major metabolites).

No. Type ID RT (min) YG PD Yellow Red

1 α-pinene, (+)- 5.2686 2.61 ± 0.15 c 3.81 ± 0.23 b 3.91 ± 0.27 b 5.04 ± 0.31 a

2 (−)-β-pinene 7.38094 0.74 ± 0.05 b 2.85 ± 0.19 a 3.26 ± 0.38 a 5.09 ± 0.49 a

3 Sabinene 8.0155 1.61 ± 0.60 a 10.26 ± 0.88 b 9.18 ± 1.85 b 8.45 ± 3.33 ab

4 Trans-2-pentenal 8.30661 0.02 ± 0.00 a 0.01 ± 0.00 a 0.01 ± 0.00 a 0.00 ± 0.00 a

5 Myrcene 9.14548 1.81 ± 0.08 ab 1.07 ± 0.32 bc 1.07 ± 0.32 c 1.14 ± 0.38 a

6 α-cubebene 18.4893 2.04 ± 0.13 a 0.71 ± 0.32 b 0.87 ± 0.52 ab 1.57 ± 0.96 ab

7 Copaene 19.3107 9.11 ± 0.79 a 6.07 ± 1.63 a 4.02 ± 2.73 a 10.65 ± 1.29 a

8 Linalool 20.7709 17.17 ± 0.54 ab 12.18 ± 3.20 b 14.05 ± 0.98 a 15.36 ± 1.04 ab

9 α-bergamotene, (e)-(−)- 21.7403 1.17 ± 0.13 b 1.05 ± 0.36 b 1.52 ± 0.73 b 2.17 ± 2.27 a

10 4-terpineol, (−)- 21.7968 0.86 ± 0.25 a 2.28 ± 1.20 ab 1.82 ± 0.59 b 0.51 ± 0.00 b

11 2-undecanone 21.87925 4.43 ± 0.14 a 3.90 ± 0.07 a 4.59 ± 0.34 a 4.04 ± 0.28 a

12 β-caryophyllene 21.9228 1.66 ± 0.20 c 2.24 ± 0.29 bc 1.62 ± 0.8 b 4.02 ± 0.57 a

13 α-terpineol 23.8872 1.14 ± 0.09 a 0.95 ± 0.69 a 0.24 ± 0.15 a 0.17 ± 0.15 a

14 Gamma-muurolene 23.97825 1.14 ± 0.09 a 0.47 ± 0.22 a 0.97 ± 0.64 a 0.62 ± 0.24 a

15 Germacrene D 24.3739 1.31 ± 0.21 ab 3.71 ± 0.84 a 6.00 ± 2.54 ab 12.68 ± 2.02 b

16 Bicyclogermacren 24.9042 1.97 ± 0.37 a 2.92 ± 0.05 b 1.94 ± 1.23 b 2.66 ± 1.19 a

17 β-cadinene 25.6386 6.53 ± 0.54 a 4.77 ± 2.00 ab 7.64 ± 3.11 b 8.3 ± 3.50 b

Different lowercase letters in the same column indicate significant differences between treatments (p < 0.05).
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