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Abstract: The ionic association of Alcian Blue dye with poly(styrene sulfonate) in aqueous solutions
was studied for analytical purposes. The quadruple-charged cationic dye, Alcian Blue, was found to
form colloidal ionic associates with poly(styrene sulfonate) anions. When the amounts of opposite
charges are nearly equal, the resulting ionic associates lose solubility and coagulate rapidly. This
effect occurs within a narrow range of the ratio of poly(styrene sulfonate) to Alcian Blue. At the
point of charge equivalence, the zeta potential of the resulting particles is zero, which facilitates
flocculation. The resulting flocs enlarge to approximately 0.05–0.5 mm and precipitate rapidly. FTIR
spectroscopy confirms that the precipitate contains both poly(styrene sulfonate) and Alcian Blue
dye. Sedimentation kinetics was studied in detail using scanning turbidimetry. Due to the high
molar absorbance of the Alcian Blue dye at 600 nm, the point of equimolar charge ratio was precisely
determined by spectrophotometry. The complete precipitation of ionic associates occurs when the
amount of poly(styrene sulfonate) ranges from 1.4 to 1.55 mmol per 1 g of Alcian Blue dye. Such
a narrow coagulation range allows for the use of the studied effect for quantitative analysis. Both
Alcian Blue dye and poly(styrene sulfonate) can be quantified if one of their concentrations is known.

Keywords: ionic association; charge neutralization; cationic dye; anionic polyelectrolyte

1. Introduction

In aqueous solutions, ionic macromolecules create an increased charge density and
therefore strongly attract oppositely charged ions. The association of a polyelectrolyte with
counterions increases as its molecular weight increases [1]. In the case where the oppositely
charged ions are single-charged amphiphiles, electrostatic attraction is accompanied by
hydrophobic interactions, often resulting in phase separation. Possible scenarios depend
largely on the ratio of amphiphilic to macromolecular charges. When the amounts of oppo-
site charges are equal, the resulting ionic associates usually lose solubility and coagulate [2].
When the charge ratio is far from stoichiometric, the resulting ionic associates have excess
charge and may be colloidally stable [2,3].

When counterions have multiple charges, their electrostatic attraction to ionic macro-
molecules increases proportionally. Therefore, oppositely charged polyelectrolytes form
particularly strong complexes [4]. Polyelectrolyte complexes have tunable properties and
are therefore an attractive topic in various areas of science. For example, polyelectrolyte
complexes have many biomedical [5,6] and environmental [7] applications. Polyelectrolyte
complexes can be used in 3D printing techniques [8–10]. Polyelectrolyte complexes can
also be used to build dielectric layers. Examples are poly(vinylidene fluoride) latex with
chitosan [11,12] and polyethyleneimine with poly(acrylic acid) and clay [13]. It was noticed
that the best dielectric properties are at the equimolar amounts of oppositely charged
polyelectrolytes. For example, poly(vinylidene fluoride)@chitosan dielectric films with
equimolar charge ratios have the highest values of breakdown strength and capacitor
energy density [11].
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The concept of the equimolar charge ratio has proven particularly useful in studying
colloidal suspensions of polyelectrolyte complexes. When the charge ratio is close to being
equimolar, the properties of colloidal suspensions change abruptly. The greatest changes
occur in the charge of colloidal particles, which reverses at the equimolar point [11,14].
At the charge neutralization point, the hydrodynamic radii of polyelectrolyte complexes
increase significantly [14]. Near the equimolar ratio, the suspensions have minimal surface
tension, while the supernatants have maximal surface tension [14]. The spectacular macro-
scopic phenomenon is the loss of colloidal stability of polyelectrolyte complexes [11,14].
The colloidal stability of equimolar complexes substantially depends on the properties of
the constituent polyelectrolytes. A weak polyelectrolyte complex is a rather soft coacervate
equilibrated with polyions in a solution, whereas a strong polyelectrolyte complex forms a
solid-like precipitate, resulting in complete phase separation [14].

The formation of strong ion associates can be used to measure the charge density of
polyelectrolytes. For example, surface tension measurements allow for the exact determina-
tion of the charge stoichiometry [14]. The fast coagulation of polyelectrolyte colloids was
used for the quantitative determination of carrageenan using turbidimetric titration with
poly(diallyldimethyl ammonium) chloride [15]. In this context, ion associates of polyelec-
trolytes with oppositely charged dyes have the advantage that coagulation measurements
can be easily performed by spectrophotometry. However, typical dyes are mono-charged
and therefore produce weak ion associates that are sensitive to changes in pH and ionic
strength. To improve the electrostatic attraction, the quadruple-charged cationic dye Alcian
Blue (AB) was used in the present study (Figure 1a). Fortunately, AB dye has quite a
high molar absorbance, which facilitates spectrophotometric measurements. AB absorbs
light in the wavelength range from 550 to 750 nm, with a maximum of around 605 nm
(Figure 1b). In this article, the interaction of AB dye with poly(styrene sulfonate) (Figure 1c)
was studied. Poly(styrene sulfonate) (PSS) is known to form strong ion associates with
cationic surfactants [16], cationic polymers and cationic dyes [17,18]. PSS ionic associates
are prone to further agglomeration due to the presence of multiple aromatic rings in PSS
macromolecules, which interact with each other via π–π stacking. As a result, the ionic
associates of PSS rapidly undergo phase separation.
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Figure 1. (a) Alcian Blue-tetrakis(methylpyridinium) chloride; (b) the absorption spectrum of Alcian
Blue dye solution of 47.9 mg/L; (c) Poly(sodium 4-styrenesulfonate).

No comprehensive reports on the interaction of PSS and AB have been published so
far. The only report briefly describes the interaction of AB with PSS among other anionic
polymers [19]. Therefore, this paper describes the ion association of PSS and AB, with
particular emphasis on aggregation and sedimentation.
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2. Results and Discussion
2.1. Coagulation of Ion Associates of Poly(styrene sulfonate) with Alcian Blue Dye

As shown in Figure 2, coagulation occurs in a rather narrow range of PSS doses. At
the end of the coagulation window, PSS doses vary from 1.35 to 1.65 mmol/g. However, in
the case of oppositely charged polyelectrolytes, the coagulation window is broader. For
example, intense coagulation of PSS and poly(diallyldimethylammonium chloride) occurs
at a molar charge ratio of 0.6 to 1.7 [14]. This wide range of coagulation is likely due to
the cooperative aggregation of entangled macromolecules because these polyelectrolytes
interact strongly. For comparison, the weak polyelectrolyte poly(acrylate sodium) and
the strong polyelectrolyte poly(diallyldimethylammonium chloride) coagulate in the nar-
rower range of a molar charge ratio of 1 to 1.7 [14]. Another example is the coagulation of
poly(vinylidene fluoride) latex with carboxylate anions by chitosan, which occurs at the
mass fraction of chitosan from 0.4 to 0.9% [11]. Against this background, the narrow coagu-
lation window in the PSS-AB system is a promising premise for studying this phenomenon
in the context of using it in quantitative analysis.
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doses of PSS illustrate the coagulation process (Figure 3). Both samples with a molar 
excess of AB (Figure 3a) or PSS (Figure 3e) contain fine particles (up to approx. 50 µm). 
Such small particles remain suspended for a long time (compare Figure 2c). Within a 
narrow range of component proportions, the particles of ion associates stick together 
(Figure 3b–d), forming large flocs with a size of approx. 0.3 mm and larger. This causes 
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Figure 2. Images of PSS-AB mixed solutions taken after (a) 5 min, (b) 1 h and (c) 24 h of sedimentation.
The PSS:AB ratios are the same for the corresponding samples in parts a, b and c of the figure. The
concentration of AB dye is 275 mg/L in all of the samples. The sample volume is 7 mL.

2.2. Particle Size and Charge

Micro-images of the suspensions containing a constant dose of AB dye and various
doses of PSS illustrate the coagulation process (Figure 3). Both samples with a molar excess
of AB (Figure 3a) or PSS (Figure 3e) contain fine particles (up to approx. 50 µm). Such small
particles remain suspended for a long time (compare Figure 2c). Within a narrow range of
component proportions, the particles of ion associates stick together (Figure 3b–d), forming
large flocs with a size of approx. 0.3 mm and larger. This causes rapid sedimentation
(Figure 2).
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Figure 3. Micro-images of the precipitates obtained at PSS/dye ratios of (a) 1.2; (b) 1.35; (c) 1.45;
(d) 1.65; and (e) 1.9 mmol/g. The AB concentration is 38.4 mg/L.

Particle size and charge measurements using a Zetasizer confirmed significant changes
depending on the PSS-to-AB ratio (Figure 4). At a low PSS-to-AB ratio of 1.15–1.35 mmol/g,
the particles of ionic associates carry a positive charge (Figure 4a). The identical charge of
suspended particles prevents their aggregation (compare Figure 3) and ensures colloidal
stability (compare Figure 2). An increase in the PSS-to-AB ratio to 1.49 mmol/g and above
causes the charge of the suspended particles to change from positive to negative (Figure 4a).
Under the conditions of a uniform negative charge, the dispersed particles also show
stability, as illustrated in Figures 2 and 3.
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Figure 4. (a) The average size and zeta potential of suspended particles depending on the ratio
of PSS amount to AB mass. The dotted lines indicate the point of zero potential. (b) Particle size
distributions in suspensions with indicated PSS:AB ratios. The dye concentration in all samples is
287.6 mg/L.

It is worth noting that the negative zeta potential reaches higher absolute values
(i.e., 29–32 mV) compared to those of positive zeta potential (20.6 mV). The reason is
that the negative charge comes from the excess of PSS, while the positive charge comes
from the excess of AB. PSS is well known as a strong anionic polyelectrolyte due to
its well-dissociated sulfonate groups [20]. The actual dissociation degree is difficult to
determine due to the strong attraction between polyions and counterions. This effect,
known as counterion condensation, reduces the effective charge of polyelectrolytes and
polyelectrolyte complexes [21].

Using interpolation of the experimental relationship of zeta potential, the critical
ratio of PSS to AB was found to be 1.424 mmol/g (Figure 4a). It is the ratio of PSS to AB
that provides equimolar amounts of negative and positive charges. The obtained value
agrees well with the coagulation window determined on the basis of sedimentation tests
(Figure 2c). The zero charge on the particles allows them to flocculate, which causes the
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particle size to increase. Therefore, the size of suspended particles reaches a maximum near
the critical PSS-to-AB ratio (Figure 4a). This relationship agrees well with the microscopic
observations shown in Figure 3. Very similar relationships of zeta potential and particle size
with the component ratio were observed in the mixtures of poly(vinylidene fluoride) with
chitosan [11]. With the increase in the amount of the cationic component (chitosan), the
charge of the suspended particles changes from negative to positive, whereas the particle
size increases rapidly and reaches a maximum only at zero particle charge [11]. This fact
clearly indicates that it is the zero charge that causes the aggregation of particles.

The numerical values of the particle sizes in Figure 4a are different from the particle
sizes recorded in the micro-images (Figure 3). This is because extensive flocculation occurs
in the tested suspensions. Figure 3 shows quite large flocs, while small particles are also
present in the suspensions. Particles smaller than 1 µm are invisible in the microscopic
image; however, Figure 4b reveals their presence. The particle size distributions in Figure 4b
are multimodal, indicating that flocculation is ongoing. It is likely that the flocs’ equilibrium
state was disturbed during the measurement.

2.3. Composition of the Ionic Associates

Figure 5 shows the FTIR spectra of ionic associates precipitated at the equimolar PSS:AB
ratio. The spectra contain the bands characteristic of both poly(styrene sulfonate) [22] and
Alcian Blue dye [23].
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Figure 5. The FTIR spectra of poly(styrene sulfonate), Alcian Blue dye and their ionic associates at
the equimolar PSS:AB ratio. The concentration of the AB dye solution used to form the associates
was 767 mg/L (associate 1) and 1150 mg/L (associate 2).

The absorption bands at 1603, 1498, 1408, 1120 and 1005 cm−1 are characteristic of
the PSS aromatic ring [22,24,25]. The sharp peak at 1005 cm−1 is attributed to the in-plane
bending vibration of the benzene ring [1,26]. The bands at 1442 cm−1 and 838 cm−1 indicate
a benzene ring disubstituted in the para positions [25]. The peaks at 778 and 680 cm−1 are
attributed to the C–H vibration in the aromatic ring [25,27]. The absorption bands at 2910
and 2843 cm−1 are attributed to the stretching vibration of the –CH2– group [24,25].

The presence of sulfonate anions is manifested by strong absorbance bands at 1035
and 1173 cm−1, which are attributed to the symmetric and antisymmetric stretching of the
O=S=O group, respectively [22,24–26]. The asymmetric and symmetric vibrations of the
sulfonate group also result in the bands at 1498 cm−1 and 1408 cm−1 [27]. These bands
can also be ascribed to the vibration of the aromatic ring [18]. The broad band centered at
3426 cm−1 and the weak band at 1632 cm−1 indicate the presence of H2O molecules [25,26],
probably adsorbed at polar sulfonate groups.

The FTIR spectrum of Alcian Blue dye contains a wide absorption band in the range
of 3400 to 3200 cm−1 (Figure 5). This band is not assigned to a functional group but is
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characteristic of Alcian Blue dye [23]. The sharp peaks at 1610, 1486, 1390, 1151, 1102 and
735 cm−1 can be attributed to N-substituted pyridinium [28].

The spectra of the precipitated ionic associates contain all of the mentioned peaks
(Figure 5). This confirms that the ionic associates contain both poly(styrene sulfonate) and
Alcian Blue dye. The spectra of ionic associates obtained at different initial concentrations
of AB are almost identical (Figure 5). This fact indicates that the composition of the ionic
associates is stable.

2.4. Sedimentation of Dye–Polymer Associates

Figure 6 shows the graphs of light transmittance as a function of the height of the
cuvette, recorded successively at an interval of 1 min for mixtures with different PSS:AB
ratios. The obtained sedimentation profiles are quite different, indicating that the tested
suspensions have different stabilities.

The least stable is the suspension with the PSS:AB ratio of 1.47 mmol/g (Figure 6c).
Compared to the other tested suspensions, the initial transmittance is comparable (below
10%), but the final transmittance is the highest (over 70%). This suspension shows the
fastest changes in the transmittance profile. The light transmission in the top layer (from
46 to 50 mm) significantly decreases within the first 2 min. The clear top layer expands
rapidly within 8–10 min. The random fluctuations on the sedimentation profiles are from
large settling flocs (compare Figure 3c), whereas immobile sharp peaks are from small
flocs attached to the cuvette walls. After 8 min, an opaque bottom layer of 20–22 mm is
formed. The sediment layer is clearly visible in the inserted image of the measuring vessel
(Figure 6c). Complete sedimentation takes more than 3 h.

When the PSS:AB ratio differs from the equimolar value of 1.47 mmol/g, sedimentation
occurs more slowly, and the formation of the sediment layer takes longer (Figure 6a,b,d,e).
Compared with the equimolar suspension, the suspensions with the PSS:AB ratios of
1.27 and 1.72 mmol/g have a lower final transmittance and a lower final height of the
sediment layer (Figure 6b,d). The suspension with the PSS:AB ratio of 1.15 mmol/g is
rather stable—the transmittance value increases insignificantly, i.e., from 7 to 15%, and
the sediment layer is only 5 mm (Figure 6a). The suspension in which the ratio of the
components is 2.8 mmol/g behaves similarly (Figure 6e).

Figure 7a shows the values of the Turbiscan Stability Index (TSI). The parameter TSI
indicates relative changes in the tested suspensions. Three stages are visible in the TSI
graphs: an initial slow increase in TSI values, and then a rapid increase followed by a final
slow increase. These stages are more clearly visible in Figure 7b, which shows the time
derivatives of the TSI function (∆TSI). The first step is the induction time required for the
agglomeration of hydrophobic ionic associates. The derivative TSI plot at the equimolar
PSS:AB ratio does not show any induction time, which indicates that quick agglomeration
occurs. The second stage is characterized by rapid changes in TSI values and corresponds
to the rapid sedimentation of large flocs. The shift in the position of the maxima, which
determine the point of inflection of the curves, well reflects the relationship between the
induction time and the ratio of the mixture components, too. The final step, with minor
changes to the TSI values, is the slow sedimentation of the remaining fine particles. The
fine particles are well suspended and require quite a long time to settle (Figure 7a).

The values of the TSI at different PSS:AB ratios clearly indicate the maximum at
the ratio of 1.47 mmol/g (Figure 8a). The same inference comes from the graphs of the
final suspension transmittance (Figure 8b) and the height of the precipitate (Figure 8c).
It is worth noting that only with a nearly equimolar composition of the mixture are the
agglomerates formed large enough for the precipitate to be visible in the entire sample
volume in the first minutes (compare Figures 2a and 8c). Thus, Figures 6–8 clearly indicate
that the rapid sedimentation of ionic associates of PSS and AB takes place in the narrow
range of the PSS:AB ratio.
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Figure 6. The light transmission profiles during the sedimentation of the mixed polymer–dye
suspensions (the most intense sedimentation is indicated by arrows). The dye concentration in all
samples is 661.1 mg/L, and the amount ratio of PSS to AB is (a) 1.15 mmol/g; (b) 1.27 mmol/g;
(c) 1.47 mmol/g; (d) 1.72 mmol/g; and (e) 2.80 mmol/g. The sample volume is 26.1 mL.
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Figure 8. The characteristic sedimentation parameters read from Figures 6 and 7. (a) The values of
the TSI after 10 min and 120 min of sedimentation; (b) the initial and final transmittances at the height
of 30 mm; and (c) the initial and final height of the precipitate depending on the PSS:AB ratio. The
colors of the points refer to the PSS:AB ratio values and are the same as in Figure 7.

2.5. Determination of Charge Equivalence Point by Photometric Measurements

Figure 9a shows the absorbance of the PSS-AB mixtures, obtained using dye solutions
with various concentrations, after sedimentation for 24 h. In certain ranges of added
amounts of PSS, the absorbance values are strongly reduced. This indicates that the AB
dye has been incorporated into the ionic associate and coagulated. The recorded U-shaped
absorbance relationship agrees well with the bell-shaped transmittance relationship in
Figure 8b. The coagulation range is widened with increasing AB concentration. However,
complete sedimentation only occurs when absorbance values are zero. This is most likely
the point of charge neutralization.

The zero absorbance is observed at certain PSS amounts (Figure 9a). The higher the
AB concentration, the more PSS is needed to cause complete sedimentation. Figure 9b
shows that the critical amount of PSS at the point of complete sedimentation is directly
proportional to the quantity of AB in the solution. In other words, the critical ratio of the
PSS amount to the AB amount is a constant value. The numerical value of the charge
equivalence ratio was found to be 1.47 mmol/g (Figure 9b). This value is quite consistent
with the result of the zetametric measurements (Figure 4a). On the other hand, considering
the AB dye’s molecular weight of 1086.4 g/mol and a fourfold charge, the theoretical charge
amount per gram should be 3.67 mmol/g. These numbers indicate that the real AB dye
content in the commercial AB reagent is approx. 40%. This value differs from the supplier’s
declaration that the dye content exceeds 85%. Many commercially available samples of
Alcian Blue are known to contain 50% or less dye due to the presence of a stabilizer (boric
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acid) and fillers (sodium sulfate, dextrin, etc.) [29]. Additionally, long storage with an
insufficient stabilizer may result in reduced solubility [30]. Figure 9c shows the same data
as in Figure 9a but plotted as a function of the PSS:AB ratio. The presented plots indicate
that complete coagulation occurs in the range of a PSS:AB ratio from 1.4 to 1.55 mmol/g.
Thus, absorbance measurements allow for a fairly accurate determination of the charge
equivalence point.
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Figure 9. (a) Absorbance values in mixed polymer–dye solutions after 24 h of sedimentation. AB
concentration in samples is indicated. (b) Critical PSS amount vs. AB mass in solution. (c) Absorbance
of solutions with indicated AB concentrations depending on ratio of PSS amount to AB mass.

The spectrophotometric measurements were performed taking in mind the possible
application of the coagulation phenomenon for analytical purposes. However, the long
analysis time (e.g., 24 h, as in Figure 9) would be a disadvantage of the method. Therefore,
increased concentrations of AB were tested. The absorbance at the main peak of the AB dye
was too high, so measurements were performed at longer wavelengths. Figure 10a,d,g show
the spectra of the AB dye and equimolar AB-PSS mixtures. The corresponding spectra of the
dye and the dye–polymer mixtures are almost identical. This means that the complexation
phenomenon does not affect the optical properties of AB. The long wavelength tail of the
AB spectrum is decreasing. This allows for the selection of the working wavelength for
samples with a high dye concentration. This way is more convenient than using measuring
cuvettes with a short optical path. The working wavelengths were selected so that the
maximum absorbance values were within the range of 0.9–2.1.

Figure 10b,e,h show the changes in the absorbance values over time in samples with
different AB concentrations. The initial parts of the recorded kinetic lines depend on the
dye concentration. When the dye concentration is low, small absorbance oscillations are
observed coming from small suspended particles (Figure 10b). As the dye concentration
increases (Figure 10e,h), visible maxima appear on the lines. They are particularly visi-
ble with a large amount of precipitate, i.e., for a PSS:AB ratio of 1.37–1.72 mmol/g at a
moderate dye concentration (Figure 10e) and for a PSS:AB ratio of 1.36–1.70 mmol/g at a
high dye concentration (Figure 10h). The maxima are related to the momentary increase
in the number of sediment particles in the measuring window as the sediment settles
along the cuvette. With the largest amount of sediment, the maximum absorbance value
significantly exceeds the initial absorbance value (Figure 10h). The multiple peaks visible
in the sedimentation curves (Figure 10e) are probably due to the fact that flocs of different
sizes settle at different rates.

Regardless of the shape of the initial part of the kinetic line, it can be easily seen
that some suspensions settle rapidly, whereas other suspensions are quite stable. As
expected, the least stable suspensions are those with the equimolar charge ratio, i.e., near
to 1.47 mmol/g. Figure 10c,f,i show the absorbance values at selected time intervals
depending on the PSS:AB ratio. Figure 10c,f,i confirm that the equimolar charge ratio lies
between 1.45 and 1.5 mmol/g.
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Another important conclusion from the comparison of kinetic curves is that the
sedimentation rate increases with increasing dye concentration. At low AB concentra-
tions, almost complete sedimentation of the suspension at an equimolar charge ratio takes
200–300 min (Figure 10b). At higher AB concentrations, the sedimentation time is short-
ened to 3–8 min (Figure 10e,h). The possibility of shortening the test time by selecting
reagent concentrations is an undoubted advantage of spectrophotometric measurements.

3. Materials and Methods
3.1. Materials

Alcian Blue-tetrakis(methylpyridinium) chloride came from Sigma-Aldrich (Burling-
ton, MA, USA). According to the supplier, the dye content is equal to or greater than 85%.
The aqueous AB stock solution was filtered and stored in the dark. Working solutions of
various concentrations were obtained by diluting the stock solution with distilled water.
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Poly(sodium 4-styrenesulfonate) came from Sigma-Aldrich. According to the supplier,
the average molecular weight of PSS is approximately 70,000 g/mol. An aqueous PSS stock
solution with a concentration of 2.87 mM was used.

3.2. Methods

Suspensions of PSS-AB ionic associates were obtained by adding a dose of PSS stock
solution to a fixed dose of AB solution of a specific concentration and supplementing with
distilled water to the same volume in a given measurement series.

Micro-images in polarized light were taken approximately 0.5 h after sample prepa-
ration using a B-500 optical microscope (Optika, Ponteranica, Italy). The charge and size
of suspended particles were determined for mixtures stabilized for at least 24 h by Laser
Doppler Electrophoresis and Dynamic Light Scattering, respectively, using Zetasizer Nano-
ZS (Malvern Panalytical, Malvern, UK). ATR-FTIR spectra were recorded using an Alpha-P
spectrometer (Bruker, Billerica, MA, USA) with a diamond window.

Sedimentation profiles were recorded with a Turbiscan LAB scanning turbidimeter
(Formulaction, Toulouse, France) operating at 880 nm in transmittance mode. The Turbiscan
Stability Index (TSI) was calculated with the following formula:

TSIt =

(
H

∑
h=1

|transmittance0(h)− transmittancet(h)|
)

/H

where TSIt is the index value at time t, transmittance0(h) is the initial transmittance at
height h, transmittancet(h) is the transmittance at time t and at height h, and H is the total
number of heights under measurement.

Photometric measurements were carried out with a Genesys 50 UV-Vis spectropho-
tometer (Thermo Fisher Scientific, Waltham, MA, USA) at wavelengths of 600, 700, 750 and
800 nm using glass test tubes with a diameter of 14 mm and disposable cuvettes with an
optical path of 4 mm.

4. Conclusions

Poly(styrene sulfonate) anions and Alcian Blue dye cations form strong ionic associates.
The colloidal stability of the resulting suspension depends on the ratio of PSS to AB. When
the amounts of charges of opposite signs are not equal, the resulting suspensions are quite
stable. When the opposite charges are equal, the resulting ionic associates lose charge
and coagulate abruptly. This effect occurs within a narrow range of the PSS:AB ratio. The
fastest coagulation occurs when the amount of poly(styrene sulfonate) ranges from 1.4 to
1.55 mmol per 1 g of Alcian Blue dye. At this PSS:AB ratio, the largest amount of precipitate
is formed, and the supernatant becomes almost completely discolored. The concentrations
of PSS and AB do not affect the composition of the precipitated ionic associate. The
applicability of the presented results is due to the narrow range of coagulation. The
clearly visible coagulation of PSS-AB ionic associates is an obvious indicator that the molar
amounts of PSS and AB are equal. A narrow coagulation range allows for the determination
of PSS or AB quantity by using a simple titration procedure. For this purpose, the AB
solution of unknown concentration should be titrated with a standardized PSS solution
until coagulation occurs. Conversely, PSS solutions of unknown concentration can be
titrated with a standardized AB solution.
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