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Abstract: The removal of nitrogen trifluoride (NF3) is of significant importance in atmospheric
chemistry, as NF3 is an important anthropogenic greenhouse gas. However, the radical species
OH and O(1D) in atmospheric conditions are nonreactive towards NF3. It is necessary to explore
possible ways to remove NF3 in atmosphere. Therefore, the participation of water molecules in the
reaction of NF3 with OH was discussed, as water is abundant in the atmosphere and can form very
stable complexes due to its ability to act as both a hydrogen bond donor and acceptor. Systemic
DFT calculations carried out at the CBS-QB3 and ωB97XD/aug-cc-pVTZ level of theory suggest
that water molecules could affect the NF3 + OH reaction as well. The energy barrier of the SN2
mechanism was decreased by 8.52 kcal/mol and 10.58 kcal/mol with the assistance of H2O and
(H2O)2, respectively. Moreover, the presence of (H2O)2 not only reduced the energy barrier of the
reaction, but also changed the product channels, i.e., formation of NF2O + (H2O)2-HF instead of
NF2OH + (H2O)2-F. Therefore, the removal of NF3 by reaction with OH is possible in the presence
of water molecules. The results presented in this study should provide useful information on the
atmospheric chemistry of NF3.

Keywords: NF3 removal; OH radical; water molecules; mechanism; DFT calculation

1. Introduction

As the most extensively used perfluoro compound, nitrogen trifluoride (NF3) has
attracted great interest in recent years. NF3 is commonly used in the semiconductor
industry [1–3] and as a fluorine-supplying source in the electronic industry [4,5]. The
industrial use of NF3 had been considered safe for a long time, as it did not produce
carbon contamination residues. Hence, the production of NF3 as a substitute for other
perfluorinated gases such as CF4 and C2F6 increased dramatically in recent years [6],
resulting in a very large amount of NF3 atmospheric emissions. Unfortunately, recent
studies have warned that there is a clear risk in using NF3 [7]. Firstly, NF3 is considered
a new greenhouse gas, although it is not included in the list of greenhouse gases in the
Kyoto protocol [8,9]. In fact, NF3 has a global warming potential (GWP) of 17,200, which
is 10,800 times greater than that of CO2 when compared over a 100-year period [10–12].
Furthermore, NF3 and its decomposition products have been proposed to be toxic and pose
a health risk [8]. Because of these concerns, great interest has focused on developing new
processes to destroy or remove unreacted effluent NF3.
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To date, various methods have been reported for the adsorption and decomposition
of NF3 [13–18]. However, these methods are designed to deal with the tail gas in the
semiconductor industry and electronic industry. On the other hand, there is a significant
shortage of research on removal and decomposition processes for NF3 in the atmosphere.
Gargano et al. [19] studied two important reactions involved in the decomposition of NF3,
i.e., NF3 + F and N2 + F. Later, Cunha and coworkers [20] investigated other reactions
involved in the decomposition of NF3 employing theoretical calculations at the CCSD(T)/cc-
pVTZ level of theory, for example, NF2 + N, NF3 + NF, and the dissociation of N2F4
and N2F3. These pioneer studies provide fundamental insight into the mechanism of
NF3 decomposition.

Several studies have also focused on the removal of NF3 in the atmosphere through
the reaction with atmospheric oxidants. Wine and coworkers [21] studied the reaction
of NF3 with O(1D), measured the rate coefficient to be k(T) = 2.0 × 10−11 exp(52/T) cm3

molecule−1s−1, and suggested that the reaction with O(1D) is an important atmospheric
sink for NF3. Baasandorj and coworkers [22] also measured the rate coefficient of O(1D)
with NF3, which is in good agreement with the results of Wine and coworkers. However,
the reaction of reactive OH radical with NF3 was not mentioned. Dillon and coworkers [23]
explored the possibility of removing NF3 by reactions with the atmospheric oxidants O(1D),
OH and O3, and the results showed that the reaction rate of NF3 + OH is as slow as
2.0 × 10−29 cm3 molecule−1s−1; thus, they concluded that OH could not play an important
role in atmospheric NF3 degradation. Although the reaction of OH with NF3 is extremely
slow, the possibility of removing NF3 by reaction with OH should not be excluded because
water molecules in the atmosphere have been shown to have a significant chemical catalytic
effect on certain atmospheric reactions. Buszek and coworkers [24] reviewed the effect of
water molecules on various atmospheric reactions, including radical–molecule, radical–
radical, molecule–molecule and unimolecular reactions. It is surprising that, to our best
knowledge, the influence of water molecules on the reaction of OH + NF3 has not been
explored yet, though the reaction of OH with various molecules, such as HCOOH [25],
HNO3 [26],CH3CHO [27–29], fluoroalcohols [30], HOCl [31], glyoxal [32,33], CH4 [34],
DMSO [35], CH3OH [36–38], etc., have been studied extensively. Could additional water
molecules accelerate the reaction of OH + NF3? If the answer is positive, how do the
additional water molecules affect the reaction? Here, we decided to study the reaction
of OH + NF3 with the participation of water molecules by using computational methods.
These questions are critical for exploring the processes of removing NF3 in the atmosphere.

2. Results and Discussion

In principle, it is better to carry out benchmark calculations aiming to assess the
accuracy of the DFT methods. Fortunately, several references have proved that the ωB97XD
functional including dispersion was capable of treating various reactions [39,40]. As a result,
all the discussions are based on the data obtained from CBS-QB3//ωB97XD/aug-cc-pVTZ
methods. Moreover, as the reactions discussed here are in the gas phase, the electronic
energy with zero-point energy was employed to discuss the thermodynamics [41,42].

2.1. The Reaction of NF3 + OH

According to a previous work [22], the reaction of NF3 + OH can be carried out through
three distinct processes, i.e., the SN2 mechanism, F abstraction and H addition to the N
center. However, the energy barrier is too high for H addition to N to be of consideration.
As a result, only the SN2 mechanism and F abstraction were discussed here. As for the SN2
mechanism, an OH radical attacks the N, while one N-F bond is broken simultaneously,
forming NF2OH and F. As shown in Figure 1, the corresponding transition state is TS1
with an energy barrier of 16.04 kcal/mol. Unfortunately, the product is endothermic by
2.50 kcal/mol, indicating this process is unfavorable thermodynamically, especially in
atmospheric conditions. In the case of the F abstraction mechanism, an OH radical abstracts
F from NF3 directly, leading to the production of HFO and NF2. The transition state for this
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process is TS2, in which the OH interacts with the leaving F. As can be seen in Figure 1,
the energy barrier of TS2 (32.72 kcal/mol) is much higher than that of TS1. Moreover,
the product is endothermic by as much as 10.02 kcal/mol. These results indicate the F
abstraction process is unfeasible. In a word, although the SN2 mechanism is predominant
in comparison to the F abstraction mechanism, the reaction of NF3 + OH is difficult to
accomplish in view of thermodynamics. This is in good accordance with the extremely
slow reaction rate measured experimentally [23]. As a result, the removal of NF3 through
the gas-phase reaction with OH radial is of minor importance in atmospheric conditions.
These results are in accordance with a previous report [23].
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Figure 1. The energy profile of the NF3 + OH reaction.

2.2. The Influence of Water Molecules on the Reaction of NF3 + OH

Inspired by the fact that the participation of water molecules could affect various
atmospheric reactions in the gas phase [43–49], the influence of water molecules on the
reaction of NF3 + OH is discussed here. In the condition where one H2O participates
in the reaction, the NF3 + OH reaction takes place through two distinct process similar
to the naked reaction shown in Figure 2. The corresponding geometry structures of all
intermediates and transition states are available in Figure S1.

In contrast to the naked reaction, a pre-reactive complex formed in the entrance of
the reaction due to the existence of a hydrogen bond between H2O and the reactants. For
example, W1-RC1 and W1-RC2 are the pre-reactive complexes for the SN2 mechanism and
F abstraction mechanism, respectively, as shown in Figure 2. Attributed to the formation of
a hydrogen bond, W1-RC1 and W1-RC2 are 7.12 kcal/mol and 7.32 kcal/mol more stable
than the reactants, respectively. Starting from W1-RC1, the reaction takes place via the
SN2 mechanism. The corresponding transition state is W1-TS1. It should be noted that the
structure of W1-TS1 is similar to that of TS1, except the breaking F atom bonded to the
H2O due to the formation of an F···H···O hydrogen bond. The energy barrier of W1-TS1 is
14.64 kcal/mol, which is only 1.40 kcal/mol lower than that of TS1. Therefore, the influence
of one H2O molecule on the SN2 mechanism is negligible in view of the kinetics. On the
other hand, although the product complex W1-PC1 was located 18.84 kcal/mol below the
reactants owing to the formation of a hydrogen bond, the final product, NF2OH + H2O-F, is
endothermic by 1.90 kcal/mol, which is similar to that of PC1. It is reasonable to conclude
that an additional H2O molecule is of no influence on the SN2 mechanism in view of the
thermodynamics as well. As for the F abstraction mechanism, the corresponding transition
state is W1-TS2, with a geometry structure similar to that of TS2. Unfortunately, the relative
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energy of W1-TS2 is as high as 26.30 kcal/mol. As a result, the reaction should overcome
the energy barrier of 33.62 kcal/mol, which is even about 1 kcal/mol larger than that of
F abstraction in the absence of H2O (TS2). Thus the participation of one H2O molecule
is unable to accelerate the F abstraction process. In a word, when one additional H2O
molecule takes part in the reaction of NF3 + OH, neither the kinetics nor thermodynamics
are affected. This can be explained by the structure of the transition states. As can be seen
in Figure S1, the hydrogen transfer process is not involved in either the SN2 mechanism
or F abstraction mechanism. The additional H2O molecule only connects OH and F with
the formation of a hydrogen bond rather than assisting the hydrogen transfer. Thus an
additional, single H2O molecule only acts as a spectator rather than catalyst in the reaction
of NF3 + OH. It is not unexpected that the effects of H2O molecules on various atmospheric
reactions reported in the references do not appear here.

Molecules 2024, 29, x FOR PEER REVIEW 4 of 10 
 

 

is endothermic by 1.90 kcal/mol, which is similar to that of PC1. It is reasonable to con- 130 
clude that an additional H2O molecule is of no influence on the SN2 mechanism in view of 131 
the thermodynamics as well. As for the F abstraction mechanism, the corresponding tran- 132 
sition state is W1-TS2, with a geometry structure similar to that of TS2. Unfortunately, the 133 
relative energy of W1-TS2 is as high as 26.30 kcal/mol. As a result, the reaction should 134 
overcome the energy barrier of 33.62 kcal/mol, which is even about 1 kcal/mol larger than 135 
that of F abstraction in the absence of H2O (TS2). Thus the participation of one H2O mol- 136 
ecule is unable to accelerate the F abstraction process. In a word, when one additional H2O 137 
molecule takes part in the reaction of NF3 + OH, neither the kinetics nor thermodynamics 138 
are affected. This can be explained by the structure of the transition states. As can be seen 139 
in Figure S1, the hydrogen transfer process is not involved in either the SN2 mechanism or 140 
F abstraction mechanism. The additional H2O molecule only connects OH and F with the 141 
formation of a hydrogen bond rather than assisting the hydrogen transfer. Thus an addi- 142 
tional, single H2O molecule only acts as a spectator rather than catalyst in the reaction of 143 
NF3 + OH. It is not unexpected that the effects of H2O molecules on various atmospheric 144 
reactions reported in the references do not appear here. 145 

 146 
Figure 2. Energy profiles of one additional H2O participating in the reaction of NF3 + OH. 147 

2.3. The Influence of an Additional Two H2O Molecules on the NF3 + OH Reaction 148 
The structures of various pre-reactive complexes and transition states for the NF3 + 149 

OH reaction with an additional two H2O are shown in Figure 3. In contrast to the reaction 150 
with one participating H2O, there are three possible processes, as can be seen from the 151 
corresponding potential energy profiles (see Figure 4). 152 

For the SN2 mechanism, the structure of the pre-reactive complex W2-RC1 is ex- 153 
tremely similar to that of W1-RC1. However, the F-H bond in W2-RC1 is 0.3 Å shorter 154 
than that of W1-RC1, and the distance of N-O is reduced by about 0.2 Å. This could be 155 
attributable to the stabilization energy provided by the hydrogen bond of two H2O mole- 156 
cules, and could be proved by the energy of W2-RC1, which is 8 kcal/mol more stable than 157 
that of W1-RC1. The transition state corresponding to the broken N-F bond and N-O bond 158 
formation is W2-TS1, with an energy barrier of 12.17 kcal/mol. Moreover, W2-TS1 is lo- 159 
cated 3.06 kcal/mol below the initial reactants; thus, this transformation is accessible ki- 160 
netically. It should be attributed to the direct participation of (H2O)2 in the reaction as a 161 
proton shuttle. As shown in Figure 3, the F-H in the W2-TS1 bond has shrunk to 1.89 Å, 162 

Figure 2. Energy profiles of one additional H2O participating in the reaction of NF3 + OH.

2.3. The Influence of an Additional Two H2O Molecules on the NF3 + OH Reaction

The structures of various pre-reactive complexes and transition states for the NF3 + OH
reaction with an additional two H2O are shown in Figure 3. In contrast to the reaction
with one participating H2O, there are three possible processes, as can be seen from the
corresponding potential energy profiles (see Figure 4).

For the SN2 mechanism, the structure of the pre-reactive complex W2-RC1 is extremely
similar to that of W1-RC1. However, the F-H bond in W2-RC1 is 0.3 Å shorter than that of
W1-RC1, and the distance of N-O is reduced by about 0.2 Å. This could be attributable to
the stabilization energy provided by the hydrogen bond of two H2O molecules, and could
be proved by the energy of W2-RC1, which is 8 kcal/mol more stable than that of W1-RC1.
The transition state corresponding to the broken N-F bond and N-O bond formation is W2-
TS1, with an energy barrier of 12.17 kcal/mol. Moreover, W2-TS1 is located 3.06 kcal/mol
below the initial reactants; thus, this transformation is accessible kinetically. It should be
attributed to the direct participation of (H2O)2 in the reaction as a proton shuttle. As shown
in Figure 3, the F-H in the W2-TS1 bond has shrunk to 1.89 Å, which is 0.32 Å shorter
than that of W1-TS1, indicating the eliminated F has connected to the H2O molecules.
This is verified by the intrinsic reaction coordinate (IRC) [50] calculation (see Figure S2).
Moreover, the O-H bond in the OH radical is intended to break in the product direction
of the IRC calculation, suggesting the products should change compared with the naked
reaction and the reactions with one additional participating H2O. In fact, owing to the
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direct participation of (H2O)2, the broken H migrates along the (H2O)2 skeleton, resulting
in the formation of NF2O + (H2O)2-HF, as exhibited in Figure 4, which is different from the
SN2 mechanism of the NF3 + OH reaction with one additional H2O. It is interesting that
the formation of NF2O + (H2O)2-HF is exothermic by 70.49 kcal/mol. In a word, when two
additional H2O molecules take part in the reaction of NF3 + OH as catalyst, the formation
of the products NF2O + (H2O)2-HF is favorable both thermodynamically and kinetically.
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Considering the F abstraction mechanism, a pre-reactive complex, W2-RC2, was
confirmed as well. Due to the hydrogen bond, W2-RC2 is 17.70 kcal/mol lower than the
reactants, which is of marginal difference with the naked reaction and the reaction with one
participating H2O molecule. The F abstraction was accomplished through W2-TS2, which
is similar to W1-TS2 as well. However, the energy barrier of W2-TS2 is almost the same as
that of TS2 and W1-TS2, inferring that (H2O)2 has marginal influence on the F abstraction
mechanism. This result is not unexpected because the (H2O)2 plays the role of spectator, as
can be seen from the structure of W2-TS2.

Apart from the SN2 mechanism and F abstraction mechanism, there is a new reaction
process in the case of (H2O)2 participating in the NF3 + OH reaction, as depicted in Figure 4.
This process initiates by the formation of W2-RC3, which is a pre-reactive complex formed
by the contact between (H2O)2-OH and NF3. Starting from W2-RC3, the reaction proceeds
via the transition state of W2-TS3, in which the change in O-N and F-N bonds is similar
to that in W2-TS1. It is interesting that the IRC calculation of W2-TS3 bears evidence
of the interaction between the substituted F and (H2O)2, leading to the formation of
complex NF2O-(H2O)2-HF (see W2-PC3 in Figure 4). It is worth noting that W2-TS3 lies
0.53 kcal/mol below the reactants, suggesting this process in kinetically favorable as well.

It is well-known that the concentrations of larger complexes involving more than
two molecules are very low in the troposphere [37]; as a result, only an additional one or
two H2O molecules were taken into account. In summary, it is obvious that the participation
of additional H2O molecules influences the reaction of NF3 with OH dramatically. Taking
the SN2 mechanism, for example (see Figure 5), without the assistance of additional H2O
molecules, the reaction is difficult to accomplish, as the energy barrier is high, and the
products are endothermic. Fortunately, the energy barrier of the SN2 mechanism decreases
by 8.5 kcal/mol and 10.6 kcal/mol in the case of H2O and (H2O)2 catalyzed reactions.
Especially, the thermodynamics of the reaction change as the products change from NF2OH
+ F to NF2O + HF with the formation of an O-H···F hydrogen bond.
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3. Materials and Methods
Computational Methods

All reactants, products, pre-reactive complexes (RC, PC) and transition states (TS)
were fully optimized using the density functional theory at the ωB97XD/aug-cc-pVTZ
level of theory, as the long-range correction functional ωB97XD described the hydrogen
bond well [51–55]. The harmonic vibrational frequencies of all optimized structures were
calculated at the same level of theory to confirm the stationary point (intermediate or
transition states) and for the zero-point energy (ZPE) corrections. The intrinsic reaction
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coordinate (IRC) [50] calculations were carried out to verify that the predicted transition
states connect the designated reactants and products. In order to obtain more accurate
thermodynamics data, the single-point energies of all species were calculated using the CBS-
QB3 method [56,57]. The energy calculated at the CBS-QB3 level of theory was employed
in the following discussion. All the DFT calculations were performed using the Gaussian
09 program [58]. The bond length comparison of selected species and all the optimized
cartesian coordinates of species involved in the reactions are available in the Supporting
Information (SI). The zero-point energy (ZPE) and relative energies are listed in Table 1.
The energy profiles and corresponding structures for the reaction of NF3 with OH with the
assistance of water molecules are illustrated in Figures 1–5.

Table 1. The ZPE and calculated relative energies (in kcal/mol) for all reactants, transition states
and products.

Species ZPE (ωB97XD/avtz) ∆E +
ZPE(ωB97XD/avtz) ∆E (CBS-QB3)

NF3+ OH + nH2O / 0 0
TS1 13.72 19.77 16.04
TS2 12.69 32.24 32.72

W1-RC1 28.24 −4.40 −7.12
W1-RC2 28.21 −4.32 −7.32
W1-TS1 29.58 13.87 7.52
W1-TS2 28.00 27.75 26.30
W1-PC1 31.23 −18.94 −18.84
W1-PC2 29.58 2.12 −0.53
W2-RC1 44.22 −9.60 −15.23
W2-RC2 44.88 −11.16 −17.70
W2-RC3 44.86 −11.28 −17.87
W2-TS1 45.73 5.99 −3.06
W2-TS2 44.55 20.69 15.78
W2-TS3 45.60 8.39 −0.53
W2-PC1 45.98 −66.14 −72.93
W2-PC2 45.56 −4.78 −10.50
W2-PC3 46.30 −66.01 −73.08

NF2OH + F 15.06 2.79 2.50
NF2 + HFO 12.84 8.95 10.02

NF2OH + H2O-F 28.39 5.95 1.90
NF2 + H2O-HFO 28.57 2.98 2.05

NF2O + (H2O)2-HF 43.85 −64.63 −70.49
NF2 + (H2O)2-HFO 44.99 −3.90 −7.92

4. Conclusions

The possibility of removal of NF3 by the NF3 + OH reaction was studied at the CBS-
QB3 level of theory. It was found that the NF3 + OH reaction in the absence of H2O
molecules (naked reaction) is of no importance for the removal of NF3 in atmospheric
conditions, as both the SN2 and F abstraction mechanisms must overcome a high energy
barrier, while the products are endothermic. Although the participation of one H2O
molecule has no influence on the NF3 + OH reaction, as the H2O acts as a spectator, it
significantly changes when (H2O)2 takes part in the reaction as catalyst. The presence of
(H2O)2 not only reduces the energy barrier of the SN2 mechanism, but also changes the
products, i.e., with the formation of NF2O + (H2O)2-HF instead of NF2OH + (H2O)2-F.
The reaction of NF3 + OH is favorable in the presence of (H2O)2, both kinetically and
thermodynamically. The results indicate that it is possible to remove NF3 by reaction with
OH radical in the presences of water molecules.
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Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/molecules29174033/s1, Figure S1: The optimized geometries
of all species in the reaction of NF3 + OH with additional water molecule. Figure S2: IRC results
for W2-TS1. Figure S3: IRC results for W2-TS3. Figure S4: Bond length comparison of selected
species optimized at the level of ωB97XD/aug-cc-pVTZ (black) and MP2/aug-cc-pVTZ (red) methods.
Optimized Cartesian coordinates of intermediates and transition states involved in Figures 1–5.
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