

Article Unveiling the Influence of Water Molecules for NF₃ Removal by the Reaction of NF₃ with OH: A DFT Study

Jiaxin Liu^{1,†}, Yong Zhao^{1,†}, Xueqi Lian², Dongdong Li¹, Xueling Zhang², Jun Chen¹, Bin Deng¹, Xiaobing Lan^{1,*} and Youxiang Shao^{2,*}

- ¹ Hunan Provincial Key Laboratory of Xiangnan Rare-Precious Metals Compounds Research and Application, School of Chemistry and Environmental Science, Xiangnan University, Chenzhou 423000, China; 18573582931@163.com (J.L.); 19973466638@163.com (Y.Z.); dongdong_live168@163.com (D.L.); jchen4174@xnu.edu.cn (J.C.); dengbinxnu@163.com (B.D.)
- ² Key Laboratory of Electronic Functional Materials and Devices of Guangdong Province, School of Chemistry and Materials Engineering, Huizhou University, Huizhou 516007, China; 2006070302129@stu.hzu.edu.cn (X.L.); zxl@ahnu.edu.cn (X.Z.)
- * Correspondence: xblan@xnu.edu.cn (X.L.); shaoyx@whu.edu.cn (Y.S.)
- ⁺ These authors contributed equally to this work.

Abstract: The removal of nitrogen trifluoride (NF₃) is of significant importance in atmospheric chemistry, as NF₃ is an important anthropogenic greenhouse gas. However, the radical species OH and O(¹D) in atmospheric conditions are nonreactive towards NF₃. It is necessary to explore possible ways to remove NF₃ in atmosphere. Therefore, the participation of water molecules in the reaction of NF₃ with OH was discussed, as water is abundant in the atmosphere and can form very stable complexes due to its ability to act as both a hydrogen bond donor and acceptor. Systemic DFT calculations carried out at the CBS-QB3 and ω B97XD/aug-cc-pVTZ level of theory suggest that water molecules could affect the NF₃ + OH reaction as well. The energy barrier of the S_N2 mechanism was decreased by 8.52 kcal/mol and 10.58 kcal/mol with the assistance of H₂O and (H₂O)₂, respectively. Moreover, the presence of (H₂O)₂ not only reduced the energy barrier of the reaction, but also changed the product channels, i.e., formation of NF₂O + (H₂O)₂-HF instead of NF₂OH + (H₂O)₂-F. Therefore, the removal of NF₃ by reaction with OH is possible in the presence of water molecules. The results presented in this study should provide useful information on the atmospheric chemistry of NF₃.

Keywords: NF3 removal; OH radical; water molecules; mechanism; DFT calculation

1. Introduction

As the most extensively used perfluoro compound, nitrogen trifluoride (NF₃) has attracted great interest in recent years. NF₃ is commonly used in the semiconductor industry [1–3] and as a fluorine-supplying source in the electronic industry [4,5]. The industrial use of NF₃ had been considered safe for a long time, as it did not produce carbon contamination residues. Hence, the production of NF₃ as a substitute for other perfluorinated gases such as CF₄ and C₂F₆ increased dramatically in recent years [6], resulting in a very large amount of NF₃ atmospheric emissions. Unfortunately, recent studies have warned that there is a clear risk in using NF₃ [7]. Firstly, NF₃ is considered a new greenhouse gas, although it is not included in the list of greenhouse gases in the Kyoto protocol [8,9]. In fact, NF₃ has a global warming potential (GWP) of 17,200, which is 10,800 times greater than that of CO₂ when compared over a 100-year period [10–12]. Furthermore, NF₃ and its decomposition products have been proposed to be toxic and pose a health risk [8]. Because of these concerns, great interest has focused on developing new processes to destroy or remove unreacted effluent NF₃.

Citation: Liu, J.; Zhao, Y.; Lian, X.; Li, D.; Zhang, X.; Chen, J.; Deng, B.; Lan, X.; Shao, Y. Unveiling the Influence of Water Molecules for NF₃ Removal by the Reaction of NF₃ with OH: A DFT Study. *Molecules* **2024**, *29*, 4033. https://doi.org/10.3390/ molecules29174033

Academic Editor: Shamil K. Latypov

Received: 25 July 2024 Revised: 22 August 2024 Accepted: 23 August 2024 Published: 26 August 2024

Copyright: © 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https:// creativecommons.org/licenses/by/ 4.0/). To date, various methods have been reported for the adsorption and decomposition of NF₃ [13–18]. However, these methods are designed to deal with the tail gas in the semiconductor industry and electronic industry. On the other hand, there is a significant shortage of research on removal and decomposition processes for NF₃ in the atmosphere. Gargano et al. [19] studied two important reactions involved in the decomposition of NF₃, i.e., NF₃ + F and N₂ + F. Later, Cunha and coworkers [20] investigated other reactions involved in the decomposition of NF₃ employing theoretical calculations at the CCSD(T)/ccpVTZ level of theory, for example, NF₂ + N, NF₃ + NF, and the dissociation of N₂F₄ and N₂F₃. These pioneer studies provide fundamental insight into the mechanism of NF₃ decomposition.

Several studies have also focused on the removal of NF₃ in the atmosphere through the reaction with atmospheric oxidants. Wine and coworkers [21] studied the reaction of NF₃ with O(¹D), measured the rate coefficient to be $k(T) = 2.0 \times 10^{-11} \exp(52/T) \text{ cm}^3$ molecule $^{-1}$ s $^{-1}$, and suggested that the reaction with O(¹D) is an important atmospheric sink for NF₃. Baasandorj and coworkers [22] also measured the rate coefficient of $O(^{1}D)$ with NF₃, which is in good agreement with the results of Wine and coworkers. However, the reaction of reactive OH radical with NF_3 was not mentioned. Dillon and coworkers [23] explored the possibility of removing NF₃ by reactions with the atmospheric oxidants $O(^{1}D)$, OH and O_3 , and the results showed that the reaction rate of NF₃ + OH is as slow as 2.0×10^{-29} cm³ molecule⁻¹s⁻¹; thus, they concluded that OH could not play an important role in atmospheric NF₃ degradation. Although the reaction of OH with NF₃ is extremely slow, the possibility of removing NF_3 by reaction with OH should not be excluded because water molecules in the atmosphere have been shown to have a significant chemical catalytic effect on certain atmospheric reactions. Buszek and coworkers [24] reviewed the effect of water molecules on various atmospheric reactions, including radical-molecule, radicalradical, molecule-molecule and unimolecular reactions. It is surprising that, to our best knowledge, the influence of water molecules on the reaction of $OH + NF_3$ has not been explored yet, though the reaction of OH with various molecules, such as HCOOH [25], HNO₃ [26],CH₃CHO [27–29], fluoroalcohols [30], HOCl [31], glyoxal [32,33], CH₄ [34], DMSO [35], CH₃OH [36–38], etc., have been studied extensively. Could additional water molecules accelerate the reaction of $OH + NF_3$? If the answer is positive, how do the additional water molecules affect the reaction? Here, we decided to study the reaction of $OH + NF_3$ with the participation of water molecules by using computational methods. These questions are critical for exploring the processes of removing NF_3 in the atmosphere.

2. Results and Discussion

In principle, it is better to carry out benchmark calculations aiming to assess the accuracy of the DFT methods. Fortunately, several references have proved that the ω B97XD functional including dispersion was capable of treating various reactions [39,40]. As a result, all the discussions are based on the data obtained from CBS-QB3// ω B97XD/aug-cc-pVTZ methods. Moreover, as the reactions discussed here are in the gas phase, the electronic energy with zero-point energy was employed to discuss the thermodynamics [41,42].

2.1. The Reaction of $NF_3 + OH$

According to a previous work [22], the reaction of NF₃ + OH can be carried out through three distinct processes, i.e., the S_N2 mechanism, F abstraction and H addition to the N center. However, the energy barrier is too high for H addition to N to be of consideration. As a result, only the S_N2 mechanism and F abstraction were discussed here. As for the S_N2 mechanism, an OH radical attacks the N, while one N-F bond is broken simultaneously, forming NF₂OH and F. As shown in Figure 1, the corresponding transition state is **TS1** with an energy barrier of 16.04 kcal/mol. Unfortunately, the product is endothermic by 2.50 kcal/mol, indicating this process is unfavorable thermodynamically, especially in atmospheric conditions. In the case of the F abstraction mechanism, an OH radical abstracts F from NF₃ directly, leading to the production of HFO and NF₂. The transition state for this process is **TS2**, in which the OH interacts with the leaving F. As can be seen in Figure 1, the energy barrier of **TS2** (32.72 kcal/mol) is much higher than that of **TS1**. Moreover, the product is endothermic by as much as 10.02 kcal/mol. These results indicate the F abstraction process is unfeasible. In a word, although the $S_N 2$ mechanism is predominant in comparison to the F abstraction mechanism, the reaction of NF₃ + OH is difficult to accomplish in view of thermodynamics. This is in good accordance with the extremely slow reaction rate measured experimentally [23]. As a result, the removal of NF₃ through the gas-phase reaction with OH radial is of minor importance in atmospheric conditions. These results are in accordance with a previous report [23].

Figure 1. The energy profile of the NF_3 + OH reaction.

2.2. The Influence of Water Molecules on the Reaction of $NF_3 + OH$

Inspired by the fact that the participation of water molecules could affect various atmospheric reactions in the gas phase [43–49], the influence of water molecules on the reaction of NF_3 + OH is discussed here. In the condition where one H₂O participates in the reaction, the NF_3 + OH reaction takes place through two distinct process similar to the naked reaction shown in Figure 2. The corresponding geometry structures of all intermediates and transition states are available in Figure S1.

In contrast to the naked reaction, a pre-reactive complex formed in the entrance of the reaction due to the existence of a hydrogen bond between H_2O and the reactants. For example, W1-RC1 and W1-RC2 are the pre-reactive complexes for the S_N2 mechanism and F abstraction mechanism, respectively, as shown in Figure 2. Attributed to the formation of a hydrogen bond, W1-RC1 and W1-RC2 are 7.12 kcal/mol and 7.32 kcal/mol more stable than the reactants, respectively. Starting from W1-RC1, the reaction takes place via the S_N2 mechanism. The corresponding transition state is W1-TS1. It should be noted that the structure of W1-TS1 is similar to that of TS1, except the breaking F atom bonded to the H_2O due to the formation of an F···H···O hydrogen bond. The energy barrier of **W1-TS1** is 14.64 kcal/mol, which is only 1.40 kcal/mol lower than that of TS1. Therefore, the influence of one H_2O molecule on the S_N2 mechanism is negligible in view of the kinetics. On the other hand, although the product complex W1-PC1 was located 18.84 kcal/mol below the reactants owing to the formation of a hydrogen bond, the final product, $NF_2OH + H_2O$ -F, is endothermic by 1.90 kcal/mol, which is similar to that of PC1. It is reasonable to conclude that an additional H_2O molecule is of no influence on the S_N2 mechanism in view of the thermodynamics as well. As for the F abstraction mechanism, the corresponding transition state is W1-TS2, with a geometry structure similar to that of TS2. Unfortunately, the relative

energy of **W1-TS2** is as high as 26.30 kcal/mol. As a result, the reaction should overcome the energy barrier of 33.62 kcal/mol, which is even about 1 kcal/mol larger than that of F abstraction in the absence of H₂O (**TS2**). Thus the participation of one H₂O molecule is unable to accelerate the F abstraction process. In a word, when one additional H₂O molecule takes part in the reaction of NF₃ + OH, neither the kinetics nor thermodynamics are affected. This can be explained by the structure of the transition states. As can be seen in Figure S1, the hydrogen transfer process is not involved in either the S_N2 mechanism or F abstraction mechanism. The additional H₂O molecule only connects OH and F with the formation of a hydrogen bond rather than assisting the hydrogen transfer. Thus an additional, single H₂O molecule only acts as a spectator rather than catalyst in the reaction of NF₃ + OH. It is not unexpected that the effects of H₂O molecules on various atmospheric reactions reported in the references do not appear here.

Figure 2. Energy profiles of one additional H₂O participating in the reaction of NF₃ + OH.

2.3. The Influence of an Additional Two H_2O Molecules on the NF₃ + OH Reaction

The structures of various pre-reactive complexes and transition states for the NF₃ + OH reaction with an additional two H₂O are shown in Figure 3. In contrast to the reaction with one participating H₂O, there are three possible processes, as can be seen from the corresponding potential energy profiles (see Figure 4).

For the S_N^2 mechanism, the structure of the pre-reactive complex **W2-RC1** is extremely similar to that of **W1-RC1**. However, the F-H bond in **W2-RC1** is 0.3 Å shorter than that of **W1-RC1**, and the distance of N-O is reduced by about 0.2 Å. This could be attributable to the stabilization energy provided by the hydrogen bond of two H₂O molecules, and could be proved by the energy of **W2-RC1**, which is 8 kcal/mol more stable than that of **W1-RC1**. The transition state corresponding to the broken N-F bond and N-O bond formation is **W2-TS1**, with an energy barrier of 12.17 kcal/mol. Moreover, **W2-TS1** is located 3.06 kcal/mol below the initial reactants; thus, this transformation is accessible kinetically. It should be attributed to the direct participation of (H₂O)₂ in the reaction as a proton shuttle. As shown in Figure 3, the F-H in the **W2-TS1** bond has shrunk to 1.89 Å, which is 0.32 Å shorter than that of **W1-TS1**, indicating the eliminated F has connected to the H₂O molecules. This is verified by the intrinsic reaction coordinate (IRC) [50] calculation (see Figure S2). Moreover, the O-H bond in the OH radical is intended to break in the product direction of the IRC calculation, suggesting the products should change compared with the naked reaction and the reactions with one additional participating H₂O. In fact, owing to the direct participation of $(H_2O)_2$, the broken H migrates along the $(H_2O)_2$ skeleton, resulting in the formation of NF₂O + $(H_2O)_2$ -HF, as exhibited in Figure 4, which is different from the S_N2 mechanism of the NF₃ + OH reaction with one additional H₂O. It is interesting that the formation of NF₂O + $(H_2O)_2$ -HF is exothermic by 70.49 kcal/mol. In a word, when two additional H₂O molecules take part in the reaction of NF₃ + OH as catalyst, the formation of the products NF₂O + $(H_2O)_2$ -HF is favorable both thermodynamically and kinetically.

Figure 3. The structures of intermediates and transition states involved in NF₃ + OH reactions with two H₂O molecules participating. The distances are in Å.

Figure 4. The energy profiles of NF_3 + OH reactions with an additional two H_2O molecules.

Considering the F abstraction mechanism, a pre-reactive complex, **W2-RC2**, was confirmed as well. Due to the hydrogen bond, **W2-RC2** is 17.70 kcal/mol lower than the reactants, which is of marginal difference with the naked reaction and the reaction with one participating H_2O molecule. The F abstraction was accomplished through **W2-TS2**, which is similar to **W1-TS2** as well. However, the energy barrier of **W2-TS2** is almost the same as that of **TS2** and **W1-TS2**, inferring that $(H_2O)_2$ has marginal influence on the F abstraction mechanism. This result is not unexpected because the $(H_2O)_2$ plays the role of spectator, as can be seen from the structure of **W2-TS2**.

Apart from the S_N^2 mechanism and F abstraction mechanism, there is a new reaction process in the case of $(H_2O)_2$ participating in the NF₃ + OH reaction, as depicted in Figure 4. This process initiates by the formation of **W2-RC3**, which is a pre-reactive complex formed by the contact between $(H_2O)_2$ -OH and NF₃. Starting from **W2-RC3**, the reaction proceeds via the transition state of **W2-TS3**, in which the change in O-N and F-N bonds is similar to that in **W2-TS1**. It is interesting that the IRC calculation of **W2-TS3** bears evidence of the interaction between the substituted F and $(H_2O)_2$, leading to the formation of complex NF₂O- $(H_2O)_2$ -HF (see **W2-PC3** in Figure 4). It is worth noting that **W2-TS3** lies 0.53 kcal/mol below the reactants, suggesting this process in kinetically favorable as well.

It is well-known that the concentrations of larger complexes involving more than two molecules are very low in the troposphere [37]; as a result, only an additional one or two H₂O molecules were taken into account. In summary, it is obvious that the participation of additional H₂O molecules influences the reaction of NF₃ with OH dramatically. Taking the S_N2 mechanism, for example (see Figure 5), without the assistance of additional H₂O molecules, the reaction is difficult to accomplish, as the energy barrier is high, and the products are endothermic. Fortunately, the energy barrier of the S_N2 mechanism decreases by 8.5 kcal/mol and 10.6 kcal/mol in the case of H₂O and (H₂O)₂ catalyzed reactions. Especially, the thermodynamics of the reaction change as the products change from NF₂OH + F to NF₂O + HF with the formation of an O-H…F hydrogen bond.

Figure 5. Comparison of naked NF_3 + OH reaction and the H_2O and $(H_2O)_2$ assisted reactions.

3. Materials and Methods

Computational Methods

All reactants, products, pre-reactive complexes (RC, PC) and transition states (TS) were fully optimized using the density functional theory at the ω B97XD/aug-cc-pVTZ level of theory, as the long-range correction functional ω B97XD described the hydrogen bond well [51–55]. The harmonic vibrational frequencies of all optimized structures were calculated at the same level of theory to confirm the stationary point (intermediate or transition states) and for the zero-point energy (ZPE) corrections. The intrinsic reaction

coordinate (IRC) [50] calculations were carried out to verify that the predicted transition states connect the designated reactants and products. In order to obtain more accurate thermodynamics data, the single-point energies of all species were calculated using the CBS-QB3 method [56,57]. The energy calculated at the CBS-QB3 level of theory was employed in the following discussion. All the DFT calculations were performed using the Gaussian 09 program [58]. The bond length comparison of selected species and all the optimized cartesian coordinates of species involved in the reactions are available in the Supporting Information (SI). The zero-point energy (ZPE) and relative energies are listed in Table 1. The energy profiles and corresponding structures for the reaction of NF₃ with OH with the assistance of water molecules are illustrated in Figures 1–5.

Species	ZPE (ωB97XD/avtz)	ΔE + ZPE(ω B97XD/avtz)	ΔE (CBS-QB3)
$NF_3 + OH + nH_2O$	/	0	0
TS1	13.72	19.77	16.04
TS2	12.69	32.24	32.72
W1-RC1	28.24	-4.40	-7.12
W1-RC2	28.21	-4.32	-7.32
W1-TS1	29.58	13.87	7.52
W1-TS2	28.00	27.75	26.30
W1-PC1	31.23	-18.94	-18.84
W1-PC2	29.58	2.12	-0.53
W2-RC1	44.22	-9.60	-15.23
W2-RC2	44.88	-11.16	-17.70
W2-RC3	44.86	-11.28	-17.87
W2-TS1	45.73	5.99	-3.06
W2-TS2	44.55	20.69	15.78
W2-TS3	45.60	8.39	-0.53
W2-PC1	45.98	-66.14	-72.93
W2-PC2	45.56	-4.78	-10.50
W2-PC3	46.30	-66.01	-73.08
$NF_2OH + F$	15.06	2.79	2.50
$NF_2 + HFO$	12.84	8.95	10.02
$NF_2OH + H_2O-F$	28.39	5.95	1.90
$NF_2 + H_2O-HFO$	28.57	2.98	2.05
$NF_2O + (H_2O)_2 - HF$	43.85	-64.63	-70.49
$NF_2 + (H_2O)_2 - HFO$	44.99	-3.90	-7.92

Table 1. The ZPE and calculated relative energies (in kcal/mol) for all reactants, transition states and products.

4. Conclusions

The possibility of removal of NF₃ by the NF₃ + OH reaction was studied at the CBS-QB3 level of theory. It was found that the NF₃ + OH reaction in the absence of H₂O molecules (naked reaction) is of no importance for the removal of NF₃ in atmospheric conditions, as both the S_N2 and F abstraction mechanisms must overcome a high energy barrier, while the products are endothermic. Although the participation of one H₂O molecule has no influence on the NF₃ + OH reaction, as the H₂O acts as a spectator, it significantly changes when (H₂O)₂ takes part in the reaction as catalyst. The presence of (H₂O)₂ not only reduces the energy barrier of the S_N2 mechanism, but also changes the products, i.e., with the formation of NF₂O + (H₂O)₂-HF instead of NF₂OH + (H₂O)₂-F. The reaction of NF₃ + OH is favorable in the presence of (H₂O)₂, both kinetically and thermodynamically. The results indicate that it is possible to remove NF₃ by reaction with OH radical in the presences of water molecules.

Supplementary Materials: The following supporting information can be downloaded at: https: //www.mdpi.com/article/10.3390/molecules29174033/s1, Figure S1: The optimized geometries of all species in the reaction of NF₃ + OH with additional water molecule. Figure S2: IRC results for **W2-TS1**. Figure S3: IRC results for **W2-TS3**. Figure S4: Bond length comparison of selected species optimized at the level of ω B97XD/aug-cc-pVTZ (black) and MP2/aug-cc-pVTZ (red) methods. Optimized Cartesian coordinates of intermediates and transition states involved in Figures 1–5.

Author Contributions: Conceptualization, X.L. (Xiaobing Lan) and Y.S.; methodology, X.L. (Xiaobing Lan) and Y.S.; validation, D.L. and X.Z.; formal analysis, J.C. and B.D.; investigation, J.L. and Y.Z.; resources, X.L. (Xiaobing Lan); data curation, J.L. and X.L. (Xueqi Lian); writing—original draft preparation, J.L. and Y.Z.; writing—review and editing, X.L. (Xiaobing Lan); visualization, Y.Z. and X.L. (Xueqi Lian); supervision, X.L. (Xiaobing Lan); project administration, X.L. (Xiaobing Lan) and Y.S.; funding acquisition, X.L. (Xiaobing Lan) and Y.S. All authors have read and agreed to the published version of the manuscript.

Funding: This work was supported by the Outstanding Youth Project of Hunan Education Department (23B0777, 21B0750); and the Professorial and Doctoral Scientific Research Foundation of Huizhou University (No.2020JB046, No.2022JB009). Open Project Program of Guangdong Provincial Key Laboratory of Electronic Functional Materials and Devices, Huizhou University (No. EFMDN2021004M).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Data are contained within the article.

Acknowledgments: We thank the people from the Hunan Provincial Key Laboratory of Xiangnan Rare-Precious Metal Compound Research and Application, School of Chemistry and Environmental Science, Xiangnan University.

Conflicts of Interest: The authors declare no conflicts of interest.

References

- 1. Tseng, Y.-H.; Tsui, B.-Y. Microtrenching-free two-step reactive ion etching of 4H-SiC using NF₃/HBr/O₂ and Cl₂/O₂. *J. Vac. Sci. Technol. A* **2014**, *32*, 031601. [CrossRef]
- Tasaka, A.; Takahashi, K.; Tanaka, K.; Shimizu, K.; Mori, K.; Tada, S.; Shimizu, W.; Abe, T.; Inaba, M.; Ogumi, Z. Plasma etching of SiC surface using NF₃. J. Vac. Sci. Technol. A 2002, 20, 1254–1260. [CrossRef]
- 3. Kastenmeier, B.; Oehrlein, G.; Langan, J.G.; Entley, W.R. Gas utilization in remote plasma cleaning and stripping applications. *J. Vac. Sci. Technol. A* 2000, *18*, 2102–2107. [CrossRef]
- Donnelly, V.M. Review Article: Reactions of fluorine atoms with silicon, revisited, again. J. Vac. Sci. Technol. A 2017, 35, 05C202. [CrossRef]
- 5. Tasaka, A. Electrochemical synthesis and application of NF₃. J. Fluorine Chem. 2007, 128, 296–310. [CrossRef]
- 6. Illuzzi, F.; Thewissen, H. Perfluorocompounds emission reduction by the semiconductor industry. J. Integr. Environ. Sci. 2010, 7, 201–210. [CrossRef]
- 7. Prather, M.J.; Hsu, J. NF₃, the greenhouse gas missing from Kyoto. *Geophys. Res. Lett.* 2008, 35, L12810. [CrossRef]
- 8. Tsai, W.-T. Environmental and health risk analysis of nitrogen trifluoride (NF₃), a toxic and potent greenhouse gas. *J. Hazard. Mater.* **2008**, 159, 257–263. [CrossRef]
- 9. Molina, L.T.; Wooldridge, P.J.; Molina, M. Atmospheric reactions and ultraviolet and infrared absorptivities of nitrogen trifluoride. *Geophys. Res. Lett.* **1995**, *22*, 1873–1876. [CrossRef]
- Totterdill, A.; Kovács, T.; Feng, W.; Dhomse, S.; Smith, C.J.; Gómez-Martín, J.C.; Chipperfield, M.P.; Forster, P.M.; Plane, J. Atmospheric lifetimes, infrared absorption spectra, radiative forcings and global warming potentials of NF₃ and CF₃ CF₂ Cl (CFC-115). *Atmos. Chem. Phys.* 2016, 16, 11451–11463. [CrossRef]
- 11. Rogelj, J.; McCollum, D.L.; O'Neill, B.C.; Riahi, K. 2020 emissions levels required to limit warming to below 2 °C. *Nat. Clim. Change* **2013**, *3*, 405–412. [CrossRef]
- Arnold, T.; Harth, C.M.; Mühle, J.; Manning, A.J.; Salameh, P.K.; Kim, J.; Ivy, D.J.; Steele, L.P.; Petrenko, V.V.; Severinghaus, J.P. Nitrogen trifluoride global emissions estimated from updated atmospheric measurements. *Proc. Natl. Acad. Sci. USA* 2013, 110, 2029–2034. [CrossRef]
- 13. Ji, J.; Xiong, W.; Zhang, X.; Peng, L.; Shi, M.; Wu, Y.; Hu, X. Reversible absorption of NF₃ with high solubility in Lewis acidic ionic liquids. *Chem. Eng. J.* **2022**, 440, 135902. [CrossRef]
- 14. Gao, Q.; Wang, Y.; Pan, Y.; Li, Y.; Sui, Z.; Xu, X. NF₃ decomposition over V₂O₅, Fe₂O₃ and Co₃O₄ coated-Al₂O₃ reagents: The effect of promoter loadings on reactivity. *J. Environ. Chem. Eng.* **2020**, *8*, 103890. [CrossRef]

- 15. Gao, Q.; Liu, Z.; Li, Y.; Sui, Z.; Liao, W.; Xu, X. NF₃ decomposition without water over Cr₂O₃ coated-Al₂O₃ reagents. *J. Environ. Chem. Eng.* **2020**, *8*, 104166. [CrossRef]
- Xu, X.; Gao, Q.; Yin, C.; Pan, Y. NF₃ decomposition in the absence of water over some metal oxides coated-Al₂O₃ reagents. *J. Environ. Chem. Eng.* 2019, *7*, 103192. [CrossRef]
- 17. Lai, S.Y.; Pan, W.; Ng, C.F. Catalytic hydrolysis of dichlorodifluoromethane (CFC-12) on unpromoted and sulfate promoted TiO₂–ZrO₂ mixed oxide catalysts. *Appl. Catal. B* **2000**, 24, 207–217. [CrossRef]
- 18. Karmakar, S.; Greene, H.L. Oxidative destruction of chlorofluorocarbons (CFC11 and CFC12) by zeolite catalysts. *J. Catal.* **1992**, 138, 364–376. [CrossRef]
- Claudino, D.; Gargano, R.; Carvalho-Silva, V.H.; e Silva, G.M.; Da Cunha, W. Investigation of the abstraction and dissociation mechanism in the nitrogen trifluoride channels: Combined post-Hartree–Fock and Transition State Theory approaches. *J. Phys. Chem. A* 2016, 120, 5464–5473. [CrossRef]
- 20. Ramalho, S.S.; da Cunha, W.F.; Albernaz, A.F.; Neto, P.H.; e Silva, G.M.; Gargano, R. An extensive investigation of reactions involved in the nitrogen trifluoride dissociation. *New J. Chem.* **2013**, *37*, 3244–3251. [CrossRef]
- 21. Zhao, Z.; Laine, P.L.; Nicovich, J.M.; Wine, P.H. Reactive and nonreactive quenching of O (¹D) by the potent greenhouse gases SO₂F₂, NF₃, and SF₅CF₃. *Proc. Natl. Acad. Sci. USA* **2010**, *107*, 6610–6615. [CrossRef] [PubMed]
- 22. Baasandorj, M.; Hall, B.; Burkholder, J. Rate coefficients for the reaction of O (¹D) with the atmospherically long-lived greenhouse gases NF₃, SF₅ CF₃, CHF₃, C₂F₆, C₄ F₈, n-C₅F₁₂, and n-C₆F₁₄. *Atmos. Chem. Phys.* **2012**, *12*, 11753–11764. [CrossRef]
- Dillon, T.J.; Vereecken, L.; Horowitz, A.; Khamaganov, V.; Crowley, J.N.; Lelieveld, J. Removal of the potent greenhouse gas NF₃ by reactions with the atmospheric oxidants O (¹D), OH and O₃. *Phys. Chem. Chem. Phys.* 2011, *13*, 18600–18608. [CrossRef] [PubMed]
- 24. Buszek, R.J.; Francisco, J.S.; Anglada, J.M. Water effects on atmospheric reactions. *Int. Rev. Phys. Chem.* 2011, 30, 335–369. [CrossRef]
- 25. Anglada, J.M.; Gonzalez, J. Different catalytic effects of a single water molecule: The gas-phase reaction of formic acid with hydroxyl radical in water vapor. *ChemPhysChem* **2009**, *10*, 3034–3045. [CrossRef]
- 26. Gonzalez, J.; Anglada, J.M. Gas phase reaction of nitric acid with hydroxyl radical without and with water. A theoretical investigation. *J. Phys. Chem. A* 2010, 114, 9151–9162. [CrossRef]
- Neeman, E.; González, D.; Blázquez, S.; Ballesteros, B.; Canosa, A.; Antiñolo, M.; Vereecken, L.; Albaladejo, J.; Jiménez, E. The impact of water vapor on the OH reactivity toward CH₃CHO at ultra-low temperatures (21.7–135.0 K): Experiments and theory. *J. Chem. Phys.* 2021, 155, 034306. [CrossRef]
- 28. Iuga, C.; Alvarez-Idaboy, J.R.; Reyes, L.; Vivier-Bunge, A. Can a single water molecule really catalyze the acetaldehyde+ OH reaction in tropospheric conditions? *J. Phys. Chem. Lett.* **2010**, *1*, 3112–3115. [CrossRef]
- 29. Vohringer-Martinez, E.; Hansmann, B.; Hernandez, H.; Francisco, J.; Troe, J.; Abel, B. Water catalysis of a radical-molecule gas-phase reaction. *Science* 2007, 315, 497–501. [CrossRef]
- Bai, F.-Y.; Deng, M.-S.; Chen, M.-Y.; Kong, L.; Ni, S.; Zhao, Z.; Pan, X.-M. Atmospheric oxidation of fluoroalcohols initiated by OH radicals in the presence of water and mineral dusts: Mechanism, kinetics, and risk assessment. *Phys. Chem. Chem. Phys.* 2021, 23, 13115–13127. [CrossRef]
- 31. Gonzalez, J.; Anglada, J.M.; Buszek, R.J.; Francisco, J.S. Impact of water on the OH+ HOCl reaction. *J. Am. Chem. Soc.* 2011, 133, 3345–3353. [CrossRef] [PubMed]
- 32. Long, B.; Tan, X.; Ren, D.; Zhang, W. Theoretical study on the water-catalyzed reaction of glyoxal with OH radical. *J. Mol. Struct. THEOCHEM* **2010**, *956*, 44–49. [CrossRef]
- Iuga, C.; Alvarez-Idaboy, J.R.; Vivier-Bunge, A. Single water-molecule catalysis in the glyoxal+ OH reaction under tropospheric conditions: Fact or fiction? A quantum chemistry and pseudo-second order computational kinetic study. *Chem. Phys. Lett.* 2010, 501, 11–15. [CrossRef]
- Allodi, M.A.; Dunn, M.E.; Livada, J.; Kirschner, K.N.; Shields, G.C. Do hydroxyl radical water clusters, OH (H₂O) n, n= 1– 5, exist in the atmosphere? *J. Phys. Chem. A* 2006, 110, 13283–13289. [CrossRef] [PubMed]
- 35. Jørgensen, S.; Kjaergaard, H.G. Effect of Hydration on the Hydrogen Abstraction Reaction by HO in DMS and its Oxidation Products. J. Phys. Chem. A 2010, 114, 4857–4863. [CrossRef]
- Ali, M.A.; Balaganesh, M.; Al-Odail, F.A.; Lin, K. Effect of ammonia and water molecule on OH+ CH₃OH reaction under tropospheric condition. *Sci. Rep.* 2021, *11*, 12185. [CrossRef]
- 37. Wu, J.; Gao, L.G.; Varga, Z.; Xu, X.; Ren, W.; Truhlar, D.G. Water catalysis of the reaction of methanol with OH radical in the atmosphere is negligible. *Angew. Chem. Int. Ed.* **2020**, *132*, 10918–10922. [CrossRef]
- Jara-Toro, R.A.; Hernández, F.J.; Taccone, R.A.; Lane, S.I.; Pino, G.A. Water Catalysis of the Reaction between Methanol and OH at 294 K and the Atmospheric Implications. *Angew. Chem. Int. Ed.* 2017, *56*, 2166–2170. [CrossRef]
- Schenker, S.; Schneider, C.; Tsogoeva, S.B.; Clark, T. Assessment of popular DFT and semiempirical molecular orbital techniques for calculating relative transition state energies and kinetic product distributions in enantioselective organocatalytic reactions. J. Chem. Theory Comput. 2011, 7, 3586–3595. [CrossRef] [PubMed]
- 40. Muniz-Miranda, F.; Occhi, L.; Fontanive, F.; Menziani, M.C.; Pedone, A. Quantum-Chemistry Study of the Hydrolysis Reaction Profile in Borate Networks: A Benchmark. *Molecules* **2024**, *29*, 1227. [CrossRef]

- 41. Zhang, M.; Hou, H.; Wang, B. Theoretical Study on the Mechanisms and Kinetics of Atmospheric Oxidation of Tetrafluoropropyne and Its Analogues. *J. Phys. Chem. A* 2024, 128, 1511–1522. [CrossRef] [PubMed]
- 42. Zhang, M.; Tian, Y.; Hou, H.; Wang, B. Mechanistic and kinetic study of the oxidation of trifluoroacetonitrile by hydroxyl and oxygen. *Int. J. Quantum Chem.* **2023**, *123*, e27147. [CrossRef]
- Zhao, X.; Liu, Z.; Zhao, R.; Xu, T. The effect of (H₂O) n (n= 1–3) clusters on the reaction of HONO with HCl: A mechanistic and kinetic study. *Phys. Chem. Chem. Phys.* 2022, 24, 10011–10024. [CrossRef] [PubMed]
- 44. Zhang, Y.; Zhao, M.; Liu, Y.; Sun, Y. The influence of a single water molecule on the reaction of BrO+ HONO. *J. Mol. Graph. Model.* **2022**, *116*, 108261. [CrossRef]
- 45. Zhao, C.; Ma, X.; Wu, X.; Thomsen, D.L.; Bierbaum, V.M.; Xie, J. Single solvent molecules induce dual nucleophiles in gas-phase ion–molecule nucleophilic substitution reactions. *J. Phys. Chem. Lett.* **2021**, *12*, 7134–7139. [CrossRef]
- 46. Zhang, T.; Zhai, K.; Zhang, Y.; Geng, L.; Geng, Z.; Zhou, M.; Lu, Y.; Shao, X.; Lily, M. Effect of water and ammonia on the HO+ NH₃→ NH₂+ H₂O reaction in troposphere: Competition between single and double hydrogen atom transfer pathways. *Comput. Theor. Chem.* **2020**, 1176, 112747. [CrossRef]
- 47. Kumar, A.; Mallick, S.; Kumar, P. Effect of water on the oxidation of CO by a Criegee intermediate. *Phys. Chem. Chem. Phys.* **2020**, 22, 21257–21266. [CrossRef]
- Zhang, T.; Wen, M.; Zhang, Y.; Lan, X.; Long, B.; Wang, R.; Yu, X.; Zhao, C.; Wang, W. Atmospheric chemistry of the self-reaction of HO₂ radicals: Stepwise mechanism versus one-step process in the presence of (H₂O) n (n= 1–3) clusters. *Phys. Chem. Chem. Phys.* 2019, 21, 24042–24053. [CrossRef]
- 49. Chao, W.; Yin, C.; Takahashi, K. Effects of water vapor on the reaction of CH₂OO with NH₃. *Phys. Chem. Chem. Phys.* **2019**, 21, 22589–22597. [CrossRef]
- 50. Gonzalez, C.; Schlegel, H.B. An improved algorithm for reaction path following. J. Chem. Phys. 1989, 90, 2154–2161. [CrossRef]
- 51. Alipour, M.; Fallahzadeh, P. First principles optimally tuned range-separated density functional theory for prediction of phosphorus–hydrogen spin–spin coupling constants. *Phys. Chem. Chem. Phys.* **2016**, *18*, 18431–18440. [CrossRef] [PubMed]
- 52. Chai, J.-D.; Head-Gordon, M. Systematic optimization of long-range corrected hybrid density functionals. J. Chem. Phys. 2008, 128, 084106. [CrossRef] [PubMed]
- 53. Chai, J.-D.; Head-Gordon, M. Long-range corrected hybrid density functionals with damped atom–atom dispersion corrections. *Phys. Chem. Chem. Phys.* **2008**, *10*, 6615–6620. [CrossRef]
- 54. Woon, D.E.; Dunning, T.H., Jr. Gaussian basis sets for use in correlated molecular calculations. III. The atoms aluminum through argon. J. Chem. Phys. 1993, 98, 1358–1371. [CrossRef]
- 55. Kendall, R.A.; Dunning, T.H.; Harrison, R.J. Electron affinities of the first-row atoms revisited. Systematic basis sets and wave functions. *J. Chem. Phys.* **1992**, *96*, 6796–6806. [CrossRef]
- 56. Montgomery, J.A., Jr.; Frisch, M.J.; Ochterski, J.W.; Petersson, G.A. A complete basis set model chemistry. VI. Use of density functional geometries and frequencies. J. Chem. Phys. 1999, 110, 2822–2827. [CrossRef]
- Montgomery, J.; Frisch, M.J.; Ochterski, J.W.; Petersson, G.A. A complete basis set model chemistry. VII. Use of the minimum population localization method. J. Chem. Phys. 2000, 112, 6532–6542. [CrossRef]
- 58. Frisch, M.J.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Scalmani, G.; Barone, V.; Petersson, G.A.; Nakatsuji, H.; et al. *Gaussian 09, Revision E.01*; Gaussian, Inc.: Wallingford, CT, USA, 2013.

Disclaimer/Publisher's Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.