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Abstract: The essential oil and the aqueous and ethanolic extracts obtained from the aerial parts of
Pelargonium graveolens cultivated in Morocco were studied for their antioxidant and insecticidal activ-
ity against rice weevils (Sitophylus oryzae). The total phenolic content of the extracts was determined
by a spectrophotometric method and the phenolic compounds were extensively characterized by
HPLC-PDA/ESI-MS. To evaluate antioxidant potential, three in vitro assays were used. In the DPPH
test, the ethanolic extract was the most active, followed by the aqueous extract and the essential oil.
In the reducing power assay, excellent activity was highlighted for both extracts, while in the Fe2+

chelating activity assay, weak activity was observed for both the essential oil and the ethanolic extract
and no activity for the aqueous extract. Concerning insecticide activity, the toxicity of the essential
oil and the extracts was tested against rice weevils; the lethal concentrations LC50 and LC99 were
determined, as well as the lethal time required for the death of 50% (LT50) and 99% (LT99) of the
weevils. The essential oil had the highest activity; 100% mortality of S. oryzae was observed around 5,
9, and 8 days for the essential oil and the aqueous and ethanolic extracts, respectively.

Keywords: Pelargonium graveolens L’Hér.; HPLC-PDA/ESI-MS; antioxidant activity; botanical
insecticide; Sitophilus oryzae L.; phenolic compounds

1. Introduction

The main problems affecting food during production, storage, and distribution are
deterioration due to oxidation and attacks by pests. To protect foods from these effects,
many synthetic chemicals are widely used, causing injury to non-target organisms as well
as human and environmental health problems [1].

The use of plant-derived compounds instead of synthetic additives may be desirable,
and there has been considerable interest in the isolation and development of new natural
bioactive compounds. Phytochemicals are considered attractive due to their low cost,
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availability in large quantities from raw materials, biodegradability, and safety to human
health and the environment [2]. In this direction, plant extracts and essential oils (EOs)
stand out for their effectiveness throughout the world, while exploring the bioactivity
of phytochemical compounds has proved to be an effective and more feasible means
of controlling zoonotic diseases and reducing the microbial resistance index [3,4]. In
recent years, EOs have effectively controlled stored product pests [5], as they contain
monoterpenoid compounds that are toxic to insects by damaging their nervous systems [6].

The rice weevil (Sitophilus oryzae L.) is one of the most destructive pests of stored
cereals and processed cereal products worldwide [7]. Indeed, several research studies have
focused on the insecticidal and repellent activities of essential oils (EOs) and extracts from
many plant species against rice weevils [8,9].

Pelargonium graveolens L’Hér. or “Geranium pink”, belonging to the Geraniaceae fam-
ily, is a perennial aromatic shrub native to South Africa, Zimbabwe, and Mozambique, and
widely cultivated in Russia, Egypt, Algeria, Morocco, Congo, Japan, Central America, and
southern Europe (Spain, Italy, and France) [10]. This species is also used as a decoration
and as a remedy in African, European, Chinese, Iranian, Indian, and Arabic traditional
medicine [11,12]. It is well-known for its fragrance, and its EO, rich in geranial, (Z)-rose
oxide, isomenthone, and linalool, is widely used as a pharmaceutical, cosmetic, and flavor-
ing agent, as well as in folkloric foods and aromatherapy industries [13]. Geranium EO
has historically been used to treat dysentery, hemorrhoids, inflammation, heavy menstrual
flows, and even cancer. In French folk medicine, it is employed against diabetes, diar-
rhea, gallbladder problems, gastric ulcers, jaundice, liver problems, sterility, and urinary
stones [14]. The pounded leaves are used to treat skin diseases (wounds and sores); the leaf
decoction or infusion is employed against gastrointestinal disorders (constipation, intestinal
cramps, and dysentery), hyperglycemia, and to relieve inflammatory and pain-associated
ailments (i.e., headache and neuralgia), as well as those of the respiratory system (cold and
cough). The decoction of the root is utilized against fever and tuberculosis; whereas the
root infusion works against diarrhea and backache [15]. Several studies have confirmed
that P. graveolens has a wide range of pharmacological effects, including anti-inflammatory
and anticancer [16], anti-parasitic [17], anti-tuberculosis [18], and analgesic [19] effects.
The plant has also been reported to have antimicrobial activity against many pathogenic
bacteria and fungi [20,21]. Many chemical constituents such as volatile compounds, ter-
penoids, flavonoids, coumarins, phenolic acids, and tannins have been isolated from this
species [12]. The research on P. graveolens is intensively focused on the chemical compo-
sition of the EO, mostly characterized by monoterpenes and sesquiterpenes (oxygenated
and non-oxygenated). Oxygenated monoterpenes exist in a higher concentration than non-
oxygenated monoterpenes, and the predominant ones are β-citronellol, geraniol, linalool,
and isomenthone. Oxygenated sesquiterpenes are less abundant than non-oxygenated
ones, including δ-selinene, β-caryophyllene, guaia-6,9-diene, and α-humulene [22–24].

Previously, some co-authors of this work characterized the chemical composition of the
essential oil obtained from the aerial parts of P. graveolens grown in Er-Rachidia, Morocco.
Using GC/MS analysis, epi-γ-eudesmol (16.67%), geraniol (12.54%), β-citronellol (12.34%),
citronellyl formate (7.70%), geranyl tiglate (5.21%), and linalool (4.06%) were found to
be the major compounds [25]. In continuation of the previous study, the present work
was undertaken to investigate the antioxidant and insecticidal properties of the essential
oil, as well as of the ethanolic and aqueous extracts from the aerial parts of this species.
The antioxidant properties were examined by means of different in vitro systems: DPPH
scavenging, reducing power, and ferrous ion (Fe2+)-chelating activity, and the insecticidal
activity was evaluated against S. oryzae. In addition, the phenolic content of the ethanolic
and aqueous extracts was determined by a Folin–Ciocalteu assay and characterized by
HPLC-PDA/ESI-MS analysis.
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2. Results and Discussion
2.1. Phytochemical Investigations
2.1.1. Determination of Total Phenolic Content

Polyphenols are strong antioxidants widely distributed in nature in the form of sec-
ondary plant metabolites. They are classified into different subclasses based on the arrange-
ment and the number of phenolic rings present, as well as the functional groups associated
with these phenolic rings. Their antioxidant property is due to their ability to scavenge free
radicals, donate hydrogen atoms or electrons, or chelate metal cations [26–28].

In the present work, the total phenolic content of the aqueous and ethanolic extracts
of P. graveolens was estimated spectrophotometrically by the Folin–Ciocâlteu method,
extensively used to quantify polyphenols in plant-derived extracts, as well as foods and
drinks [29,30].

The results, reported in Table 1, show that the total phenolic content was found to be
higher in the ethanolic extract, resulting in more than double that of the aqueous extract.

Table 1. Quantitative determination of total phenolic content (TPC), free radical scavenging activity
(DPPH assay), reducing power, and ferrous ion-chelating activity of essential oil and ethanolic and
aqueous extracts obtained from the aerial parts of Pelargonium graveolens.

Pelargonium
graveolens

TPC
(mg GAE/g Extract)

DPPH
IC50 (mg/mL)

Reducing Power
ASE/mL

Chelating Activity Fe2+

IC50 (mg/mL)

EO ND >2 a 21.77 ± 2.17 a >2 a

Aqueous extract 156.42 ± 0.73 a 0.13 ± 0.01 b 3.01 ± 0.03 b NA
Ethanolic extract 385.09 ± 2.09 b 0.05 ± 0.01 c 1.92 ± 0.04 b >2 a

Standard - BHT
0.07 ± 0.01 d

BHT
1.44 ± 0.02 b

EDTA
0.007 ± 0.001 b

Values are expressed as the mean ± SD (n = 3). ND: Not determined. NA: Not active. a–d Different letters within
the same column indicate significant differences between mean values (p < 0.0001).

The total phenolic content of the extracts turned out to be higher than that previously
reported for various extracts obtained from P. graveolens. Ćavar and Maksimović [23] found a
much lower phenolic content in the aqueous extracts (hydrosols) obtained from leaves and stems
of this species cultivated in Bosnia (34.88 ± 2.00 and 102.44 ± 1.63 mg GAE/g, respectively). A
comparative study undertaken by Pradeepa et al. [31] on P. graveolens leaves collected in
India showed that ethanolic extract, obtained by Soxhlet, had the highest total phenolic
content (123.75 ± 8.25 mg GAE/g), followed by acetone (107.25 ± 4.25 mg GAE/g) and
then methanolic (100.65 ± 4.90 mg GAE/g) and aqueous (24.75 ± 5.62 mg GAE/g) extracts.
A similar work was conducted on extracts of leaves and flowers of P. graveolens from
Tunisia using different solvents; the most abundant content was found in leaf and flower
80% methanol extracts (142.71 ± 3.83 mg GAE/g and 129.2 ± 2.60 mg GAE/g, respectively),
followed by 80% ethanol extracts (136.54 ± 1.2 mg GAE/g and 118.05 ± 2.1 mg GAE/g,
respectively) and water extracts (92.77 ± 2.50 and 55.44 ± 1.30 mgGAE7g, respectively) [32].
In another work conducted on aerial parts, aqueous extracts were obtained by the infusion
and decoction of this species from Tunisia, and the phenolic content was found to be
27.05 ± 0.53 and 31.20 ± 0.58 mg GAE/g, respectively [33].

The extracts investigated in this study were obtained by using the Soxhlet extraction
technique, which is known to offer numerous advantages such as high yields with a much
lower volume of solvent. From comparisons with previous studies, it is evident that this
technique (using ethanol as a solvent) represents an efficient system to recover a high
content of phenolic compounds; notably, the extracts obtained from P. graveolens from
Morocco are a richer source of phenolic compounds than those from the same species
grown in other geographical areas.
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2.1.2. Identification of Phenolic Compounds by HPLC-PDA/ESI-MS

Analysis of the phenolic profile of the aqueous and ethanolic extracts obtained from
aerial parts of P. graveolens was carried out by using high-performance liquid chromatogra-
phy coupled to a photodiode array and electrospray ionization mass spectrometry. A total
of thirty-three phenolic compounds were detected (Figure 1A,B and Table 2).
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Figure 1. HPLC-PDA chromatograms of the phenolic compounds, extracted at 330 nm. Aqueous
extract (A) and ethanolic extract (B) of Pelargonium graveolens. For peak identification, see Table 2.

In particular, most of them belonged to the flavonoid class, while only eight were
phenolic acids. Of the flavonoids, eight were kaempferol derivatives, seven were quercetin
derivatives, and four were myricetin derivatives. The eight phenolic acids were gallic acid,
caffeoylglucaric acid, caftaric acid, feruloylglucaric acid, caffeoylquinic acid, caffeic acid,
caffeoylhydroxycitric acid, and rosmarinic acid.

The results of the HPLC analysis of P. graveolens extracts have shown qualitative
and quantitative differences in the phenolic content. Analysis of the ethanolic extract dis-
played 17 detected compounds. The main compounds were quercetin hexosyl-rhamnoside
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(9.09 ± 0.049 mg/g; peak 19), quercetin hexosyl-rhamnoside (8.63 ± 0.083 mg/g; peak 20),
quercetin (5.45 ± 0.002 mg/g; peak 32), quercetin hexosyl-pentoside (4.41 ± 0.056 mg/g;
peak 17), and quercetin 3-O-pentoside (3.09 ± 0.034 mg/g; peak 25). The remaining de-
tected compounds were less than 2 mg/g, and two compounds were detected but not
quantified. On the other hand, analysis of the aqueous extract of P. graveolens revealed
28 compounds, of which the major compounds were rosmarinic acid (8.59 ± 0.017 mg/g;
peak 31), quercetin hexosyl-rhamnoside (4.44 ± 0.004 mg/g; peak 19), quercetin hexosyl-
pentoside (4.36 ± 0.006 mg/g; peak 17), caffeoylglucaric acid (3.39 ± 0.011 mg/g; peak
2), kaempferol hexuronide and kaempferol hexosyl-pentoside (2.84 ± 0.010 mg/g; peak
22 and 23, respectively), quercetin hexoside (2.63 ± 0.034 mg/g; peak 21), and caffeoyl
glucuronide (2.09 ± 0.044 mg/g; peak 4), while the other compounds were less than
2 mg/g.

Very few studies have investigated the phenolic composition of P. graveolens [34–36];
our results agree with those reported by Androutsopoulou [35] and Al-Sayed [36], who
found quercetin and kaempferol derivatives to be the main phenolics detected in leaf
extracts of P. graveolens from Greece and Egypt, respectively. Notably, this is the first work
reporting an extensive characterization of the phenolic profile of aerial parts of this species
growing in Morocco.

Table 2. Semi-quantification of phenolic compounds in aqueous and ethanolic extracts of the aerial
parts of Pelargonium graveolens through LC-PDA/ESI-MS analysis. Quantification of phenolic com-
pounds was reported in mg/g of dried extract ± SD (n = 3).

Peak N. Compound tR (min) UV max (nm) [M − H]− Aqueous Extract Ethanolic Extract Ref.

1 Gallic acid 2.91 270 169 0.60 ± 0.000 - Std.

2 Caffeoylglucaric acid 5.74 326 371, 179 3.39 ± 0.011 - [37]

3 Unknown 6.32 279 395, 197 X - -

4 Caffeoyl glucuronide 7.35 288, 312 355 2.09 ± 0.044 - -

5 Caftaric acid 7.94 325 311, 179 1.13 ± 0.035 - [38]

6 Feruloylglucaric acid 9.06 325 385, 193 0.72 ± 0.011 - -

7 Sinapoylglucose 9.36 281, 322 385, 223 0.30 ± 0.010 - -

8 Caffeoylglucose 9.77 323 341, 179 0.30 ± 0.003 - -

9 Unknown 9.90 312 293 X X -

10 Caffeoylquinic acid 10.80 324 353, 191, 179 1.11 ± 0.002 0.23 ± 0.016 Std.

11 Caffeic acid 10.96 322 179 0.92 ± 0.012 - Std.

12 Unknown 11.01 282 325 - X -

13 Caffeoylhydroxycitric acid 11.14 312 369 0.48 ± 0.003 - -

14 Myricetin hexoside 22.40 260 sh, 354 479, 317 - 1.16 ± 0.000 [37]

15 Myricetin rhamnosyl-hexoside 23.42 262 sh, 353 625, 479, 317 1.06 ± 0.004 1.90 ± 0.022 [37]

16 Quercetin hexuronide 24.38 276, 343 477, 301 0.37 ± 0.011 - [37]

17 Quercetin hexosyl-Pentoside 25.26 255, 353 595, 463, 301 4.36 ± 0.006 4.41 ± 0.056 [37]

18 Myricetin 3-O-rhamnoside 27.24 263, 348 463, 317 0.96 ± 0.006 1.49 ± 0.003 [35]

19 Quercetin hexosyl-rhamnoside 28.23 254, 353 609, 463, 301 4.44 ± 0.004 9.09 ± 0.049 [37]

20 Quercetin hexosyl-rhamnoside 29.53 256, 352 609, 463, 301 1.34 ± 0.041 8.63 ± 0.083 [37]

21 Quercetin hexoside 29.68 254, 352 463, 301 2.63 ± 0.034 - [37]

22 Kaempferol hexuronide 30.34 261, 347 461, 285 2.84 ± 0.010 - -

23 Kaempferol hexosyl-pentoside 30.79 265, 345 579, 447, 285 0.65 ± 0.008 [39]

24 Kaempferol hexosyl-rhamnoside 30.82 266, 347 593, 447, 285 0.81 ± 0.000 - [37]

25 Quercetin 3-O-pentoside 31.86 255, 353 433, 301 1.71 ± 0.008 3.09 ± 0.034 [35]

26 Kaempferol 3-O-glucoside 32.36 264, 344 447, 285 0.70 ± 0.001 1.71 ± 0.016 Std.

7 Kaempferol hexosyl-rhamnoside 34.93 265, 343 593, 447, 285 0.37 ± 0.017 - [37]

28 Kaempferol galactoside 35.16 264, 344 447, 285 0.92 ± 0.015 3.29 ± 0.033 [37]

29 Myricetin 35.99 252 sh, 370 317 - 1.38 ± 0.017 Std.
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Table 2. Cont.

Peak N. Compound tR (min) UV max (nm) [M − H]− Aqueous Extract Ethanolic Extract Ref.

30 Kaempferol 3-O-pentoside 36.53 265, 345 417, 285 0.34 ± 0.003 0.70 ± 0.009 [35]

31 Rosmarinic acid 40.13 328 359, 161 8.59 ± 0.017 - [40]

32 Quercetin 51.69 254, 369 301 - 5.45 ± 0.002 Std.

33 Kaempferol 65.07 265, 366 285 - 1.48 ± 0.007 Std.

X: detected but not quantified; sh: wavelength shoulder.

2.2. Antioxidant Activity

The antioxidant properties of the aqueous and ethanolic extracts and EO of P. graveolens
were established using three in vitro tests to evaluate the different mechanisms through
which the diverse antioxidant compounds contained in the phytocomplexes could exert
their effect. The primary antioxidant properties were evaluated by a DPPH assay, based on
hydrogen atom transfer (HAT) and single-electron transfer (SET) mechanisms and reducing
power, and a SET-based assay; the ferrous ion (Fe2+)-chelating activity assay was utilized
to determine the secondary antioxidant properties.

The results of the DPPH test, utilized to determine the scavenging properties of free
radicals, are shown in Figure 2A. Both aqueous and ethanolic extracts exhibited excellent radical
scavenging activity; the ethanolic extract at the lowest concentrations (0.0625 to 0.250 mg/mL)
showed a higher effect than the reference standard BHT, reaching its maximum activity, above
90%, at the concentration of 0.250 mg/mL. On the other hand, the EO showed very low activity.
This is also confirmed by the calculated IC50 values equal to 0.05 ± 0.011 mg/mL for ethanolic
extract, which is better than BHT (IC50 = 0.07 ± 0.01 mg/mL), followed by the aqueous extract
(IC50 = 0.13 ± 0.01 mg/mL) and EO (IC50 > 2 mg/mL) (Table 1). Figure 2B shows the
results of the reducing power assay. Excellent reducing capabilities were highlighted for
the ethanolic and aqueous extracts compared to the reference standard BHT. Ethanolic
extract from the 1 mg/mL concentration was more active than the standard. However,
no statistically significant difference between the ASE/mL values of aqueous and ethano-
lic extracts (3.01 ± 0.03 and 1.92 ± 0.04 ASE/mL, respectively) compared to the BHT
(1.44 ± 0.02 ASE/mL) was found, as shown in Table 1. Instead, the EO showed weak
reducing power (21.77 ± 2.17 ASE/mL). In the Fe2+ chelating activity assay, the EO
and the ethanolic extract showed low activity compared to the reference standard EDTA
(Figure 2C), also demonstrated by IC50 values > 2 mg/mL for both (Table 1). On the
contrary, the aqueous extract showed no activity.
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Figure 2. Free radical scavenging activity (DPPH assay) (A), reducing power (B), and ferrous
ion-chelating activity (C) of EO and ethanolic and aqueous extracts obtained from aerial parts of
Pelargonium graveolens. Values are expressed as the mean ± SD (n = 3).

The results of the antioxidant tests indicate that the aqueous and ethanolic extracts
showed excellent primary antioxidant properties; on the contrary, the EO has shown weak
antioxidant properties, both primary and secondary. The primary antioxidant properties
could be mainly attributed to the phenolic compounds detected in the extracts by HPLC-
PDA/ESI-MS analysis. Flavonoids and phenolic acids, the largest classes of plant phenolics,
are effective antioxidants; the antioxidant activity of these compounds is mainly due to
their redox properties and chemical structure, which contribute to their ability to inhibit
lipoxygenase and scavenging free radicals [41–43]. The best radical scavenging activity
of the ethanolic extract could be related to the presence of the flavonols quercetin and
myricetin and their derivatives, whose antioxidant properties have been widely demon-
strated [44–46]. These compounds were found in larger quantities in the ethanolic extract
than the aqueous one.

Several previous works indicated P. graveolens as a potential source of antioxidant
compounds. Referring to the literature, studies on the antioxidant activity of this species
were conducted mainly on the essential oil, showing a strong antioxidant effect, which does
not agree with our results [10,32,47–49]. On the contrary, our findings are similar to those
reported by Ćavar et al. [23], showing very weak reactivity in the scavenging of DPPH
radicals in the essential oils from the air-dried leaves and stems of P. graveolens.

Furthermore, Dimitrova et al. [50] and Ennaifer et al. [33,51] reported the remarkable
antioxidant capacity of aqueous extracts of this species. El Aanachi et al. [13] showed
the activities of extracts from aerial parts (n-hexane, dichloromethane, and methanol) of
P. graveolens by various antioxidant assays, including DPPH scavenging, reducing power,
and iron chelation. Strong antioxidant activity was demonstrated by the extracts, particu-
larly the methanol extract, which was the most powerful.
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2.3. Insecticidal Activity on Adult Sitophilus oryzae

The EO of P. graveolens at different concentrations (4, 8, 12, and 16 µL/L of air) sig-
nificantly affected the survival of S. oryzae adults. In the treated batches, this survival
ranged between 1 and 10 days for the concentration of 16 µL/L of air, whereas in the
control batch, this parameter varied between 3 and 12 days. The toxicity of EO depends on
the concentration and duration of exposure (Figure 3). The survival times of 50% of the
adults exposed to different concentrations of EO varied from one day to around five days,
whereas in the control batch, the adults lived for an average of 12 days. The TL50 and TL99
were negatively correlated with the concentrations of EO tested (Table 3). The toxicological
parameters of the EO tested are shown in Table 4. After three days of treatment, the LC50
and LC99 concentration values were 19.22 µL/L and 76.42 µL/L, respectively.
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Figure 3. Survival of adult Sitophilus oryzae treated with the EO of Pelargonium graveolens. Survivors
with the same lower-case letter did not differ statistically from one another (Scheffé test, p ≤ 0.05),
while the others were different.

Table 3. TL50 and TL99 of Sitophilus oryzae adults exposed to Pelargonium graveolens essential oil.

Concentrations (µL/L) TL50 r > r (0.05; 2) TL99 r > r (0.05; 2)

0 6.89 13.65
4 5.58 −0.89 11.05 −0.89
8 3.18 6.30
12 2.71 5.36

Table 4. Toxicity parameters of essential oil of Pelargonium graveolens on Sitophilus oryzae.

Days after
Treatment Slope ± SE (1) χ2 Calculated

<χ2 (0.05; 2) = 5.991
LC50 (µL/L) (2)

[Confidence Interval]
LC99 (µL/L) (2)

[Confidence Interval]

1 3.03 ± 0.71 4.36 36.78
[30.03; 53.74]

215.88
[109.33; 1312.13]

3 3.88 ± 0.81 3.70 19.22
[14.23; 23.25]

76.42
[53.353; 171.002]

4 4.11 ± 0.82 1.96 15.35
[10.96; 18.82]

56.40
[41.22; 108.74]

5 5.66 ± 1.22 0.30 13.79
[9.82; 16.78]

35.55
[27.78; 59.75]

6 8.02 ± 2.14 0.02 12.30
[8.73; 15.07]

23.99
[18.89; 43.78]

(1) SE: Standard Error; (2) LC50 and LC99: Lethal concentrations, respectively, for 50% and 99% of the individu-
als used.

Abd El-Salam [52] found that the EOs of Cymbopogon flexuosus and Melaleuca alternifolia
had potent toxicity against S. oryzae. The LC50 of these essential oils were, respectively, 31.0,
36.0, and 69.6 µL/L after three days of treatment, while the LC50 of the P. graveolens EO
studied was 19.22 µL/L, showing that S. oryzae was more sensitive to this oil. In addition,
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Mesbah et al. [53] evaluated the S. oryzae contact toxicity of the EO from P. graveolens and
prepared nanoemulsions. The results showed that the nanoemulsion had the best activity
(LC50 = 2.29 ppm/cm2) against adult S. oryzae after 72 h, whereas the EO was found to be
less toxic, (LC50 = 67.662 ppm/cm2). A study carried out by Jayakumar et al. [54] assayed
the fumigant and the repellent effect of geranium EO on S. oryzae and found a fumigant
effect on rice weevils. Seada et al. [55] evaluated the contact toxicity of P. graveolens and
found that geranium oil had the highest repellent activity against S. oryzae, followed by
fennel and basil oils. The results of the study carried out by Arab et al. [56] indicated that
geranium stripping oil was highly toxic against adult S. oryzae. after 24 h of exposure
(LC50 = 1310.4 mg/L), in agreement with our findings.

The ethanolic extract of P. graveolens significantly affected the survival of adult S. oryzae.
In the treated batches, weevil survival ranged from one to eleven days, whereas in the
control batch, this parameter fluctuated between two and fifteen days. The toxicity of the
ethanolic extract depended on the concentration and duration of exposure (Figure 4). The
TL50 and TL99 were negatively correlated with the concentrations tested (Table 5).
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Figure 4. Survival of adult Sitophilus oryzae treated with the ethanolic extract of Pelargonium graveolens.
Survivors with the same lower-case letter did not differ statistically from one another (Scheffé test
p ≤ 0.05), while the others were different.

Table 5. TL50 and TL99 of Sitophilus oryzae adults exposed to Pelargonium graveolens ethanolic extract.

Concentrations
(g/50 Seeds) TL50 r > r (0.05; 2) TL99 r > r (0.05; 2)

0 7.71 13.65
Dn/2 5.53 −0.99 11.05 −0.99

Dn 5.05 6.30
2 Dn 4.62 5.36
4 Dn 4.15 8.21

The toxicity parameters of the ethanolic extract of P. graveolens are summarized in
Table 6. The calculated lethal concentrations LC50 and LC99 reveal that adults of S. oryzae
are very sensitive to this extract. The extreme values of LC50 and LC99 vary according to
the duration of exposure (Table 6).
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Table 6. Toxicity parameters of ethanolic extract of Pelargonium graveolens on Sitophilus oryzae.

Days after
Treatment Slope ±SE (1) χ2 Calculated

<χ2 (0.05; 2) = 5.991
LC50 (g/50 Seeds) (2)

[Confidence Interval]
LC99 (g/50 Seeds) (2)

[Confidence Interval]

1 1.56 ± 0.71 0.33 10.63
[5.09; 922656.81]

329.52
[109.33; 1312.13]

6 1.54 ± 0.77 0.23 1.93
[0.00; 4.12]

62.13
[53.35; 171.002]

8 3.17 ± 1.20 2.01 1.38
[0.20; 2.13]

7.507
[41.22; 108.74]

9 3.47 ± 1.44 1.31 0.82
[0.03; 1.33]

3.86
[27.78; 59.75]

(1) SE: Standard Error; (2) LC50 and LC99: Lethal concentrations, respectively, for 50% and 99% of the individu-
als used.

The aqueous extract of P. graveolens significantly affected the survival of adult S. oryzae.
In the treated batches, weevil survival ranged from one to eleven days, whereas in the
control batch, this parameter fluctuated between two and fifteen days. The toxicity of the
aqueous extract of P. graveolens depended on the concentration and duration of exposure
(Figure 5). The TL50 and TL99 were negatively correlated with the concentrations tested
(Table 7).
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Figure 5. Survival of adult Sitophilus oryzae treated with the aqueous extract of Pelargonium graveolens.
Survivors with the same lower-case letter did not differ statistically from one another (Scheffé test
p ≤ 0.05), while the others were different.

Table 7. TL50 and TL99 of Sitophilus oryzae adults exposed to Pelargonium graveolens aqueous extract.

Concentrations
(g/50 Seeds) TL50 r > r (0.05; 2) TL99 r > r (0.05; 2)

0 7.53 14.90
Dn/2 5.24 −0.99 10.38 −0.99

Dn 4.90 9.96
2 Dn 4.47 8.85
4 Dn 4.24 8.39

The toxicity parameters of the aqueous extract of P. graveolens are summarized in
Table 8. The calculated lethal concentrations LC50 and LC99 reveal that adults of S. oryzae
are more sensitive to this aqueous extract. The extreme values of LC50 and LC99 vary
according to the duration of exposure.
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Table 8. Toxicity parameters of the aqueous extract of Pelargonium graveolens on Sitophilus oryzae.

Days after
Treatment Slope ±SE (1) χ2 Calculated

<χ2 (0.05; 2) = 5.991

LC50 (g/50 Seeds) (2)

[Confidence
Interval]

LC99 (g/50 Seeds) (2)

[Confidence
Interval]

1 1.89 ± 0.86 0.80 11.34
[5.09; 922,656.81]

192.63
[109.33; 1312.13]

2 1.83 ± 0.83 0.68 6.96
[0.00; 4.12]

129.83
[53.35; 171.002]

3 1.50 ± 0.76 0.18 6.30
[0.20; 2.13]

221.01
[41.22; 108.74]

8 2.20 ± 1.01 0.64 1.16
[0.03; 1.33]

13.21
[27.78; 59.75]

(1) SE: Standard Error; (2) LC50 and LC99: Lethal concentrations, respectively, for 50% and 99% of the individu-
als used.

Overall, the obtained results highlighted the strongest toxicity against S. oryzae for P.
graveolens EO. The strong insecticidal action of EO could depend on the presence of some
components contained in high amounts such as monoterpenoids [25]. These compounds
are severely poisonous to insects and have repellent and antifeedant qualities; for this
reason, they have been explored as possible pest control agents [57]. In particular, this effect
could depend mainly on geraniol, citronellol, and linalool detected in great concentrations
in the EO and whose toxicity against rice weevils has been demonstrated [56]. The findings
of the present study indicate that this EO can provide an alternative source of insect control
agents because it contains a range of bioactive chemicals, most of which are selective and
have little or no harmful effect on the environment and non-target organisms including
humans. EO-based formulations can be used as alternative tools in stored grain insect
management [58].

Interestingly, even the ethanolic and the aqueous extracts, rich in phenolics, exhibited
toxicity against rice weevils, with the former being more active than the latter. The effects
of plant extracts and their active constituents, including flavonoids and phenolic acids,
against stored product insect pests have been previously reported; indeed, several phenolic
compounds were found to possess insecticidal activity against S. oryzae [59,60]. As far
as we know, there are no data in the previous literature on the insecticidal activity of P.
graveolens extracts against S. oryzae.

3. Materials and Methods
3.1. Plant Material and Extraction Procedure

The aerial parts of P. graveolens were harvested in May 2020 in the ksar Tizgaghine,
20 km from Tinjdad, in the region of Er-Rachidia, Morocco (31◦55′55′′ N, 4◦25′28′′ W). The
plant was identified and confirmed by Professor Benkhnigue Ouafae at the Botanics and
Plant Ecology Department of the Scientific Institute of Rabat, Morocco. The plant was
deposited in the herbarium under the voucher number RAB 114766. The plant material
was dried in a dry ventilated place for one month, then ground with an electric mill and
kept in the shade in closed premises. A total of 30 g of powdered plant material was put
in a cartridge and extracted with 250 mL of extraction solvent (ethanol or water) using a
Soxhlet extractor for 6 h. Then, the solvent was evaporated using a rotary evaporator. The
extraction yield of ethanolic and aqueous extracts was 18.26 and 22.25%, respectively.

The essential oil was extracted by hydro-distillation; 100 g of dry plant material was
placed in 1.5 L of distilled water heated to 100 ◦C in a Clevenger-type apparatus. Distillation
was performed for three hours after the first drop of distillate had been collected. The
essential oil was dried with anhydrous sodium sulfate and stored at +4 ◦C in the dark. The
extraction yield of the essential oil was 0.21%.

3.2. Phytochemical Investigations
3.2.1. Determination of Total Phenolic Content

The total phenolic content of the aqueous and ethanolic extracts was determined by
the Folin–Ciocâlteu colorimetric method as previously reported [61]. The results were
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obtained from the average of three independent determinations and expressed as mg gallic
acid equivalent (GAE)/g extract (dw) ± standard deviation (SD).

3.2.2. Phenolic Compounds Analysis by HPLC-PDA/ESI-MS

Analysis of phenolic compounds of the aqueous and ethanolic extracts was performed
using high-performance liquid chromatography coupled with a photodiode array detector
and electrospray ionization mass spectrometry (HPLC-PDA/ESI-MS) (Shimadzu, Kyoto,
Japan). Chromatographic separation was carried out on an Ascentis Express C18 column
(150 × 2.1 mm, 2.7 µm; Merck Life Science, Merck KGaA, Darmstadt, Germany) using, as
the mobile phase, 0.1 % (v/v) acid formic in water (mobile phase A) and 0.1 % (v/v) acid
formic in acetonitrile (mobile phase B). The gradient elution applied was: 0 min (0 % B),
10 min (10 % B), 20 min (11 % B), 30 min (15 % B), 50 min (18 % B), 65 min (23 % B), 70 min
(100 % B), and 75 min (100 % B) at a flow rate of 0.5 mL/min. The column temperature
was 30 ◦C and the injection volume was 2 µL. UV detection wavelengths were in the
range of λ =190–400 nm. Positive and negative ion mass spectra were set as follows: scan
range: m/z 100–800, nebulizing gas (N2) flow rate: 0.5 mL/min, drying gas (N2) flow
rate: 15 L/min, interface temperature: 350 ◦C. LabSolutions software ver. 5.92 (Shimadzu,
Kyoto, Japan) was used to control the LC-PDA-ESI-MS system and for data processing.
The identification of phenolic compounds was made by comparison of retention times
and UV–visible and mass spectra, and with co-standard injection data and data from the
literature when available.

3.3. Antioxidant Activity
3.3.1. DPPH Test

The 2,2-diphenyl-1-picrylhydrazyl (DPPH) test was used to determine the free radical
scavenging activity of P. graveolens extracts and EO, according to the method of Ohnishi
et al. [62], using butylated hydroxytoluene (BHT) as the reference standard. The results
were obtained from the average of three independent experiments, and are reported
as mean radical scavenging activity (%) ± SD and mean 50% inhibitory concentration
(IC50) ± SD.

3.3.2. Reducing Power Assay

The reducing power of P. graveolens extracts and EO was determined using the Fe3+-
Fe2+ transformation method, according to the protocol of Oyaizu [63], using Ascorbic acid
and BHT as reference standards. The results were obtained from the average of three
independent experiments, and are expressed as mean absorbance values ± SD and ascorbic
acid equivalent/mL (ASE/mL) ± SD.

3.3.3. Ferrous Ions (Fe2+) Chelating Activity Assay

The chelating activity of P. graveolens extracts and EO was measured by evaluating
their ability to inhibit the formation of the Fe2+-ferrozine complex, according to the method
previously reported by Kumar et al. [64]. The results, obtained from the average of three
independent experiments, are reported as the mean inhibition of ferrozine–(Fe2+) complex
formation (%) ± SD and IC50 ± SD.

3.4. Insecticidal Activity
3.4.1. Sitophilus oryzae Strain

The insects were derived from a strain isolated from wheat grains infested with
S. oryzae. The grains were collected from a farmer in the Meknes region. The strain was
grown in the laboratory in a ventilated room at 25–28 ◦C and 70% humidity. Mass rearing
was carried out in glass jars with mesh lids, filled with durum wheat grains, to which a
sufficient number of S. oryzae insects of undetermined sex were added. The pots were then
left at room temperature. After one or two weeks of infestation, the adults were removed
from the grains.
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3.4.2. Effect of the Essential Oil on Adult Sitophilus oryzae

Pelargonium graveolens EO oil fumigant was used in 2.5 L hermetically sealed transpar-
ent plastic boxes as an exposure chamber to test the essential oil’s toxicity against adult S.
oryzae, using a modified version of the techniques outlined by El Idrissi et al. (2014) [65].
Five Petri dishes are placed in each box (ensuring five repetitions). Each repetition consists
of ten S. oryzae adults. Five Petri dishes were placed, each replicate consisting of ten S.
oryzae adults. The tests were carried out under rearing conditions. The EO was spread on
Whatman-type filter paper, which was placed inside the exposure chamber. Four doses
were applied: 4 µL, 8 µL, 12 µL, and 16 µL, and an untreated batch was used as a con-
trol. Mortality was monitored by counting dead insects from the first day of treatment
until death.

3.4.3. Effect of Ethanolic and Aqueous Extracts on Adult Sitophilus oryzae

The method outlined by Riffi et al. (2019) [66] was used to assess the fumigant effect of
P. graveolens extracts against adult S. oryzae. Ten wheat burrows were introduced into Petri
dishes containing 50 durum wheat seeds mixed with the ethanolic and aqueous extracts of
the aerial part of P. graveolens at five selected doses (0; Dn/2; Dn; 2Dn; and 4Dn), either an
extract weight of 0 g, 0.0078 g, 0.0156 g, 0.0321 g, and 0.0624 g, respectively, for the ethanolic
extract or an extract weight of 0 g, 0.0127 g, 0.0254 g, 0.0508 g, and 0.1017 g, respectively,
for the aqueous extract. The tests were carried out under the conditions of breeding for
S. oryzae. Mortality control was done by enumerating dead insects from the first day of
treatment to the death of all individuals. For each dose, the experiments were repeated
three times.

3.4.4. Data Analysis

The LC50 and LC99 were determined using the Finney probit method [67]. Mortalities
were corrected using Abbott’s formula [68]. The lethal times required for the death of 50%
(TL50) and 99% (TL99) of adults exposed to different concentrations of the essential oil and
extracts were estimated.

3.5. Statistical Analysis

Statistical analysis of data regarding the antioxidant activity was carried out by using
one-way analysis of variance (ANOVA) followed by the Tukey–Kramer multiple compar-
isons tests; conversely, the t-test was employed for total phenolic content data handling
(GraphPad Prism Software for Science or Statistica 13.3 (TIBCO Software Co., Palo Alto,
CA, USA)). In all the selected tests, p-values lower than 0.0001 were considered statistically
significant. To compare the effects of the essential oil and the extracts tested on insecticidal
activity, analysis of variance (ANOVA) followed by the 5% Scheffé test was performed
using Excel version 2010 software.

4. Conclusions

In this contribution, the essential oil and the extracts (aqueous and ethanolic) obtained
from the aerial parts of Pelargonium graveolens grown in Er-Rachidia, Morocco, have been
assayed for their in vitro antioxidant activity and insecticidal properties against the rice
weevil (Sitophilus oryzae), one of the most destructive pests of stored cereals and processed
cereal products worldwide.

The results of the antioxidant tests showed the best activity for the ethanolic extract,
followed by the aqueous one, whereas EO exhibited weak antioxidant properties, indicating
that phenolic compounds play a major role in the observed effects. A thorough characteriza-
tion of the phenolic profile of the aqueous and ethanolic extracts has been performed, which
revealed quite a complex and different pattern, including phenolic acids and flavonoids.
Differently, the essential oil displayed the strongest toxicity against S. oryzae, which could
depend mainly on the presence of some monoterpenoids in high amounts. Notably, even
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the ethanolic and the aqueous extracts exhibited toxicity against rice weevils, with the
former being more active than the latter, which could be related to phenolic compounds.

Based on the remarkable results achieved for antioxidant and insecticidal activity,
the aerial parts of P. graveolens could be considered as an alternative source of bioactive
compounds to be advantageously employed as botanical insecticides against several stored
and processed product insect pests.
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