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Abstract: Leishmania infantum is the vector-borne trypanosomatid parasite causing visceral leishma-
niasis in the Mediterranean basin. This neglected tropical disease is treated with a limited number
of obsolete drugs that are not exempt from adverse effects and whose overuse has promoted the
emergence of resistant pathogens. In the search for novel antitrypanosomatid molecules that help
overcome these drawbacks, drug repurposing has emerged as a good strategy. Nitroaromatic com-
pounds have been found in drug discovery campaigns as promising antileishmanial molecules.
Fexinidazole (recently introduced for the treatment of stages 1 and 2 of African trypanosomiasis),
and pretomanid, which share the nitroimidazole nitroaromatic structure, have provided antileish-
manial activity in different studies. In this work, we have tested the in vitro efficacy of these two
nitroimidazoles to validate our 384-well high-throughput screening (HTS) platform consisting of
L. infantum parasites emitting the near-infrared fluorescent protein (iRFP) as a biomarker of cell
viability. These molecules showed good efficacy in both axenic and intramacrophage amastigotes and
were poorly cytotoxic in RAW 264.7 and HepG2 cultures. Fexinidazole and pretomanid induced the
production of ROS in axenic amastigotes but were not able to inhibit trypanothione reductase (TryR),
thus suggesting that these compounds may target thiol metabolism through a different mechanism
of action.

Keywords: Leishmania infantum; visceral leishmaniais; neglected tropical diseases; nitroaromatic
compounds; drug repurposing; pretomanid; fexinidazole; trypanothione reductase

1. Introduction

The trypanosomatid protozoan parasite Leishmania infantum is the etiological agent of
visceral leishmaniasis in the European Mediterranean basin and the Americas
(syn = Leishmania chagasi), whereas in Africa and Asia Leishmania donovani is the species
responsible for this disease. Leishmaniasis has been included by WHO, along with African
(sleeping sickness) and American trypanosomiasis (Chagas disease), within the group of
neglected tropical diseases (NTDs) caused by trypanosomatids that are widely spread in
the tropical and subtropical areas of the planet [1–3]. Leishmania is transmitted by the bite
of sandflies of the genera Phebotomus and Lutztomya and presents two main morphological
forms: promastigote (motile flagellated form) in the sandfly vector, and amastigote (intra-
macrophage non-motile form) in the mammalian host [4]. Clinical manifestations depend
on the Leishmania species infecting the mammalian host, thereby giving rise to three main
types of leishmaniasis: cutaneous, mucocutaneous, and visceral [5], the latter being the
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most severe form affecting the poorest populations in developing countries [6], with an
estimated incidence of 50,000 to 90,000 new cases (only 25–45% cases reported) and at least
5710 deaths in 2019 [7].

Due to the lack of a specific vaccine for the human disease, chemotherapy is the
only treatment available for leishmaniasis and is based on scarce and obsolete drugs that
have plenty of undesired side effects, and whose overuse has promoted the appearance of
resistance [8,9]. Pentavalent antimonials (SbV; Glucantime and Pentostam), although they
still represent the first-line treatment for different types of leishmaniasis in many endemic
countries, exhibit serious side effects, such as cardiotoxicity and pancreatitis, require
long-term intramuscular injections, and have given rise to the emergence of resistant
strains [9–11]. Amphotericin B (Amp B), formulated either as deoxycholate or liposomal
(AmBisome) is very effective, but it requires slow-infusion intravenous administration
in hospitals due to its poor oral bioavailability, is unstable at the high temperatures of
endemic countries, and shows adverse effects, such as nephrotoxicity, hypokalemia, and
myocarditis [12–14]. The only oral drug approved for the treatment of different forms
of leishmaniasis is miltefosine [14,15]. However, despite its high efficacy, this drug is
embryotoxic, thus preventing its use in pregnant women, and after several years of use,
a loss of efficacy has been reported [16–19]. Finally, paromomycin (an aminoglycoside
antibiotic), due to its limited efficacy as monotherapy, is used in parenteral formulations in
combination with SbV, miltefosine, and AmBisome [9,20,21].

In this scenario, there is an urgent need to develop new natural or synthetic drugs
against Leishmania [22,23]. One of the strategies followed to reach this goal is drug repurpos-
ing (repositioning), i.e., the identification of new antileishmanial compounds from already
known drugs [24]. Nitroaromatic compounds have emerged as interesting molecules in
drug discovery campaigns for repositioning drugs against trypanosomatids [25,26]. Ni-
troaromatic rings (nitro functional group attached to benzene, a heterocycle such as furan or
imidazole, or a bicycle), are privileged pharmacophores of many antimicrobials in clinical
use, including antifungal and antiparasitic drugs [27]. These compounds act as prodrugs
and require nitroreductase (NTR)-mediated activation to exert cytotoxic effects [26–29].
Although the exact mechanism of action has not been fully characterized for nitroaromatic
compounds, it is assumed that reductive bioactivation and generation of reactive interme-
diates are responsible for the overall effect [30]. These intermediates are a source of free
radicals, which are likely to interact with various biochemical pathways of both the host
and parasite, inducing cell death in the absence of suitable scavengers. In this scenario,
different redox-active antiparasitic drugs have been described and enzymes catalyzing vital
redox reactions represent potential targets for drug development [31]. For example, it is
well-known that some nitrofurans target the unique thiol metabolism of trypanosomatids
behaving as inhibitors of trypanothione reductase (TryR), a key enzyme in the maintenance
of redox balance in these parasites [26,32–34].

Nitroaromatic compounds are currently used in the clinical practice for the treatment
of trypanosomatid-borne diseases, including benznidazole (nitroimidazole), nifurtimox (ni-
trofuran), both used for the treatment of Chagas disease for more than five decades [35–37],
and fexinidazole (nitroimidazole), the latter being approved more recently for the oral
treatment of the stages 1 and 2 of African trypanosomiasis [26,38]. In addition, different
nitro derivative molecules are currently being tested against different trypanosomatids, and
nitroimidazoles, which are broad-spectrum antimicrobial drugs with antibacterial activity,
represent a promising source of antitrypanosomal and antileishmanial agents [26,39]. As
mentioned above, fexinidazole (Figure 1) is currently used for the treatment of African
trypanosomiasis and has been also tested against Leishmania both in vitro and in vivo with
good results [40,41]. Recently, oral self-emulsifying systems containing fexinidazole have
provided successful results in vivo, thus representing promising oral alternatives for the
treatment of visceral and cutaneous leishmaniasis [42,43]. On the other hand, the R enan-
tiomers of the antitubercular 4-nitroimidazo-oxazine pretomanid (PA-824) (Figure 1) have
provided good antileishmanial effects in vitro and in vivo [44].
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Figure 1. Chemical structure of the nitroimidazoles fexinidazole and pretomanid.

In this article, the in vitro efficacy of fexinidazole and pretomanid has been assessed in
a biotechnological platform consisting of L. infantum-engineered amastigotes that express
the gene encoding the near-infrared fluoresce protein (iRFP) as a biomarker of cell viability,
thereby validating a high-throughput screening (HTS) for drug discovery in a 384-well
format. In addition, reactive oxygen species (ROS) production and TryR activity have been
determined in order to provide some insights into the putative mechanism of action of
these two nitroimidazole compounds.

2. Results
2.1. In Vitro Efficacy of Nitroimidazole Compounds on L. infantum-iRFP Amastigotes

The antileishmanial effect of fexinidazole and pretomanid was tested against L. infan-
tum-iRFP, an engineered strain constitutively expressing the iRFP [45] (see Section 4). Both
axenic and intramacrophage amastigotes were obtained from mice infected with L. infan-
tum-iRFP promastigotes, as described in Section 4, and the infrared fluorescence emitted at
700 nm by the iRFP produced by living amastigotes was used as a direct measurement of
the parasite viability, as previously characterized [45].

In an initial experiment, we analyzed the evolution of cell viability based on fluoresce
emission by L. infantum-iRFP axenic amastigotes at 0 h, 24 h, 48 h, and 72 h after the
addition of different concentrations of either fexinidazole or pretomanid. DMSO (solvent of
nitroimidazole compounds) at a concentration of 0.1% (v/v) was used as a negative control,
whereas amphotericin B (18 µM) was added as a positive control. Graphics in Figure 2
show that concentrations above 0.125 µM fexinidazole and 0.5 µM pretomanid produced a
decrease in fluorescence emission from 24 h until 72 h, thus confirming the antileishmanial
effect of these molecules in the engineered strain.
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Once the antileishmanial effect of fexinidazole and pretomanid on axenic amastigotes
was confirmed, we also tested these two compounds on intramacrophage amastigotes.
Since the antileishmanial effect is clearly observed after 72 h in the presence of the ni-
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troimidazoles, we selected this time point to represent the percentage of viability versus
several concentrations of each nitroimidazole in dose-response curves, considering that
100% viability is represented by the fluorescence emitted by the amastigotes treated with
DMSO (0.1% v/v) and 0% viability is represented by amastigotes treated with Amp B
(18 µM). Curves (Figure 3) were non-linearly adjusted with the Sigma Plot 10.1 statistical
package, thus providing EC50 values in the low µM or nM range that were higher for
intramacrophage amastigotes than for axenic amastigotes (Tables 1 and 2).
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Figure 3. Dose-response curves adjusted with the Sigma Plot 10.1 statistical package showing
the effect of (a) fexinidazole and (b) pretomanid on L. infantum-iRFP axenic and intramacrophage
amastigotes (left panels), and HepG2 and RAW 264.7 cells (right panels). Graphs were prepared with
viability data obtained from cells after 72 h of incubation in the presence of different concentrations of
these compounds: from 4 µM to 0.0078 µM with one-half serial dilutions for parasites, or from 200 µM
to 1.56 µM with one-half serial dilutions for mammalian cells. The y-axis represents the percentage
of cell viability relative to the negative control, while the x-axis, in logarithmic scale, represents the
concentration (µM) of the different nitroimidazole molecules and amphotericin B. Results show the
mean values ± SD of three independent experiments with at least three technical replicates each.

As observed in Tables 1 and 2, fexinidazole showed the highest potency in axenic
amastigotes, whereas pretomanid was the best antileishmanial compound against intra-
macrophage amastigotes.
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Table 1. Results of EC50, CC50, and Selectivity Index (SI) for fexinidazole and pretomanid in axenic L.
infantum-iRFP axenic amastigotes, HepG2, and RAW 264.7 cells. Amp B data is shown as reference
antileishmanial compound.

Tested
Compound

Axenic Amastigotes HepG2 Cells RAW 264.7 Cells
SI1 SI2

EC50 Values (µM) p CC50 Values (µM) p CC50 Values (µM) p

Fexinidazole 0.04 ± 0.00 *** >200.00 N/A >200.00 N/A >5000.00 >5000.00
Pretomanid 0.28 ± 0.02 *** >200.00 N/A >200.00 N/A >714.29 >714.29

Amp B 0.27 ± 0.02 *** 69.75 ± 13.69 *** 6.70 ± 0.67 *** 258.33 24.82

Note: *** p ≤ 0.001. N/A: Not applicable. SI1 calculated between CC50 HepG2 cells and EC50 axenic amastigotes.
SI2 calculated between CC50 RAW 264.7 cells and EC50 axenic amastigotes.

Table 2. Results of EC50, CC50, and Selectivity Index (SI) for fexinidazole and pretomanid in intra-
macrophage L. infantum-iRFP amastigotes, HepG2, and RAW 264.7 cells. Amp B data is shown as
reference antileishmanial compound.

Tested
Compound

Intramacrophage Amastigotes HepG2 Cells RAW 264.7 Cells
SI1 SI2

EC50 Values (µM) p CC50 Values (µM) p CC50 Values (µM) p

Fexinidazole 1.32 ± 0.06 *** >200.00 N/A >200.00 N/A >151.52 >151.52
Pretomanid 0.66 ± 0.08 *** >200.00 N/A >200.00 N/A >303.03 >303.03

Amp B 0.32 ± 0.02 *** 69.75 ± 13.69 *** 6.70 ± 0.67 *** 217.97 20.94

Note: *** p ≤ 0.001. N/A: Not applicable. SI1 calculated between CC50 HepG2 cells and EC50 intramacrophage
amastigotes. SI2 calculated between CC50 RAW 264.7 cells and EC50 intramacrophage amastigotes.

2.2. In Vitro Safety of Nitroimidazole Compounds on HepG2 and RAW 264.7 Mammalian Cells

The cytotoxicity of fexinidazole and pretomanid was tested in the mammalian cell lines
HepG2 (a human cell line used to test the systemic toxicity of the compounds) and RAW
264.7 (a mouse cell line used to test the toxicity in macrophages), which were incubated
in the presence of different concentrations of these compounds (from 200 µM to 1.56 µM
with one-half serial dilutions). Cell viability was assessed using the alamarBlueTM staining
method (Invitrogen, Waltham, MA, USA), taking as 100% viability the fluorescence emitted
by the cells treated with 0.1% (v/v) DMSO (negative control) and as 0% viability the signal
provided by those cells treated with 0.1% (v/v) H2O2 (positive control). The percentage of
viability was plotted versus several concentrations of each nitroimidazole in comparative
dose-response curves, which were non-linearly adjusted with the Sigma Plot 10.1 statistical
package. These curves (Figure 3) showed the low cytotoxicity of these molecules for HepG2
and RAW 264.7 mammalian cells. Consequently, the CC50 could not be calculated for
the range of the concentrations tested (1.56 µM to 200 µM), thus providing a CC50 value
of >200 µM (Tables 1 and 2). Using the EC50 and CC50 values, the Selectivity Index (SI)
for each nitroimidazole compound against axenic and intramacrophage amastigotes was
calculated. As shown in Table 1, SI values of more than three orders of magnitude were
obtained regarding axenic amastigotes, and fexinidazole showed the highest SI. Regarding
intramacrophage amastigotes, pretomanid provided the best score. However, SI values
were lower than those provided with axenic amastigotes, although still high, showing
numbers of more than two orders of magnitude (Table 2).

2.3. Induction of ROS Production in L. infantum by Fexinidazole and Pretomanid

Once the in vitro efficacy and safety of the three nitroimidazole compounds were
tested, we decided to analyze the ability of these molecules to induce ROS production in
an attempt to provide some hints into the mechanism of action responsible for the loss
of parasite viability. For this purpose, cultures of L. infantum-iRFP axenic amastigotes
were treated with 0.04 µM fexinidazole and 0.28 µM pretomanid (the EC50 obtained in
previous experiments for each nitroimidazole compound) for 3 h and labeled with 2′,7′-
dichlorofluorescein diacetate (DCFH-DA) for ROS production assessment. Amastigote
cultures were also treated with H2O2 (0.01% v/v) as positive control or with 0.03% (v/v)
DMSO as negative control. Flow cytometry graphs showed distinct peaks correspond-
ing to the stressed and unstressed populations, and an induction of ROS production by
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the nitroimidazole compounds compared to the negative control. Fexinidazole was the
compound inducing more ROS production, giving rise to a percentage of the stressed
population of 58.4 ± 1.5%, whereas pretomanid provided values of 39.8 ± 1.2% (Figure 4).
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2.4. In Vitro Inhibitory Effect of Fexinidazole and Pretomanid on L. infantum TryR

In order to correlate the oxidative stress induced by fexinidazole and pretomanid
with the mechanism of action, the potential inhibitory role of these molecules on TryR
was assessed. Therefore, different concentrations of these nitroimidazoles were added to
L. infantum-iRFP protein extracts, and the time-dependent inhibitory effect at saturating
concentrations of oxidized trypanothione (T[S]2) and NADPH (0.075 mM and 0.20 mM,
respectively). As shown in Figure 5, neither fexinidazole nor pretomanid had any inhibitory
effect on L. infantum TryR at concentrations of up to 100 µM, unlike thioridazine, a well-
known inhibitor of TryR, which completely inhibited the enzyme at 100 µM. These results
indicate that these two nitroimidazoles induce ROS production by targeting metabolic
pathways different from thiol metabolism.
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Figure 5. Time-dependent inhibition of TryR activity with a fixed concentration of T[S]2 (0.075 mM)
and NADPH (0.20 mM). Thioridazine (0.1 mM) was used as a positive control. Fexinidazole and
pretomanid were tested at concentrations ranging from 6.25 µM to 100 µM. The calculated specific
enzymatic activity for the negative control (without inhibitor) was 4.83 × 10−3 µmol/mg · min.
(∆A/t = E · d · c; E = 14,150 M−1 cm−1; d = 0.34 cm). Results show the mean values ± SD of two
independent experiments with three technical replicates each.

3. Discussion

Nitroheterocycle-based molecules have provided potent and effective compounds
against trypanosomatids-borne diseases, such as Chagas disease and, more recently, sleep-
ing sickness. Benznidazole (a nitroimidazole) and nifurtimox (a nitrofuran) are two oral
antichagasic drugs in medical practice, and the nitroimidazole fexinidazole was recently
incorporated in the treatment of sleeping sickness in Africa. In addition, despite the poten-
tial mutagenic issues of these compounds, a novel nitro derivative DNDi-0690 has been
recently introduced in early clinical phases against visceral and cutaneous leishmaniasis,
opening a new window of opportunity for these compounds [24,26].

In the present work, we have validated our in-house biotechnological 384-well HTS
platform, consisting of an engineered iRFP-emitting L. infantum [25], by testing the an-
tileishmanial activity of fexinidazole and pretomanid, two nitroheterocyclic compounds
of the nitroimidazole family. Fexinidazole (1-methyl-2-((p-(methylthio)-phenoxy)methyl)-
5-nitroimidazole) is an orally administered nitroheterocyclic derivative that has recently
been introduced in some African countries, after FDA approval, as the first all-oral therapy
for the haemolymphatic and meningoencephalic forms of sleeping sickness [38]. Fexinida-
zole produced parasite remission in mouse models of visceral leishmaniasis [40], but its
therapeutic effect was inconclusive in a Phase II clinical trial [46]. Pretomanid (PA-824) is
an orally administered nitroimidazooxazine antimycobacterial agent, which was approved
in 2019 by the FDA to treat highly challenging cases of tuberculosis [47], but it also has
a strong killing effect against trypanosomas and Leishmania species and has served as a
chemical scaffold of many other compounds with antitrypanosomal activity. Pretomanid
exists as a mix of stereoisomers R and S, the R enantiomer being more active than the S
form against L. donovani both in vitro and in vivo [44].

In our HTS platform, both pretomanid and fexinidazole showed a strong antileishma-
nial effect on both L. infantum iRFP axenic and intramacrophage forms with EC50 values in
low or below µM range, in the same order as those described for a series of 7-substituted
2-nitroimidazooxazine [48], and good selectivity indexes (higher than the antileishmanial
drug Amp B [22]) in mouse macrophages and human hepatic cell lines. Unlike pretomanid,
fexinidazole antileishmanial potency was 33-fold lower in intramacrophage amastigotes
than in axenic parasites, which is in concordance with previous studies [40,49]. It has been
described that fexinidazole undergoes rapid oxidation in vivo to fexinidazole sulfoxide
and sulfone [50]. Although fexinidazole and its metabolites showed similar potencies
against axenic amastigotes of L donovani, when tested against intracellular amastigotes,
only the sulfoxide and sulfone forms yielded a potency similar to miltefosine, the parent
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drug providing little activity, thus pointing to the sulfoxide and sulfone metabolites as the
therapeutically relevant species. Based on these observations, the discrepancy between the
potency of fexinidazole, and that of the sulfone and sulfoxide metabolites against intracellu-
lar amastigotes, has been attributed to the inability of the parent drug fexinidazole to enter
or accumulate at therapeutic concentrations within the host macrophage, rather than by a
differential activity of fexinidazole depending on whether the target parasite is growing as
a free axenic form or within the host cell. This is in line with the physicochemical properties
of fexinidazole, which has a higher cLogP than its metabolites and, therefore, binds more
readily to plasma proteins [40].

The mechanism of action of nitroheterocycle compounds is probably related to the
activation of the nitro group by NTR enzymes, thus conforming to the prodrug nature of
these compounds. It has been proposed that the antichagasic drug benznidazole shows
antiprotozoal activity because of the formation of electrophilic metabolites resulting from
the reduction of the nitro group, whose metabolites covalently bind to macromolecules of
the parasite and cause cell damage [26,30]. The existence of two classes of NTRs involved
in the enzymatic catalysis of nitro groups is well-stated: the oxygen-insensitive NTR-I,
which utilizes NAD(P)H and catalyzes two reduction reactions of the nitro group and
does not generate ROS, and the oxygen-sensitive NTR-II, which contains FAD or FMN
as cofactor and catalyzes just one reduction reaction generating a nitro radical that reacts
with oxygen to produce superoxide anions [51]. Although NTR-II activation was initially
proposed as the main mechanism of action of nitroheterocyclic compounds, the fact that
overexpression of leishmanial and trypanosomal NTR-I increased the sensitivity of these
parasites to fexinidazole—and its metabolites—as well as to benznidazole and nifurtimox,
indicated that these molecules are essentially activated by type NTR-I [51–53]. In addition,
an uncommon NAD(P)H-dependent flavoprotein called NTR2 was reported to be involved
in the activation of pretomanid and delamanid in Leishmania spp. [29,44]. More studies are
required to characterize whether one or several NTR enzymes are involved in the activation
of fexinidazole and pretomanid in L. infantum, since according to our results, fexinidazole
and pretomanid at a concentration corresponding to their EC50 value gave rise to a large
percentage of L. infantum amastigotes accumulating free radicals (the effect being stronger
for fexinidazole than for pretomanid), which is consistent with an activation mediated
by NTR-II.

These results made us hypothesize whether the increase in ROS production observed
in L. infantum could be a consequence of the modification in the unique thiol metabolism
of this trypanosomatid parasite. Sensitivity to ROS-inducing drugs of trypanosomatids
was early proposed by Docampo [54] in 1990, who speculated about the key role played
by trypanothione as a free-radicals scavenger in this family of parasites. Since then, a
plethora of compounds (reviewed by [31]) have been identified as free-radical-generating
drugs in these pathogens. In the absence of catalase, Se-dependent glutathione perox-
idase, glutathione reductase, and thioredoxin reductase, trypanosomatids rely on the
low-molecular-weight dithiol peptide trypanothione (N1, N8-bis(glutathionyl)spermidine)
as a unique antioxidant defense mechanism [34,55,56]. The trypanothione system repre-
sents a sophisticated defense mechanism against reactive species, thereby acting in these
parasites as the key reductant in a reaction, where the oxidized disulphide trypanothione
(TS2) is transformed back into the reduced form T(SH)2 by TryR in the presence of NADPH
as an electron donor [34,57]. TryR has been reported to be the target of some nitrofu-
ran compounds, which cause irreversible inactivation of the enzyme under anaerobiosis,
whereas in the presence of O2 behave as subversive substrates that do not inactivate the
enzyme, but instead, effectively inhibit the enzymatic reduction of trypanothione, causing
the production of free radicals and leading to futile consumption of NADPH [34,58]. For
example, uncompetitive inhibition patterns have been reported with 5-nitro-2-furoic acid
derivatives [32] and with nifuratel [33]. Regarding fexinidazole and pretomanid, they were
not able to inhibit TryR in vitro, which suggests that the increased ROS production in the
parasites treated with these compounds is mediated by a mechanism different from TryR
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enzyme inhibition. The other key enzyme in the trypanothione system is trypanothione
synthetase, which catalyzes the biosynthesis of trypanothione. An inhibitory role of fex-
inidazole and pretomanid on this enzyme cannot be ruled out, since molecules of different
nature have been reported to target trypanothione synthetase [34]. Alternatively, due to
the relevance of trypanothione as an antioxidant molecule, fexinidazole and pretomanid
may behave as thiol scavengers, thus leading to an increase in ROS content because of
the decrease in trypanothione, as it has previously been reported for the 5-nitroimidazole
megazol in T. cruzi [59].

In conclusion, our 364-well HTS fluorescent biotechnological platform has been vali-
dated, determining the efficacy of fexinidazole and pretomanid against L. infantum-iRFP
amastigotes. The cytotoxicity effect of these two nitroimidazoles on L. infantum parasites is
related to the increase in the intracellular ROS levels, although more studies are needed to
elucidate the intimate mechanism of action responsible for cell death, which can provide
valuable information for the development of new antitrypanosomatid drugs.

4. Materials and Methods
4.1. Experimental Animals and Ethical Statement

In this work, Balb/c mice infected with iRFP-L. infantum were used to obtain axenic
amastigotes from bone marrow and intramacrophagic splenic amastigotes. The animals
were acquired by Janvier Laboratories (St Berthevin Cedex, France) and maintained in
the University of León animal house, under standard housing conditions with free access
to feed and water. The animal handling protocols used in this study comply with the
Spanish Act (RD 53/2013) inspired by European Union Legislation (2010/63/UE) and were
approved by the Junta de Castilla y León under the authorization number OEBA 007-2019.

4.2. Nitroimidazole Compounds

Two nitro derivative compounds from the nitroimidazoles family (fexinidazole and
pretomanid) were selected to be tested against L. infantum-iRFP parasites (see below). They
were purchased from MedChemExpress and dissolved in dimethyl sulfoxide (DMSO). Due
to the toxicity of DMSO, serial dilutions of each compound were performed so that DMSO
concentration never exceeded 0.1% (v/v) in the culture medium.

4.3. Parasites and Mammalian Cell Lines

L. infantum-iRFP, a genetically modified strain of L. infantum BCN150 (MCAN/ES/96/BCN
150) constitutively expressing the gene encoding the bacteriophytochrome-based infrared flu-
orescent protein (iRFP) from Rhodopseudomonas palustris [60], was previously created in our
laboratory [45], and was used in the in vitro efficacy assays. This strain was cultured as
free-living promastigotes in Schneider’s insect medium (Sigma-Aldrich, Merck, Darmstadt,
Germany) supplemented with 20% (v/v) fetal bovine serum (FBS) (Gibco, Thermo Scientific,
Waltham, MA, USA) and antibiotic cocktail (100 U/mL penicillin and 100 µg/mL streptomycin)
(Hyclone, Thermo Scientific, Waltham, MA USA) at 26 ◦C until mice were infected.

L. infantum-iRFP axenic and intramacrophage amastigotes were obtained from six-
to eight-week-old female Balb/c mice after 8 to 10 weeks post-inoculation via intraperi-
toneal with 1.5 × 109 L. infantum-iRFP metacyclic promastigotes [33]. Briefly, to obtain
axenic amastigotes, the bone marrow cell suspension was extracted from the femur and
tibia of infected mice and passed through a 100-µm cell strainer. After centrifuging at
3500 rcf for 10 min at room temperature, cell suspensions were resuspended in medium
containing 15 mM KCl; 136 mM KH2PO4; 10 mM K2HPO4 ·3H2O; 0.5 mM MgSO4 ·7H2O;
24 mM NaHCO3; 22 mM glucose; 1 mM glutamine; 1× RPMI 1640 vitamin mix (Sigma-
Aldrich, Merck, Darmstadt, Germany); 10 mM folic acid; 100 mM adenosin; 1× RPMI
amino acid mix (Sigma-Aldrich, Merck, Darmstadt, Germany); 5 mg/mL hemin; 25 mM
2-Morpholinoethanesulphonic acid (MES) pH 5.6, supplemented with 10% FBS (Gibco,
Thermo Scientific, Waltham, MA, USA); and antibiotic cocktail, and were incubated at 37 ◦C
and with 5% CO2. On the other hand, intramacrophage amastigotes were obtained from
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the spleen of infected mice, which was cut into pieces, treated with 2 mg/mL collagenase D
(Merck, Darmstadt, Germany) and passed through a 100-µm cell strainer. After erythrocyte
lysis, the splenocyte suspension containing intramacrophage amastigotes was resuspended
in RPMI medium (Gibco, Fisher Scientific, Madrid, Spain) supplemented with 20% FBS,
1 mM sodium pyruvate, 24 mM NaHCO3, 2 mM L-glutamine, 1× RPMI vitamins, 25 mM
HEPES pH 7.2, and antibiotic cocktail.

For cytotoxicity tests on mammalian cells, HepG2 (human hepatocellular carcinome
cell line) and RAW 264.7 (murine macrophage cell line) adherent cells were cultured in
Dulbecco’s Modified Eagle Medium (DMEM) and RPMI, respectively, both supplemented
with 10% FBS and antibiotic cocktail and incubated at 37 ◦C and 5% CO2.

4.4. Assessment of In Vitro Cytotoxicity

To test the in vitro antileishmanial effect of selected nitroimidazoles, 40 µL including
either 20,000 axenic amastigotes or a number of murine splenocytes naturally infected with
L. infantum-iRFP representing 150,000 Relative Fluorescence Units (RFU), were added to
each well of 384-well black microtiter plates with optical bottom. Next, 40 µL of one-half
serial dilutions of each compound, either in the amastigote culture medium (for axenic
amastigotes) or in the supplemented RPMI medium (for intramacrophage amastigotes),
were added to each well. For both types of experiments, positive controls (Amp B to a final
concentration of 18 µM) and negative controls (0.1% (v/v) DMSO) were included in every
plate. Plates were incubated at 37 ◦C and 5% CO2 for up to 72 h. Fluorescence emitted
by living cells of L. infantum-iRFP was measured in an Odyssey infrared imaging system
(Li-Cor, NE, USA). Readings were taken at 0 h (to ensure correct plate loading), 24 h, 48 h,
and 72 h to monitor the evolution of cell viability.

In vitro, cytotoxicity of nitroimidazole compounds was assessed in the mammalian
cell lines HepG2 and RAW 264.7. To each well of a 96-well microtiter plate, 100 µL including
10,000 HepG2 or RAW 264.7 cells were seeded and incubated for 24 h at 37 ◦C and 5%
CO2, to allow cells to settle down. Subsequently, 100 µL of one-half serial dilutions of each
compound diluted either in DMEM (for HepG2 cells) or RPMI medium (for RAW cells)
were added to each well. Cellular viability was measured after 72 h of incubation at 37 ◦C
and 5% CO2 using alamarBlueTM Cell Viability Reagent (Invitrogen, Fisher Scientific, Inc.),
according to the manufacturer’s recommendations. Positive controls, consisting of 0.1%
(v/v) H2O2, and negative controls, consisting of 0.1% (v/v) DMSO, were also included in
each plate.

All experiments were carried out in triplicate and included at least three technical
replicates. The fluorescence emitted by the negative control wells (containing 0.1% (v/v)
DMSO) was adjusted to 100% viability, whereas the fluorescence emitted by the positive
control wells, was adjusted to 0% viability. The percentage of viability for each cell line
was plotted against each drug concentration, using the nonlinear fit analysis provided by
the Sigma Plot 10.1 statistical package, which provided the EC50 and CC50 values for each
compound. The Selectivity Index (SI) was calculated from the CC50/EC50 ratio.

4.5. Analysis of ROS Production by Axenic Amastigotes

Cultures of L. infantum-iRFP axenic amastigotes, which were obtained and maintained
as described above, were treated with fexinidazole and pretomanid at the EC50 calculated
in previous experiments. As a positive control of oxidative stress induction, cultures were
treated with 0.01% H2O2 (v/v), whereas 0.03% (v/v) DMSO was added to the axenic
amastigotes as a negative control. After incubation for 3 h at 37 ◦C and 5% CO2, cells were
harvested by centrifugation at 3500 rcf for 10 min, washed in PBS, centrifuged again, and
resuspended in PBS. Cells were labeled by incubation with 5 µM 2′,7′-dichlorofluorescein
diacetate (DCFH-DA, MedChemExpress, Monmouth Junction, NJ, USA) at 37 ◦C for
30 min [61]. Following incubation, cells were centrifuged at 3500 rcf for 5 min, washed, and
resuspended in PBS. The cell suspension was stored at 4 ◦C until flow cytometry analysis.
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Flow cytometry was performed to measure intracellular ROS levels in a CytoFLEX
SRT (Beckman Coulter, Brea, CA, USA). The experiment was carried out in duplicate and
included three technical replicates.

4.6. Trypanothione Reductase Enzymatic Assay

The L. infantum TryR activity was measured in the presence of different concentrations
of nitroimidazole compounds according to [33]. Briefly, 1 × 1010 L. infantum-iRFP axenic
amastigotes were washed twice in PBS and lysed with a solution containing 1 mM EDTA,
40 mM HEPES, 50 mM Tris HCl pH 7.5, 2% (v/v) Triton X-100, and Pierce™ Protease
Inhibitors Mini Tablets (ThermoFisher Scientific Inc., Waltham, MA, USA). After incubation
on ice for 15 min, cells were vortexed three times for 15 s in the presence of 0.5-mm diameter
glass beads (Merck, Darmstadt, Germany). Cell extracts were obtained by centrifugation at
10,000 rcf for 5 min at 4 ◦C. The enzymatic assay was carried out in 96-well plates, which in-
cluded 2 µL of different concentrations of the nitroimidazole compounds diluted in DMSO,
28 µL of TryR assay solution containing 0.2 mM NADPH (Alfa Aesar, Fisher Scientific,
Inc., Ward Hill, MA, USA), variable concentrations of T[S]2 (Bachem, Fisher Scientific, Inc.,
Bubendorf, Switzerland), 0.075 mM 5,5’-dithiobis(2-nitrobenzoic acid) (DTNB) (Alfa Aesar,
Fisher Scientific, Inc.), and 50 mM Tris HCl pH 7.5. To this solution, 50 µL of cell extracts
diluted in Tris HCl pH 7.5 (0.43 µg of total protein) were added to initiate the reaction. As
controls in the assay, 2.5% DMSO (negative control), the TryR assay solution without T[S]2
(blank reaction), and 0.1 mM thioridazine [62] (Medchem Express, Princeton, NJ, USA)
in DMSO (positive inhibition control), were used. Enzymatic activity was measured at
412 nm for a period of up to 120 min (with 5 min intervals) at 26 ◦C in a Varioskan Lux
spectrophotometer (Thermo Scientific, Fisher Scientific, Inc.). The experiment was carried
out in duplicate and included three technical replicates.
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