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Abstract: In this study, we report a novel platinum–doxorubicin conjugate that demonstrates superior
therapeutic indices to cisplatin, doxorubicin, or their combination, which are commonly used in
cancer treatment. This new molecular structure (1) was formed by conjugating an amphiphilic
Pt(IV) prodrug of cisplatin with doxorubicin. Due to its amphiphilic nature, the Pt(IV)–doxorubicin
conjugate effectively penetrates cell membranes, delivering both cisplatin and doxorubicin payloads
intracellularly. The intracellular accumulation of these payloads was assessed using graphite furnace
atomic absorption spectrometry and fluorescence imaging. Since the therapeutic effects of cisplatin
and doxorubicin stem from their ability to target nuclear DNA, we hypothesized that the amphiphilic
Pt(IV)–doxorubicin conjugate (1) would effectively induce nuclear DNA damage toward killing
cancer cells. To test this hypothesis, we used flow the cytometric analysis of phosphorylated H2AX
(γH2AX), a biomarker of nuclear DNA damage. The Pt(IV)–doxorubicin conjugate (1) markedly
induced γH2AX in treated MDA-MB-231 breast cancer cells, showing higher levels than cells treated
with either cisplatin or doxorubicin alone. Furthermore, MTT cell viability assays revealed that the
enhanced DNA-damaging capability of complex 1 resulted in superior cytotoxicity and selectivity
against human cancer cells compared to cisplatin, doxorubicin, or their combination. Overall, the
development of this amphiphilic Pt(IV)–doxorubicin conjugate represents a new form of combination
therapy with improved therapeutic efficacy.

Keywords: platinum(IV) prodrugs; cisplatin; doxorubicin; combination therapy

1. Introduction

Platinum-based drugs, e.g., cisplatin, carboplatin, and oxaliplatin, are widely used
as anticancer agents in the treatment of various tumors, including testicular, lung, ovar-
ian, breast, and colon cancer [1,2]. Their mechanism of action involves the formation
of platinum–DNA adducts, leading to apoptosis in cancer cells [1,3,4]. The effective-
ness of platinum-based therapies is often enhanced through their combination with other
chemotherapeutic agents, targeted therapies, and immunotherapies. This synergistic ap-
proach, known as combination therapy, can overcome resistance mechanisms, improve
drug delivery, and enhance efficiency [5–7]. In combination therapy, the strategy involves
the simultaneous administration of multiple chemotherapeutic agents that target different
cellular pathways, reducing drug resistance and enhancing therapeutic efficacy [8–12]. For
example, platinum drugs (cisplatin or carboplatin) are commonly combined with drugs
like doxorubicin, an anthracycline chemotherapeutic agent known for its noncovalent
intercalation into DNA, thereby triggering DNA damage [13–20]. One of the significant
challenges in combination drug therapy arises from the varying pharmacokinetic prop-
erties of different drugs. These properties include absorption, distribution, metabolism,
and excretion; these might vary substantially between drugs. As a result, each drug in a
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combination regimen may be distributed differently within the body, leading to varying
concentrations, timings of administration, and actions at the target sites [10,11]. This differ-
ential distribution complicates the control of the accumulation of each specific drug, making
it challenging to ensure that each drug reaches its target site in the optimal concentration
for maximum efficacy. Also, this leads to increased toxicity. There is a strong demand for
new approaches for coordinating the delivery of multiple drugs to the same site of action,
where achieving synergistic effects without causing adverse interactions or toxicity can be
complex [1,2].

Amphiphilic Pt(IV) complexes are distinctive Pt(IV) complexes featuring a hydropho-
bic tail and a hydrophilic head group that are capable of releasing axial ligands and Pt(II)
payloads upon intracellular reduction. They have emerged as a promising new class of
Pt-based anticancer agents, leveraging innovative drug delivery strategies and cancer biol-
ogy to overcome the limitations of traditional Pt(II) drugs [10,14,21–25]. Designed to mimic
the structure of fatty acids, fatty acid-like amphiphilic Pt(IV) prodrugs of cisplatin engage
in noncovalent interactions with human serum albumin and CD36 to facilitate efficient
Pt drug delivery [21,22,26,27]. These Pt complexes exhibit remarkable stability in whole
human blood, reducing their rate of reduction by reducing agents, and possess unique
cancer cell targeting capabilities and mechanisms of action [23,28]. Such amphiphilic Pt(IV)
prodrugs have demonstrated potent in vitro activity against a wide range of cancer types
and promising in vivo efficacy in various mouse models. Importantly, amphiphilic Pt(IV)
prodrugs can be chemically modified to adjust their biological activities and chemical
properties [14,25,29–33]. Recent studies have shown the potential of incorporating these
novel Pt(IV) prodrugs into nanoparticles for drug delivery through either noncovalent
encapsulation or covalent conjugation based on their amphiphilic structures [14]. These
Pt complexes resemble innovative lipid–prodrug molecules, which exhibit significant ab-
sorption, distribution, metabolism, excretion, and toxicity (ADMET) advantages and can
potentially reduce systemic toxicity by selectively releasing the active drug at the target
site [34–39]. Overall, amphiphilic Pt(IV) prodrugs represent a highly diverse and unique Pt
scaffold with promising mechanisms of action, potentially serving as a powerful tool for
developing new cancer therapies.

In this paper, we report a novel amphiphilic Pt(IV)–doxorubicin conjugate (1 shown
in Figure 1a) as a combined-drug scaffold. This new molecular scaffold (1) was formed
by conjugating an amphiphilic Pt(IV) prodrug of cisplatin with doxorubicin, enabling the
efficient delivery of both payloads to target cancer cells and having superior therapeutic
indices to cisplatin and doxorubicin.
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Figure 1. (a) The structure of amphiphilic Pt(IV)–doxorubicin conjugate (1) and its proposed mech-
anism of action (created with BioRender.com, accessed on 16 July 2024); (b) IC50 values determined 
by MTT assays for 1, doxorubicin, cisplatin, and their combination against A2780cis, A2780, MDA-
MB-231, and HEK293 cell lines; (c) bar graph depicting the IC50 values of 1 in comparison with those 
of doxorubicin, cisplatin, and their combination in a 1:1 ratio. (d) Live/dead assay images of MDA-
MB-231 cells treated with cisplatin, doxorubicin, and 1 (10 µM) for 24 h. Scale bar = 100 µm. ** p < 
0.01 and *** p < 0.001 per t test (n = 3, mean ± SEM). 

2. Results and Discussion 
2.1. Synthesis and Characterization of the Amphiphilic Pt(IV)–Doxorubicin Conjugate (1) 

As shown in Figure S1 in the supporting Information, the amphiphilic Pt(IV)–doxo-
rubicin conjugate (1) was synthesized using doxorubicin and the previously reported pre-
cursor, C16Pt [21]. In brief, doxorubicin was conjugated to C16Pt through an amide 
bond formation catalyzed by HATU, resulting in an overall yield of 50.5%. The am-
phiphilic Pt(IV)–doxorubicin conjugate (1) was thoroughly characterized by 1H and 
13C NMR spectroscopy, HPLC, and electrospray ionization mass spectrometry (ESI-
MS). In the 1H NMR spectrum (Figure S2), the broad signal at 6.58 ppm corresponds 
to the amine groups of the Pt(IV) center, while the signal at 6.51 ppm is attributed 
to the carbamate group. The signal at 2.86 ppm is assigned to the CH2 group adja-
cent to the carbamate, and the terminal CH3 at the C16 tail is observed at 0.86 ppm. 
The signal at 7.94 ppm is attributed to the aromatic protons of doxorubicin. HPLC 
analysis (Figure S4) of the final product indicated a purity of 97%. The ESI-MS 

Figure 1. (a) The structure of amphiphilic Pt(IV)–doxorubicin conjugate (1) and its proposed mecha-
nism of action (created with BioRender.com, accessed on 16 July 2024); (b) IC50 values determined
by MTT assays for 1, doxorubicin, cisplatin, and their combination against A2780cis, A2780, MDA-
MB-231, and HEK293 cell lines; (c) bar graph depicting the IC50 values of 1 in comparison with
those of doxorubicin, cisplatin, and their combination in a 1:1 ratio. (d) Live/dead assay images of
MDA-MB-231 cells treated with cisplatin, doxorubicin, and 1 (10 µM) for 24 h. Scale bar = 100 µM.
** p < 0.01 and *** p < 0.001 per t test (n = 3, mean ± SEM), ns: no significance.

2. Results and Discussion
2.1. Synthesis and Characterization of the Amphiphilic Pt(IV)–Doxorubicin Conjugate (1)

As shown in Figure S1 in the supporting Information, the amphiphilic Pt(IV)–doxorubicin
conjugate (1) was synthesized using doxorubicin and the previously reported precur-
sor, C16Pt [21]. In brief, doxorubicin was conjugated to C16Pt through an amide bond
formation catalyzed by HATU, resulting in an overall yield of 50.5%. The amphiphilic
Pt(IV)–doxorubicin conjugate (1) was thoroughly characterized by 1H and 13C NMR spec-
troscopy, HPLC, and electrospray ionization mass spectrometry (ESI-MS). In the 1H NMR
spectrum (Figure S2), the broad signal at 6.58 ppm corresponds to the amine groups of
the Pt(IV) center, while the signal at 6.51 ppm is attributed to the carbamate group. The
signal at 2.86 ppm is assigned to the CH2 group adjacent to the carbamate, and the ter-
minal CH3 at the C16 tail is observed at 0.86 ppm. The signal at 7.94 ppm is attributed
to the aromatic protons of doxorubicin. HPLC analysis (Figure S4) of the final product
indicated a purity of 97%. The ESI-MS spectrum (Figure S5) shows an isotopically resolved
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signal at m/z = 1226.4041, which is consistent with the theoretical value for compound 1
(m/z = 1226.4045).

2.2. Cytotoxicity Profiles of Amphiphilic Pt(IV)–Doxorubicin Conjugate (1)

The amphiphilic Pt(IV)–doxorubicin conjugate (1) is proposed as undergoing intracel-
lular reduction (Figure 1a), releasing cisplatin and the doxorubicin payload (Dox) to induce
DNA damage and eliminate cancer cells. The therapeutic effect of compound 1 was exam-
ined in vitro using a 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT)
assay and a live/dead cell imaging assay. We engaged a panel of human cancer cell lines of
ovarian cancer (A2780cis and A2780) and breast cancer (MDA-MB-231) for assessing the
in vitro efficacy and the noncancerous human kidney cell line (HEK293) for evaluating their
selectivity. Compared to A2780 cells, the A2780cis cell line is a cisplatin-resistant ovarian
cancer model used to evaluate the efficacy of novel chemotherapeutic agents that can
overcome platinum resistance. The cells were treated with 1, doxorubicin, cisplatin, or the
combination of doxorubicin and cisplatin for 24 h. Then, the cell viability was assessed with
MTT via the IC50 value, representing the drug concentration that was needed to inhibit 50%
of cell viability relative to the control. As shown in Figures 1b and S6, 1 exhibited higher
cytotoxicity than doxorubicin and cisplatin or their combination across all the different
cancer cell lines tested. For example, the IC50 value of 1 was 3.7 ± 0.2 µM (Figure 1c) against
MDA-MB-231 breast cancer cells, lower than that of doxorubicin (IC50 = 11.3 ± 0.1 µM) and
cisplatin (IC50 = 101.0 ± 14.0 µM) or their combination (IC50 = 8.7 ± 5.6 µM). Notably, the
amphiphilic Pt(IV)–doxorubicin conjugate (1) did not exhibit significant cytotoxicity against
noncancerous HEK293 cells, but both cisplatin and doxorubicin as well as their combination
were highly toxic against noncancerous HEK293 cells (Figure 1c). In addition, we used
a live/dead imaging assay to further validate the anticancer activity of complex 1. This
involved the use of ethidium homodimer-1 with calcein AM (Figure 1d). The live cells were
identified by the observation of green fluorescence after staining with calcein AM, while
the dead cells exhibited a red signal upon interaction with the MDA-MB-231 cells treated
with complex 1, having a much smaller population of live cells compared to those treated
with cisplatin or doxorubicin. This observation is consistent with the results of the MTT
assay. Overall, the combined evidence from the MTT assays and live/dead cell imaging
assays indicates that the amphiphilic Pt(IV)–doxorubicin conjugate (1) is a highly potent
anticancer agent. Its efficacy surpasses that of both cisplatin and doxorubicin, individually
or combined, against human cancer cells while exhibiting minimal toxicity to noncancerous
human cells.

2.3. Cellular Accumulation of the Amphiphilic Pt(IV)–Doxorubicin Conjugate (1)

To better understand the superior therapeutic effects of the amphiphilic Pt(IV)–doxorubicin
conjugate (1), we investigated its mechanism of action. Cell entry is a key step in this
process. We utilized graphite furnace atomic absorption spectrometry (GFAAS) to analyze
the intracellular Pt contents and live cell fluorescence imaging to validate the intracellu-
lar doxorubicin payloads. In the GFAAS experiment, MDA-MB-231 cells were treated
with 1 ([Pt] = 2 µM) and cisplatin ([Pt] = 20 µM). After 24 h, the cellular Pt contents were
measured. The results (Figure 2a) show that the cellular accumulation of cisplatin was
only 80.2 ± 3.8 pmol Pt/106 cells, while the accumulation of 1 was significantly higher at
196.5 ± 16.1 pmol Pt/106 cells, 2.4 times greater. The results indicate that the amphiphilic
Pt(IV)–doxorubicin conjugate (1) facilitates the cell entry of cisplatin payloads. In the
imaging experiment, the fluorescence signal of doxorubicin was used to track the intra-
cellular accumulation and localization of the doxorubicin payloads after treatment with 1
(Figure 2b). MDA-MB-231 cells were treated with 1 for 24 h and then subsequently stained
with the nuclear dye Hoechst 33342. The images (Figure 2b) show that 1 effectively deliv-
ered doxorubicin into cancer cells, with most of the payload localized in the cytoplasm and
some in the nucleus. Collectively, the combined evidence from GFAAS and cellular imaging
demonstrates that the amphiphilic Pt(IV)–doxorubicin conjugate (1) effectively delivers
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both cisplatin and doxorubicin across the cellular membrane, leading to the significant
intracellular accumulation of both payloads.
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Figure 2. (a) Cellular accumulation of 1 ([Pt] = 2 µM) and cisplatin ([Pt] = 20 µM) in MDA-MB-
231 cells; (b) images of MDA-MB-231 cells treated with 1 (2 µM, 24 h) and labeled with Hoechst for
3 h at 37 ◦C, 5% CO2. Scale bar = 100 µM. *** p < 0.001 by t test (n = 3, mean ± SEM).

2.4. Cellular Responses of the Amphiphilic Pt(IV)–Doxorubicin Conjugate (1)

We then examined the DNA damage caused by the amphiphilic Pt(IV)–doxorubicin
conjugate (1). Cisplatin works by forming covalent DNA adducts that disrupt DNA replica-
tion and transcription, leading to apoptosis. Doxorubicin, on the other hand, noncovalently
intercalates into DNA strands and inhibits topoisomerase II, causing DNA breaks and
cell death. Both agents are well known for their effectiveness in inducing DNA damage.
γH2AX, a phosphorylated form of H2AX, is a biomarker of nuclear DNA damage. In our
experiment, we treated MDA-MB-231 cells with cisplatin, doxorubicin, or 1, and then we
performed flow cytometric analysis to detect γH2AX levels. As shown in Figure 3, the
cells treated with 1 exhibited significantly higher levels of γH2AX than those treated with
cisplatin or doxorubicin. Specifically, the γH2AX levels in 1-treated cells were 15.4 times
higher than in cisplatin-treated cells and 2.89 times higher than in doxorubicin-treated cells.
These substantial increases indicate that 1 induces more extensive nuclear DNA damage.
These findings are consistent with the previously mentioned results from the MTT assay,
live/dead imaging study, and cellular accumulation experiment.
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Figure 3. Flow cytometric analysis of nuclear DNA damage using the γH2AX biomarker in MDA-MB-
231 cells treated with cisplatin (10 µM), doxorubicin (1 µM), and the amphiphilic Pt(IV)–doxorubicin
conjugate (1, 1 µM) for 24 h.

Finally, we confirmed the cell death induced by DNA damage using a flow cytometric
analysis of apoptosis. During early apoptosis, phosphatidylserine, normally located on
the inner lipid layer, moves to the outer layer. FITC–annexin V, a green fluorescent dye-
conjugated antibody, selectively binds to phosphatidylserine on the outer membrane,
enabling the flow cytometric analysis of apoptosis. In late apoptosis, cell membranes
become damaged, allowing propidium iodide (PI) dye to penetrate and produce a red
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signal in flow cytometry. The occurrence of apoptosis in 1-treated MDA-MB-231 cells was
assessed using a dual-staining annexin V/PI flow cytometric assay. The results (Figure 4)
clearly indicate that the amphiphilic Pt(IV)–doxorubicin conjugate (1) effectively induces
apoptosis in triple-negative breast cancer cells. After incubating cells with 1 ([Pt] = 0.5 µM)
for 72 h, a significant population of cells were in late (5.79%) and early (2.51%) apoptosis
stages compared to those in the control sample, which only showed 1.25% and 2.15% of
cells in late and early apoptosis, respectively.
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231 cells treated with the amphiphilic Pt(IV)–doxorubicin conjugate (1, 0.5 µM) for 72 h.

Overall, the combined evidence suggests that the amphiphilic Pt(IV)–doxorubicin
conjugate (1) not only enhances cellular accumulation of therapeutic agents but also induces
significantly more DNA damage, leading to superior therapeutic effects compared to
cisplatin or doxorubicin alone.

3. Conclusions

In this study, we developed and evaluated a novel amphiphilic Pt(IV)–doxorubicin
conjugate (1) designed to enhance anticancer activity. Our findings showed that this
conjugate significantly improves cellular uptake, intracellular accumulation, and cyto-
toxicity compared to cisplatin and doxorubicin alone. The Pt(IV)–doxorubicin conjugate
demonstrated superior cytotoxicity against various human cancer cell lines, while showing
minimal toxicity towards non-cancerous human kidney cells. This selectivity highlights its
potential as a more effective and safer cancer therapy. Our mechanistic studies revealed
that the conjugate facilitates the entry of both cisplatin and doxorubicin payloads into
cells, resulting in substantial DNA damage, as evidenced by elevated γH2AX levels. This
increased DNA damage led to higher apoptosis rates, as confirmed by flow cytometric
analysis. The combined results from cytotoxicity assays, cellular accumulation studies,
DNA damage analysis, and apoptosis evaluation indicate that the amphiphilic Pt(IV)–
doxorubicin conjugate (1) outperforms traditional cisplatin and doxorubicin treatments.
This novel conjugate holds promise for enhancing combination chemotherapy effectiveness,
offering a new avenue for developing potent anticancer therapies with reduced side effects.

4. Materials and Methods

All reagents were purchased from Strem Chemicals (Newburyport, MA, USA), Sigma-
Aldrich (St. Louis, MO, USA), or Alfa Aesar (Haverhill, MA, USA) and used without
further purification. All reactions were carried out under normal atmospheric conditions.
C16Pt was synthesized following a previously reported procedure [21]. A Bruker 400 NMR
spectrometer (Bruker Corporation, Billerica, MA, USA) was used for NMR data acquisition
(frequency: 400 MHz for 1H NMR; 100 MHz for 13C NMR). Chemical shifts in 1H and
13C{1H} NMR spectra were internally referenced to solvent signals (1H NMR: DMSO-d6 at



Molecules 2024, 29, 4095 7 of 11

δ = 2.50 ppm; 13C NMR: DMSO-d6 at δ = 40.45 ppm). For 1, high-resolution mass spectra
were recorded on an Exactive Plus mass spectrometer (Thermo Scientific, Bremen, Ger-
many). Analytical HPLC was conducted on an Agilent 1100 system using C18 reverse-phase
columns (Hypersil GOLD, 100 mm × 3 mm, 5 µM). GFAAS measurements were taken with
a PerkinElmer PinAAcle 900Z spectrometer. Images were processed and intensities were
quantified with ImageJ software (version 1.4.22, National Institutes of Health, Bethesda,
MD, USA). The live/dead cell assay was carried out using an Invitrogen (Thermo Fisher
Scientific, Waltham, MA, USA) LIVE/DEADTM Cell Viability Kit (Cat. No. L3224). Flowcy-
tometry was carried out on a BD Bioscience Accuri C6 flow cytometer (BD Biosciences, San
Jose, CA, USA).

Synthesis of the amphiphilic Pt(IV)–doxorubicin conjugate (1): C16Pt (108.9 mg,
0.150 mmol) [40], doxorubicin hydrochloride (90.0 mg, 0.155 mmol) and HATU (58.9 mg,
0.150 mmol) were combined in a 20 mL vial, then anhydrous DMF (2 mL) was added under
inert gas and stirred at r.t. for 20 min. Then, DIPEA (108 µL, 0.620 mmol) was added
dropwise. The reaction mixture was stirred in the dark at r.t. for 16 h. The reaction mixture
was then centrifuged, and the supernatant was added into a brine solution (3 mL). Then,
the precipitate was isolated by centrifuging, followed by decanting the supernatant. The
solid was subsequently washed with water twice (1 mL) and lyophilized for 16 h. The
product was purified via flash column chromatography on silica gel (eluent MeOH/DCM
1% to 10%). The excess solvent was removed by rotavap, and then the solid was dried in a
vacuum. The yield was 50.5%. HR-MS (positive mode) for [C48H73Cl2N4O16Pt]+: m/z calc:
1226.4045, obsd: 1226.4041. Purity: 97% determined by HPLC.

1H NMR (400 MHz, DMSO-d6): δ: 0.856 (NHCH2(CH2)14CH3, t, 3H, J = 6.8 Hz), 1.125 (dox-
orubicin, OCH(CH3)CH(OH)CH(NHCO)CH2, d, 3H, J = 6.4 Hz), 1.238 (NHCH2(CH2)14CH3, s,
28H), 1.850 (doxorubicin, CH(NHCO)CH2CH(OCH)OCH, td, 2H, J = 13.2, 4.0 Hz), 2.166 (doxoru-
bicin, OCH(Ph)CH2C((CO)CH2)(OH)CH2, dd, 2H, J = 28.3 Hz), 2.326 (CO(CH2)2CO, dt, 4H, J = 55.8,
7.5 Hz), 2.859 (NHCH2(CH2)14CH3, q, 2H, J = 7.5 Hz), 2.992 (doxorubicin, CH2C((CO)CH2)(OH)CH,
d, 2H, J = 4.6 Hz), 3.392 (doxorubicin, OCH(CH3)CH(OH)CH(NHCO)CH2, q, 1H, J = 5.0 Hz),
3.958 (doxorubicin, OCH(CH3)CH(OH)CH(NHCO)CH2Ph, quin, 1H, J = 8.2 Hz), 3.999
(doxorubicin, PhOCH3, s, 3H), 4.162 (doxorubicin, OCH(CH3)CH(OH)CH(NHCO)CH2,
qd, 1H, J = 5.9, 1.3 Hz), 4.576 (doxorubicin, C(CO)CH2OH, d, 2H, J = 5.8 Hz), 4.749
(doxorubicin, OCH(CH3)CH(OH)CH(NHCO)CH2, d, 1H, J = 6.6 Hz), 4.872 (Doxoru-
bicin, C(CO)CH2OH, t, 1H, J = 6.0 Hz), 4.960 (doxorubicin, PhCH(CH2)OCH, t, 1H,
J = 4.6 Hz), 5.230 (doxorubicin, CHOCH(CH2)OCH(CH3)CH, d, 1H, J = 2.9 Hz), 5.487 (dox-
orubicin, (CH2)2C(OH)COCH2, s, 1H), 6.510 (NHCH2(CH2)14CH3, t, 1H, J = 6.0 Hz), 6.577
(NH3, m, 6H), 7.605 (CONHCH(CH2)CH(OH)CH, d, 1H, J = 7.9 Hz), 7.676 (doxorubicin,
(CO)CH=CH-CH=C(OCH3), dd, 2H, J = 5.9, 3.9 Hz), 7.936 (doxorubicin, (CO)CH=CH-
CH=C(OCH3), dd, 2H, J = 3.3, 2.6 Hz), 13.309 (doxorubicin, PhOH, s, 2H).

13C NMR (100 MHz, DMSO-d6): δ: 214.4, 187.0, 187.0, 171.2, 164.4, 161.3, 156.6, 155.1,
136.7, 136.0, 135.2, 134.6, 120.5, 120.2, 119.5, 111.3, 111.1, 100.9, 75.4, 70.2, 68.4, 67.1, 64.1,
57.1, 45.5, 37.1, 32.6, 31.9, 31.8, 30.3, 30.1, 29.5, 29.4, 29.2, 26.9, 22.6, 17.5, 14.4.

4.1. Cell Culture

A2780 and A2780cis cell lines were purchased from Sigma-Aldrich (St. Louis, MO,
USA) and cultured with RPMI 1640 medium containing L-glutamine (Corning, NY, USA),
supplemented with 10% FBS (Atlanta Biologicals, Flowery Branch, GA, USA) and 1%
penicillin–streptomycin (Corning, NY, USA). The MDA-MB-231 and HEK293 cell lines were
obtained from the American Type Culture Collection and cultured in DMEM 1 g/L glucose,
with L-glutamine and sodium pyruvate (Corning), supplemented with 10% FBS and 1%
penicillin–streptomycin (Corning, NY, USA). All cell lines were cultured at 37 ◦C under an
atmosphere containing 5% CO2. Cells were passaged upon reaching 80–90% confluence
via trypsinization and split into a ratio of 1:5.
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4.2. MTT Assays

Cytotoxicity profiles of 1, cisplatin, and doxorubicin against different cell lines (A2780,
A2780cis, MDA-MB-231, HEK293) were evaluated by MTT assays. A 96-well plate was
seeded with a volume of 100 µL of RPMI or DMEM containing 8 × 104 cells/m overnight.
The plates were incubated for 24 h at 37 ◦C, 5% CO2 to allow for adherence of cells.
A specific volume of RPMI or DMEM (50 µL) at various concentrations of compound
1, cisplatin, doxorubicin, or a 1:1 combination of both was added to each well of the
microplates. A DMSO solution of compound 1 was used, with the DMSO concentration
maintained below 0.5% in the assay. The C16 tail enables the Pt complex to solubilize in
the cell culture medium through interaction with albumin [21]. After 24 h, MTT (30 µL,
5.0 mg/mL in PBS, Alfa Aesar, Haverhill, MA, USA) was added to each well of the
microplates. After 3 to 4 h, the medium was aspirated, and DMSO (200 µL) was added to
each well. The plates were shaken gently on a shaker at r.t. for 10 min. Subsequently, a
BioTek ELx800 plate reader (BioTek Instruments, Winooski, VT, USA) was used to measure
the absorbance of purple formazan at a wavelength of 562 nm. The IC50 values were
calculated with the origin program. all experiments were conducted in triplicate with three
independent experiments.

4.3. Live/Dead Cell Viability Assays

MDA-MB-231 cells were cultured in imaging dishes (MatTek, Ashland, MA, USA)
at a concentration of 5 × 104 cells with 2 mL of complete medium and were incubated
for 24 h at 37 ◦C, 5% CO2. The cells were then treated with cisplatin, 1, or doxorubicin
(10 µM) and were then incubated for 24 h at 37 ◦C, at 5% CO2. For the experiment, the
cells were rinsed with 1 mL of PBS. A 200 µL volume of the live/dead working solution,
consisting of a mixture of 2 µM calcein AM and 2 µM in PBS, was added to the plates and
then incubated at room temperature for 30 min. The recording of images was performed
using an Olympus IX70 inverted epifluorescence microscope that was coupled to a digital
CCD camera (QImaging). The images were analyzed, and the intensities were measured
using ImageJ (version 1.4.22, National Institutes of Health, Bethesda, MD, USA).

GFAAS Analysis of Cellular Pt Contents in MDA-MB-231 Cells

MDA-MB-231 cells were seeded in a 6-well plate at a concentration of 2 × 105 cells
per well and incubated at 37 ◦C, 5% CO2 overnight. Next day, the cells were treated with 1
([Pt] = 2 µM) or cisplatin ([Pt] = 20 µM) for 24 h at 37 ◦C, 5% CO2. The primary goal was to
demonstrate that complex 1 can accumulate in cells more effectively than cisplatin, even
when a higher dosage of cisplatin is used. Based on pilot tests, 20 µM of cisplatin was chosen
as it provided a measurable intracellular Pt concentration in GFAAS measurements without
causing significant cell death. The surviving cells were collected using trypsinization and
counted. The surviving cells were collected using trypsinization and counted. The cells
were subsequently digested in 200 µL of 65% HNO3 at room temperature overnight. The
platinum (Pt) concentrations in the cells were determined using GFAAS. The experiments
were carried out triplicate.

4.4. Fluorescence Imaging

MDA-MB-231 cells were cultured in imaging dishes (MatTek) at a concentration of
6 × 104 cells with 2 mL of complete medium incubated at 37 ◦C, 5% CO2 for 24 h. The
next day, the cells were treated with 1 (2 µM), and then the cells were incubated for 24 h
at 37 ◦C, 5% CO2. The next day, Hoechst dye was used to label the cells for 3 h. Then,
the medium was taken out, the cells were washed with PBS, and the fluorescence was
visualized with a confocal microscope using an Olympus IX70 inverted epifluorescence
microscope equipped with a digital CCD camera (QImaging, Tucson, AZ, USA). Images
were analyzed and the intensities were measured using ImageJ software (version 1.4.22,
National Institutes of Health, Bethesda, MD, USA).
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4.5. Flow Cytometric Analysis of γH2AX

MDA-MB-231 cells were seeded in a 6-well plate at a concentration of 2 × 105 cells/well.
The cells were then incubated at 37 ◦C with 5% CO2 for 24 h. Next, 1 (1 µM), doxorubicin
(1 µM), or cisplatin (10 µM) was then added and incubated for 24 h. The primary goal was
to demonstrate that complex 1 can significantly higher levels of γH2AX compared to those
treated with cisplatin or doxorubicin, even when a higher dosage of cisplatin was used.
Through numerous pilot experiments with varying concentrations, we determined that the
concentrations used in this study were optimal for obtaining measurable results. The live
cells were collected, 250 µL BD permeabilization solution was added to resuspend the cells,
and then the cells were incubated for 20 min at 4 ◦C. The cell pellets were then collected,
washed twice with 1× BD Perm/Wash buffer, and resuspended in 50 µL of buffer. The
samples were treated with Alexa 488-anti γH2AX antibody solution and incubated in the
dark at room temperature for 60 min. The final cell pellets were resuspended in 200 µL of
PBS containing 0.5% BSA. Then, they were analyzed with BD Accuri C6 flow cytometer
using the FL-1 channel. The data were analyzed using FlowJo, version 10.8 (FlowJo LLC,
Ashland, OR, USA).

4.6. Flow Cytometric Analysis of Apoptosis

MDA-MB-231 cells were seeded in a 6-well plate at a concentration of 2 × 105 cells/well.
Cells were then incubated at 37 ◦C, 5% CO2 for 72 h. Next, 1 (0.5 µM) was added and
incubated for 72 h. Both viable and nonviable cells were collected, resuspended in 1 mL of
phosphate-buffered saline (PBS), and quantified. Then, 1× binding buffer from an FITC
Annexin V Apoptosis Detection Kit 1 (BD Biosciences, Franklin Lakes, NJ, USA) was added
to achieve a concentration of 106 cells/mL. The 100 µL cell solution was transferred to a
fresh 2 mL Eppendorf tube, and both Annexin V-FITC and PI solutions were added to
the cells. The cells were incubated for 15 min at room temperature in the absence of light
and then diluted to a volume of 400 µL by adding the appropriate amount of binding 1×
buffer. Cells were then analyzed with FL-1 and FL-3 channels on a BD Accuri C6 flow
cytometer and the subsequent datasets were analyzed using FlowJo, version 10.8 (FlowJo
LLC, Ashland, OR, USA).

Supplementary Materials: The following supporting information can be downloaded at: https://www.
mdpi.com/article/10.3390/molecules29174095/s1, Figures S1–S6: Synthesis and characterization of the
amphiphilic Pt(IV)–doxorubicin conjugate (1) and the representative killing curves from MTT assays.
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