Diterpenoids with Potent Anti-Psoriasis Activity from Euphorbia helioscopia L.
Abstract
:1. Introduction
2. Results
2.1. Structure Elucidation
2.2. Biological Activity Results
3. Discussion
4. Materials and Methods
4.1. General Experimental Procedures
4.2. Plant Material
4.3. Extraction and Isolation
4.4. Spectroscopic Data
4.5. Biological Activity Assays
4.5.1. Immunosuppressive Activities Assay
4.5.2. Cell Viability Assays of Lymphocytes
4.5.3. Antiproliferative Activity against HaCaT Cells
4.5.4. EdU Assay
4.5.5. Cytokine Analysis by ELISA of Induced T Cells
4.5.6. Immunofluorescence Protocol (Cell Climbing Slides)
4.5.7. Statistics and Reproducibility
4.5.8. Ethic Statement
4.6. Molecular Docking Studies
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Gudjonsson, J.E.; Johnston, A.; Sigmundsdottir, H.; Valdimarsson, H. Immunopathogenic mechanisms in psoriasis. Clin. Exp. Immunol. 2004, 135, 1–8. [Google Scholar] [CrossRef]
- Rendon, A.; Schäkel, K. Psoriasis pathogenesis and treatment. Int. J. Mol. Sci. 2019, 20, 1475. [Google Scholar] [CrossRef]
- Christophers, E. Psoriasis-Epidemiology and clinical spectrum. Clin. Exp. Dermatol. 2001, 26, 314–320. [Google Scholar] [CrossRef] [PubMed]
- Shi, Q.W.; Su, X.H.; Kiyota, H. Chemical and pharmacological research of the plants in genus Euphorbia. Chem. Rev. 2008, 108, 4295–4327. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Chen, X.; Luan, F.; Wang, M.; Wang, Z.; Wang, J.; He, X. Euphorbia helioscopia L.: A phytochemical and pharmacological overview. Phytochemistry 2021, 184, 112649. [Google Scholar] [CrossRef] [PubMed]
- Wan, L.S.; Nian, Y.; Ye, C.J.; Shao, L.D.; Peng, X.R.; Geng, C.A.; Zuo, Z.L.; Li, X.N.; Yang, J.; Zhou, M.; et al. Three minor diterpenoids with three carbon skeletons from Euphorbia peplus. Org. Lett. 2016, 18, 2166–2169. [Google Scholar] [CrossRef] [PubMed]
- Zhou, C.G.; Xiang, Z.N.; Zhao, N.; Sun, X.; Hu, Z.F.; Wu, J.L.; Xia, R.F.; Chen, C.; Su, J.C.; Chen, J.C.; et al. Jatrophane diterpenoids with Kv1.3 ion channel inhibitory effects from Euphorbia helioscopia. J. Nat. Prod. 2022, 85, 815–827. [Google Scholar] [CrossRef] [PubMed]
- Xiang, Z.N.; Tong, Q.L.; Su, J.C.; Hu, Z.F.; Zhao, N.; Xia, R.F.; Wu, J.L.; Chen, C.; Chen, J.C.; Wan, L.S. Diterpenoids with rearranged 9(10→11)-abeo-10,12-cyclojatrophane skeleton and the first (15S)-jatrophane from Euphorbia helioscopia: Structural elucidation, biomimetic conversion, and their immunosuppressive effects. Org. Lett. 2022, 24, 697–701. [Google Scholar] [CrossRef]
- Cai, Q.; Zha, H.J.; Yuan, S.Y.; Sun, X.; Lin, X.; Zheng, X.Y.; Qian, Y.X.; Xia, R.F.; Luo, Y.S.; Shi, Z.; et al. Diterpenoids from Euphorbia fischeriana with Kv1.3 inhibitory activity. J. Nat. Prod. 2023, 86, 2379–2390. [Google Scholar] [CrossRef]
- Kim, S.J.; Jang, Y.W.; Hyung, K.E.; Lee, D.K.; Hyun, K.H.; Park, S.Y.; Park, E.S.; Hwang, K.W. Therapeutic effects of methanol extract from Euphorbia kansui Radix on imiquimod-induced psoriasis. J. Immunol. Res. 2017, 2017, 7052560. [Google Scholar] [CrossRef]
- Mai, Z.P.; Ni, G.; Liu, Y.F.; Li, Y.H.; Li, L.; Li, J.Y.; Yu, D.Q. Secoheliosphanes A and B and secoheliospholane A, three diterpenoids with unusual seco-jatrophane and seco-jatrophane skeletons from Euphorbia helioscopia. J. Org. Chem. 2018, 83, 167–173. [Google Scholar] [CrossRef] [PubMed]
- Su, J.C.; Cheng, W.; Song, J.G.; Zhong, Y.L.; Huang, X.J.; Jiang, R.W.; Li, Y.L.; Li, M.M.; Ye, W.C.; Wang, Y. Macrocyclic diterpenoids from Euphorbia helioscopia and their potential anti-inflammatory activity. J. Nat. Prod. 2019, 82, 2818–2827. [Google Scholar] [CrossRef] [PubMed]
- Zhou, D.; Zhang, F.; Kikuchi, T.; Yao, M.; Otsuki, K.; Chen, G.; Li, W.; Li, N. Lathyrane and jatrophane, diterpenoids from Euphorbia helioscopia evaluated for cytotoxicity against a paclitaxel-resistant A549 human lung cancer cell line. J. Nat. Prod. 2022, 85, 1174–1179. [Google Scholar] [CrossRef] [PubMed]
- Shi, L.L.; Liu, T.F. The effect of compound Zeqi granules on the serum content of MMP-2, MMP-9 and IL-18 in patients with psoriasis vulgaris. J. Dermatol. Venereol. 2014, 36, 68–69. [Google Scholar] [CrossRef]
- Lal, A.R.; Cambie, R.C.; Rutledge, P.S.; Woodgate, P.D. Ent-atisane diterpenes from Euphorbia fidjiana. Phytochemistry 1990, 29, 1925–1935. [Google Scholar] [CrossRef]
- Crespi-Perellino, N.; Garofano, L.; Arlandini, E.; Pinciroli, V. Identification of new diterpenoids from Euphorbia calyptrata cell cultures. J. Nat. Prod. 1996, 59, 773–776. [Google Scholar] [CrossRef]
- Wang, Y.; Liang, X.B.; Zhao, Z.Z. Diterpenoids from the whole herb of Euphorbia helioscopia. Chin. Tradit. Herb. Drugs 2022, 53, 4625–4633. [Google Scholar] [CrossRef]
- Zhou, L.; Guo, R.; Zhang, H.; Lu, L.W.; Du, Y.Q.; Liu, Q.B.; Huang, X.X.; Song, S. Rapid approaches for assignment of the relative configuration in 1-oxygenated 1,2-diarylpropan-3-ols by 1H NMR spectroscopy. J. Nat. Prod. 2021, 84, 20–25. [Google Scholar] [CrossRef]
- Chen, H.; Wang, H.; Yang, B.; Jin, D.Q.; Yang, S.; Wang, M.; Xu, J.; Ohizumi, Y.; Guo, Y. Diterpenes inhibiting NO production from Euphorbia helioscopia. Fitoterapia 2014, 95, 133–138. [Google Scholar] [CrossRef]
- Li, J.; Li, H.H.; Wang, W.Q.; Song, W.B.; Wang, Y.P.; Xuan, L.J. Jatrophane diterpenoids from Euphorbia helioscopia and their lipid-lowering activities. Fitoterapia 2018, 128, 102–111. [Google Scholar] [CrossRef]
- Kúsz, N.; Orvos, P.; Bereczki, L.; Fertey, P.; Bombicz, P.; Csorba, A.; Tálosi, L.; Jakab, G.; Hohmann, J.; Rédei, D. Diterpenoids from Euphorbia dulcis with potassium ion channel inhibitory activity with selective G protein-activated inwardly rectifying ion channel (GIRK) blocking effect. J. Nat. Prod. 2018, 81, 2483–2492. [Google Scholar] [CrossRef] [PubMed]
- Esposito, M.; Nothias, L.F.; Nedev, H.; Gallard, J.F.; Leyssen, P.; Retailleau, P.; Costa, J.; Roussi, F.; Iorga, B.I.; Paolini, J.; et al. Euphorbia dendroides Latex as a source of jatrophane esters, isolation, structural analysis, conformational study, and anti-CHIKV activity. J. Nat. Prod. 2016, 79, 2873–2882. [Google Scholar] [CrossRef] [PubMed]
- Mai, Z.P.; Ni, G.; Liu, Y.F.; Zhang, Z.; Li, L.; Chen, N.H.; Yu, D.Q. Helioscopianoids A–Q, bioactive jatrophane diterpenoid esters from Euphorbia helioscopia. Acta Pharm. Sin. B 2018, 8, 805–817. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.; Liao, Z.X.; Liu, S.J.; Qu, Y.B.; Wang, H.S. Two new diterpene derivatives from Euphorbia lunulata Bge and their anti-proliferative activities. Fitoterapia 2014, 96, 33–38. [Google Scholar] [CrossRef] [PubMed]
- Tao, H.W.; Hao, X.J.; Liu, P.P.; Zhu, W.M. Cytotoxic macrocyclic diterpenoids from Euphorbia helioscopia. Arch. Pharmacal Res. 2008, 31, 1547–1551. [Google Scholar] [CrossRef]
- Yamamura, S.; Shizuri, Y.; Kosemura, S.; Ohtsuka, J.; Tayama, T.; Ohba, S.; Ito, M.; Saito, Y.; Terada, Y. Diterpenes from Euphorbia helioscopia. Phytochemistry 1989, 28, 3421–3436. [Google Scholar] [CrossRef]
- Lu, Z.Q.; Guan, S.H.; Li, X.N.; Chen, G.T.; Zhang, J.Q.; Huang, H.L.; Liu, X.; Guo, D.A. Cytotoxic diterpenoids from Euphorbia helioscopia. J. Nat. Prod. 2008, 71, 873–876. [Google Scholar] [CrossRef]
- Zhang, W.; Guo, Y.W. Chemical studies on the constituents of the Chinese medicinal herb Euphorbia helioscopia L. Chem. Pharm. Bull. 2006, 54, 1037–1039. [Google Scholar] [CrossRef]
- Jing, S.X.; Fu, R.; Li, C.H.; Zhou, T.T.; Liu, Y.C.; Liu, Y.; Luo, S.H.; Li, X.N.; Zeng, F.; Li, S.H. Immunosuppresive sesterterpenoids and norsesterterpenoids from Colquhounia coccinea var. mollis. J. Org. Chem. 2021, 86, 11169–11176. [Google Scholar] [CrossRef]
- He, H.; Cao, L.; Wang, Z.; Wang, Z.; Miao, J.; Li, X.M.; Miao, M. Sinomenine relieves airway remodeling by inhibiting epithelial-mesenchymal transition through downregulating TGF-β1 and smad3 expression in vitro and in vivo. Front. Immunol. 2021, 12, 736479. [Google Scholar] [CrossRef]
- Hexum, J.K.; Tello-Aburto, R.; Struntz, N.B.; Harned, A.M.; Harki, D.A. Bicyclic cyclohexenones as inhibitors of NF-κB signaling. ACS Med. Chem. Lett. 2012, 3, 459–464. [Google Scholar] [CrossRef] [PubMed]
- Ogawa, E.; Sato, Y.; Minagawa, A.; Okuyama, R. Pathogenesis of psoriasis and development of treatment. J. Dermatol. 2018, 45, 264–272. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Z.Z.; Zhang, F.; Ji, B.Y.; Zhou, N.; Chen, H.; Sun, Y.J.; Feng, W.S.; Zheng, X.K. Pyrrole alkaloids from the fruiting bodies of edible mushroom Lentinula edodes. RSC Adv. 2023, 13, 18223–18228. [Google Scholar] [CrossRef] [PubMed]
- Abbas, A.K.; Trotta, E.; R Simeonov, D.; Marson, A.; Bluestone, J.A. Revisiting IL-2: Biology and therapeutic prospects. Sci. Immunol. 2018, 3, eaat1482. [Google Scholar] [CrossRef]
- Jiang, B.W.; Zhang, W.J.; Wang, Y.; Tan, L.P.; Bao, Y.L.; Song, Z.B.; Yu, C.L.; Wang, S.Y.; Liu, L.; Li, Y.X. Convallatoxin induces HaCaT cell necroptosis and ameliorates skin lesions in psoriasis-like mouse models. Biomed. Pharmacother. 2020, 121, 109615. [Google Scholar] [CrossRef]
- Morgan, M.J.; Liu, Z.G. Crosstalk of reactive oxygen species and NF-κB signaling. Cell Res. 2011, 21, 103–115. [Google Scholar] [CrossRef]
- Biram, A.; Shulman, Z. Evaluation of B Cell proliferation in vivo by EdU incorporation assay. Bio-Protocol 2020, 10, e3602. [Google Scholar] [CrossRef]
- Yu, Y.; Arora, A.; Min, W.; Roifman, C.M.; Grunebaum, E. EdU incorporation is an alternative non-radioactive assay to [3H]thymidine uptake for in vitro measurement of mice T-cell proliferations. J. Immunol. Methods 2009, 350, 29–35. [Google Scholar] [CrossRef]
- Goto, H.; Osawa, E. Corner flapping: A simple and fast algorithm for exhaustive generation of ring conformations. J. Am. Chem. Soc. 1989, 111, 8950–8951. [Google Scholar] [CrossRef]
- Goto, H.; Osawa, E. Application of a three-carbon ring expansion process to bridged bicyclic systems. J. Chem. Soc. Perkin Trans. 1993, 2, 187–198. [Google Scholar]
- Frisch, M.J.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G.A.; et al. Gaussian 16, Revision C.01; Gaussian, Inc.: Wallingford, CT, USA, 2016. [Google Scholar]
- Bruhn, T.; Schaumlöffel, A.; Hemberger, Y.; Bringmann, G. SpecDis, Version 1.71; University of Würzburg: Berlin, Germany, 2012.
No. | 1 | 2 | ||
---|---|---|---|---|
δC | δH | δC | δH | |
1 | 39.0 | 2.79, d (19.7) | 39.5 | 3.21, d (20.3) |
2.32, d (19.7) | 2.68, d (20.3) | |||
2 | 178.7 | 178.6 | ||
3 | 187.5 | 186.9 | ||
4 | 45.5. C | 45.5 | ||
5 | 48.3 | 2.54, d (12.4) | 48.1 | 2.84, d (12.0) |
6 | 19.5 | 1.61, m | 23.3 | 2.03, m |
1.03, overlapped | 1.53, overlapped | |||
7 | 31.2 | 2.32, overlapped | 36.1 | 2.55, d (13.8) |
0.98, overlapped | 2.34, m, overlapped | |||
8 | 47.7 | 151.1 | ||
9 | 45.9 | 2.69 (m, overlap) | 45.9 | 3.32, d (7.2) |
10 | 41.3 | 43.6 | ||
11 | 28.1 | 1.82, m | 28.0 | 2.38, m |
1.56, m | 1.59, m | |||
12 | 38.6 | 2.74, m, overlapped | 75.6 | 4.86 dd (13.0, 5.7) |
13 | 44.7 | 2.31, m, overlapped | 155.6 | |
14 | 217.2 | 114.5 | 6.30, s | |
15 | 42.9 | 2.27, m, overlapped | 116.9 | |
1.76, m, overlapped | ||||
16 | 147.0 | 175.1 | ||
17 | 107.3 | 4.88, s | 8.3 | 1.83, s |
4.67, s | ||||
18 | 29.5 | 1.21, s | 29.5 | 1.23, s |
19 | 21.7 | 1.12, s | 21.3 | 1.20, s |
20 | 17.4 | 0.78, s | 21.0 | 1.01, s |
No. | 3 | 4 | 5 | 6 | 7 |
---|---|---|---|---|---|
1 | 2.57, dd (12.5, 5.2) 2.12, overlapped | 2.20, overlapped 1.53, dd (13.4, 11.1) | 2.51, dd (14.0, 6.1) 1.95, t (14.0) | 2.54, dd (13.6, 6.0) 1.99, d (13.6) | 2.13, dd (14.5, 8.2) 1.51, dd (14.5, 8.6) |
2 | 2.15, m | 2.75, m | 2.06, m | 2.06, m | 2.43, m |
3 | 5.65, t-like (4.0) | 5.20, dd (8.5, 5.7) | 5.41, t-like (4.5) | 5.45, t-like (4.4) | 5.17, dd (6.8, 3.6) |
4 | 3.61, dd (9.4, 4.0) | 3.28, dd (9.8, 8.5) | 3.26, dd (10.4, 4.5) | 3.25, dd (9.9, 4.4) | 3.16, dd (8.8, 3.6) |
5 | 6.82, dd (9.3, 1.1) | 6.77, brs (9.8, 1.3) | 5.55, d (10.4) | 5.69, d (9.9) | 5.60, dd (8.8, 1.7) |
7 | 9.36, s | 9.32, s | 4.16, t (7.5) | 5.03, dd (8.1, 1.7) | 4.39, dd (10.8, 4.5) |
8 | 2.06, s | 2.16, s | 3.01, dd (14.5, 1.7) 2.44, dd (14.5, 6.9) | 2.77, dd (13.6, 2.2) 2.86, dd (13.6, 8.4) | 2.95, dd (15.4, 10.5) 2.69, dd (15.5, 4.6) |
11 | 5.38, d (15.6) | 5.58, d (15.9) | 5.15, d (15.4) | 5.16, d (15.4) | 5.43, d (16.1) |
12 | 5.27, dd (15.6, 8.8) | 5.64, dd (15.9, 8.6) | 5.25, dd (15.4, 8.8) | 5.25, dd (15.4, 8.7) | 5.15, dd (16.1, 9.0) |
13 | 2.20, m | 2.68, m | 2.36, m | 2.37, m | 2.95, m |
14 | 5.82, d (9.5) | 4.94, d (3.1) | 5.90, d (9.7) | 5.93, d (9.9) | 5.14, d (1.7) |
16 | 0.96, d (7.0) | 1.22, d (6.9) | 0.92, d (6.6) | 0.92, d (6.4) | 1.08, d (5.9) |
17 | 1.94, d (1.1) | 1.68, d (1.4) | 1.72, d (0.8) | 1.81, br. s | 1.81, d (1.5) |
18 | 1.15, s | 1.29, s | 1.20, s | 1.12, s | 1.09, s |
19 | 1.16, s | 1.29, s | 1.10, s | 1.14, s | 1.21, s |
20 | 0.98, d (6.9) | 0.99, d (6.9) | 0.95, d (6.7) | 0.97, d (6.7) | 0.93, d (7.2) |
3′, 7′ | 7.99, dd (7.5, 1.3) | 7.93, dd (7.5, 1.3) | 7.95, dd (7.5, 1.3) | 7.97, d (7.5,1.3) | 7.94, dd (7.5, 1.2) |
4′, 6′ | 7.46, t (7.5) | 7.39, t (7.5) | 7.42, t (7.5) | 7.43, t (7.5) | 7.44, t (7.5) |
5′ | 7.60, t (7.5) | 7.52, t (7.5) | 7.54, t (7.5) | 7.55, t (7.5) | 7.56, t (7.5) |
OAc-14 | 2.17, s | 1.90, s | 2.16, s | 2.14, s | 2.16, s |
OAc-15 | 2.05, s | 2.14, s | 2.20, s | ||
OAc-7 | 1.31, s |
No. | 3 | 4 | 5 | 6 | 7 |
---|---|---|---|---|---|
1 | 46.8 | 45.0 | 46.7 | 46.8 | 48.3 |
2 | 39.4 | 38.7 | 38.8 | 38.6 | 36.4 |
3 | 80.7 | 82.7 | 80.9 | 80.8 | 85.8 |
4 | 47.9 | 51.3 | 46.2 | 46.3 | 43.5 |
5 | 147.3 | 149.6 | 120.1 | 123 | 120.6 |
6 | 141.1 | 140.7 | 136.1 | 133.7 | 140.6 |
7 | 194.7 | 195 | 73.2 | 73.8 | 71.9 |
8 | 25.5 | 25.3 | 38.8 | 39.2 | 45.5 |
9 | 211.2 | 212.8 | 212.2 | 206.7 | 210.0 |
10 | 50.1 | 50.2 | 50.8 | 51.0 | 49.2 |
11 | 135.2 | 135.7 | 130.3 | 132.4 | 130.1 |
12 | 132.1 | 130.1 | 132.6 | 130.7 | 134.5 |
13 | 40.1 | 39.6 | 40.9 | 41.4 | 37.1 |
14 | 74.7 | 81.2 | 75.8 | 75.8 | 78.2 |
15 | 90.4 | 84.3 | 90.2 | 90.4 | 83.6 |
16 | 14.0 | 18.5 | 13.9 | 13.8 | 19.2 |
17 | 10.5 | 9.5 | 16.2 | 17.1 | 18.9 |
18 | 24.3 | 23.9 | 24.6 | 25.0 | 25.7 |
19 | 24 | 24.9 | 19.6 | 20.2 | 21.2 |
20 | 17.9 | 19.1 | 21.1 | 20.9 | 22.7 |
1′ | 165.9 | 166 | 166.1 | 165.4 | 166.3 |
2′ | 129.8 | 133.2 | 130.5 | 130.3 | 133.4 |
3′, 7′ | 129.6 | 129.6 | 129.6 | 129.6 | 129.5 |
4′, 6′ | 128.7 | 128.5 | 128.5 | 128.6 | 128.8 |
5′ | 133.5 | 131.7 | 133 | 133.1 | 133.5 |
OAc-14 | 169.3 | 170.6 | 169.8 | 170.0 | 170.7 |
22.3 | 20.8 | 22.3 | 21.1 | 24.8 | |
OAc-15 | 169.5 | 170.0 | 169.5 | ||
21.2 | 20.9 | 22.4 | |||
OAc-7 | 170.2 | ||||
20.2 |
1H NMR Data | Configurations | Suitable Type |
---|---|---|
H-3, t-like, J = 3.0–5.0 Hz | 16α-CH3 | A, B |
H-3, dd, J ≈ 8.0, 3.0–5.0 Hz | 16β-CH3 | A, B |
H-14, d, J = 1.0–4.0 Hz | CH3-20/OR-14 same orientation | A |
H-14, d, J = 1.0–4.0 Hz | CH3-20/OR-14 same orientation | B |
H-14, d, J > 8.0 Hz | CH3-20/OR-14 different orientation | A, B |
δH-11 > δH-12 | 20β-CH3 | A, B |
δH-11 < δH-12 | 20α-CH3 | A, B |
13C NMR Data | Configurations | Suitable Type |
---|---|---|
When OBz-3, δC-16 < 15 | 16α-CH3 | A, B |
When OBz-3, δC-16 > 15 | 16β-CH3 | A, B |
When OAc-14, δC-4 < 45 | 14β-OAc | A |
When OAc-14, δC-4 > 45 | 14α-OAc or 14β-OAc | A |
When OAc-14, δC-20 > 22 | CH3-20/OR-14 same orientation | A |
when OAc-14, δC-20 > 18.5 | CH3-20/OR-14 same orientation | B |
When OAc-15, δC-13 < 40 | 20β-CH3 | A, B |
Compound | Inhibition Rate (%) | Compound | Inhibition Rate (%) | ||
---|---|---|---|---|---|
T Cells | B Cells | T Cells | B Cells | ||
1 | 23.7 ± 4.9 | <10 | 13 | 15.0 ± 2.7 | 27.2 ± 4.5 |
2 | 23.7 ± 6.8 | <10 | 14 | 46.5 ± 8.3 | 28.2 ± 4.8 |
3 | 34.5 ± 5.4 | 20.0 ± 9.5 | 15 | 25.4 ± 3.5 | 17.1 ± 7.3 |
4 | 23.8 ± 4.5 | 26.6 ± 9.7 | 16 | 44.4 ± 8.6 | 26.6 ± 5.4 |
5 | 58.2 ± 1.4 | 64.9 ± 4.6 | 17 | 35.6 ± 1.1 | <10 |
6 | 34.8 ± 7.4 | <10 | 18 | 37.5 ± 5.6 | 33.5 ± 2.8 |
7 | 83.8 ± 2.5 | 92.4 ± 9.6 | 19 | 42.5 ± 7.5 | 48.3 ± 8.8 |
8 | 49.8 ± 6.9 | 43.1 ± 8.8 | 20 | 48.5 ± 7.1 | 46.6 ± 1.7 |
9 | 32.2 ± 2.9 | 27.1 ± 2.4 | 21 | 49.8 ± 7.8 | 48.2 ± 6.4 |
10 | 48.4 ± 3.2 | 48.7 ± 5.7 | 22 | <10 | <10 |
11 | 46.0 ± 3.2 | 17.6 ± 2.4 | 23 | 33.0 ± 8.9 | <10 |
12 | 34.0 ± 3.3 | 14.2 ± 4.6 | Dex | 46.7 ± 4.3 | 79.3 ± 7.7 |
Compound | IC50 (μM) | |
---|---|---|
T Cells | B Cells | |
5 | 17.6 ± 2.7 | 10.3 ± 1.3 |
7 | 6.7 ± 1.8 | 11.4 ± 1.5 |
Dex | 1.6 ± 0.3 | 0.8 ± 0.05 |
Compound | IC50 (μM) | Compound | IC50 (μM) |
---|---|---|---|
7 | 31.0 ± 3.7 | 16 | 25.9 ± 2.4 |
8 | 26.0 ± 2.2 | 17 | 31.5 ± 3.3 |
9 | 19.7 ± 2.0 | 18 | 29.8 ± 2.9 |
10 | 31.3 ± 1.7 | 21 | 28.5 ± 3.0 |
12 | 23.7 ± 2.5 | 22 | 29.6 ± 2.3 |
13 | 6.9 ± 0.8 | 23 | 30.4 ± 3.0 |
15 | 23.4 ± 1.6 | MTX | 18.1 ± 2.1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, Z.-Z.; Liang, X.-B.; He, H.-J.; Xue, G.-M.; Sun, Y.-J.; Chen, H.; Zhao, Y.-S.; Bian, L.-N.; Feng, W.-S.; Zheng, X.-K. Diterpenoids with Potent Anti-Psoriasis Activity from Euphorbia helioscopia L. Molecules 2024, 29, 4104. https://doi.org/10.3390/molecules29174104
Zhao Z-Z, Liang X-B, He H-J, Xue G-M, Sun Y-J, Chen H, Zhao Y-S, Bian L-N, Feng W-S, Zheng X-K. Diterpenoids with Potent Anti-Psoriasis Activity from Euphorbia helioscopia L. Molecules. 2024; 29(17):4104. https://doi.org/10.3390/molecules29174104
Chicago/Turabian StyleZhao, Zhen-Zhu, Xu-Bo Liang, Hong-Juan He, Gui-Min Xue, Yan-Jun Sun, Hui Chen, Yin-Sheng Zhao, Li-Na Bian, Wei-Sheng Feng, and Xiao-Ke Zheng. 2024. "Diterpenoids with Potent Anti-Psoriasis Activity from Euphorbia helioscopia L." Molecules 29, no. 17: 4104. https://doi.org/10.3390/molecules29174104
APA StyleZhao, Z. -Z., Liang, X. -B., He, H. -J., Xue, G. -M., Sun, Y. -J., Chen, H., Zhao, Y. -S., Bian, L. -N., Feng, W. -S., & Zheng, X. -K. (2024). Diterpenoids with Potent Anti-Psoriasis Activity from Euphorbia helioscopia L. Molecules, 29(17), 4104. https://doi.org/10.3390/molecules29174104