Quantum Chemical Stability Analysis of Phthalocyanine Metal One-Dimensional Polymers with Bidentate Ligands
Abstract
:1. Introduction
2. Results and Discussion
2.1. Geometry Optimization of PcZn Complex with Ligands (I–VI)
2.2. HOMO LUMO of PcZn Complex with Ligands (I–VI)
2.3. Geometry Optimization of Polymers Pc(PcZnL)3 (L = I and II)
2.4. HOMO LUMO of Polymers Pc(PcZnL)3 (L = I and II)
3. Methods
Quantum Chemical Calculations Methods
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Cui, L.Y.; Yang, J.; Fu, Q.; Zhao, B.Z.; Tian, L.; Yu, H.L. Synthesis, crystal structure and characterization of a new zinc phthalocyanine complex. J. Mol. Struct. 2007, 827, 149–154. [Google Scholar] [CrossRef]
- Ferraudi, G.; Lappin, A.G. Review: Properties and chemical reactivity of metallo phthalocyanine and tetramethylbenzoannulene complexes grafted into a polymer backbone. J. Coord. Chem. 2014, 67, 3822–3839. [Google Scholar] [CrossRef]
- Janczak, J. Water-Involved Hydrogen Bonds in Dimeric Supramolecular Structures of Magnesium and Zinc Phthalocyaninato Complexes. ACS Omega 2019, 4, 3673–3683. [Google Scholar] [CrossRef]
- De La Torre, G.; Claessens, C.G.; Torres, T. Phthalocyanines: Old dyes, new materials. Putting color in nanotechnology. Chem. Commun. 2007, 20, 2000–2015. [Google Scholar] [CrossRef] [PubMed]
- Zhou, W.; Leznoff, D.B. Phthalocyanine as a redox-active platform for organometallic chemistry. Chem. Commun. 2018, 54, 1829–1832. [Google Scholar] [CrossRef]
- Han, B.; Liang, B.; Zhang, E.; Li, J.; Li, Y.; Zhang, Q.; Xie, Z.; Wang, H.; Jiang, J. Phthalocyanine Covalent Organic Frameworks: Dimensionality Effect on Third-Order Nonlinear Optical Properties. Adv. Funct. Mater. 2024, 2404289, 1–7. [Google Scholar] [CrossRef]
- Kareem, R.O.; Hamad, O.A.; Omer, P.K. Recent Development in Synthesize, Properties, Characterization, and Application of Phthalocyanine and Metal Phthalocyanine. J. Chem. Rev. 2024, 6, 39–75. [Google Scholar]
- Martynov, A.G.; Mack, J.; May, A.K.; Nyokong, T.; Gorbunova, Y.G.; Tsivadze, A.Y. Methodological Survey of Simplified TD-DFT Methods for Fast and Accurate Interpretation of UV-Vis-NIR Spectra of Phthalocyanines. ACS Omega 2019, 4, 7265–7284. [Google Scholar] [CrossRef]
- Gajda, Ł.; Kupka, T.; Broda, M.A. Solvent impact on the planarity and aromaticity of free and monohydrated zinc phthalocyanine: A theoretical study. Struct. Chem. 2018, 29, 667–679. [Google Scholar] [CrossRef]
- Ueno, L.T.; Machado, A.E.H.; Machado, F.B.C. Theoretical studies of zinc phthalocyanine monomer, dimer and trimer forms. J. Mol. Struct. THEOCHEM 2009, 899, 71–78. [Google Scholar] [CrossRef]
- Lee, A.; Kim, D.; Choi, S.H.; Park, J.W.; Jaung, J.Y.; Jung, D.H. Theoretical study on phthalocyanine, pyrazinoporphyrazine and their complexation with Mg2+ and Zn2+. Mol. Simul. 2010, 36, 192–198. [Google Scholar] [CrossRef]
- Robin, A.Y.; Fromm, K.M. Coordination polymer networks with O- and N-donors: What they are, why and how they are made. Coord. Chem. Rev. 2006, 250, 2127–2157. [Google Scholar] [CrossRef]
- Zeng, Q.; Wu, D.; Wang, C.; Lu, J.; Ma, B.; Shu, C.; Ma, H.; Li, Y.; Bai, C. Bipyridine conformations control the solid-state supramolecular chemistry of zinc(II) phthalocyanine with bipyridines. CrystEngComm 2005, 7, 243–248. [Google Scholar] [CrossRef]
- Janczak, J.; Kubiak, R. Pyrazine control of the solid-state supramolecular chemistry of zinc phthalocyanine. Polyhedron 2009, 28, 2391–2396. [Google Scholar] [CrossRef]
- Janczak, J. Peripherally octamethyl zinc(II) phthalocyanines with various axial substituents. Polyhedron 2021, 197, 115024. [Google Scholar] [CrossRef]
- Li, X.; He, X.; Chen, Y.; Fan, X.; Zeng, Q. Solid-state supramolecular chemistry of zinc tetraphenylporphyrin and zinc phthalocyanine with bis(pyridyl) ligands. J. Mol. Struct. 2011, 1002, 145–150. [Google Scholar] [CrossRef]
- Zhao, Y.; Zou, K.Q.; Zheng, W.X.; Huang, C.C.; Zheng, B.Y.; Ke, M.R.; Huang, J.D. Solid-state supramolecular structures and excellent photothermal activities of dimeric zinc(II) phthalocyanines axially bridged with bipyridine derivatives. Dye. Pigment. 2022, 199, 110037. [Google Scholar] [CrossRef]
- Cordeiro, M.R.; Moreira, W.C. Thermal behavior of tetrapyrrole derivatives and their mixed complexes. Thermochim. Acta 2009, 486, 52–56. [Google Scholar] [CrossRef]
- Shukla, A.D.; Dave, P.C.; Suresh, E.; Das, A.; Dastidar, P. Multicomponent Zn-tetraphenylporphyrins: Syntheses, characterization and their self assembly in the solid state. J. Chem. Soc. Dalton Trans. 2000, 4459–4463. [Google Scholar] [CrossRef]
- Schneider, O.; Hanack, M. Phthalocyaninatoiron with Pyrazine as a Bidentate Bridging Ligand. Angew. Chem. Int. Ed. Engl. 1980, 19, 392–393. [Google Scholar] [CrossRef]
- Yuan, N. Coordination Polymers and Clusters Based on the Versatile Mercaptonicotinate Ligands. Eur. J. Inorg. Chem. 2019, 2019, 4607–4620. [Google Scholar] [CrossRef]
- De, S.; Devic, T.; Fateeva, A. Porphyrin and phthalocyanine-based metal organic frameworks beyond metal-carboxylates. Dalton Trans. 2021, 50, 1166–1188. [Google Scholar] [CrossRef] [PubMed]
- Al-Anber, M.; Vatsadze, S.; Holze, R.; Lang, H.; Thiel, W.R. π-Conjugated N-heterocyclic compounds: Correlation of computational and electrochemical data. Dalton Trans. 2005, 22, 3632–3637. [Google Scholar] [CrossRef] [PubMed]
- Yang, F.J.; Fang, X.; Yu, H.Y.; Wang, J.D. (4-amino-pyridine-κN 1)(phthalo-cyan-inato- κ4 N)zinc(II) tetra-hydro-furan disolvate. Acta Crystallogr. Sect. C Cryst. Struct. Commun. 2008, 64, 375–377. [Google Scholar] [CrossRef]
- Przybył, B.; Janczak, J. 1,8-Diazabicyclo[5.4.0]Undec-7-En-8-Ium Bromido(Phthalocyaninato)Zincate. Acta Crystallogr. Sect. E Struct. Rep. Online 2014, 70, m231–m232. [Google Scholar] [CrossRef]
- Mendizabal, F. Phthalocyanoruthenium complexes and polymers with bridged ligands. J. Mol. Struct. THEOCHEM 2002, 579, 169–179. [Google Scholar] [CrossRef]
- Frisch, M.J.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Scalmani, G.; Barone, V.; Petersson, G.A.; Nakatsuji, H.; et al. G16_C01 2016, Gaussian 16, Revision C.01; Gaussian, Inc.: Wallingford, CT, USA, 2016. [Google Scholar]
- Becke, A.D. Density-functional thermochemistry. III. The role of exact exchange. J. Chem. Phys. 1993, 98, 5648–5652. [Google Scholar] [CrossRef]
- Lee, C.; Yang, W.; Parr, R.G. Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys. Rev. B 1988, 37, 785–789. [Google Scholar] [CrossRef]
- Hariharan, P.C.; Pople, J.A. The influence of polarization functions on molecular orbital hydrogenation energies. Theor. Chim. Acta 1973, 28, 213–222. [Google Scholar] [CrossRef]
- Roy, L.E.; Hay, P.J.; Martin, R.L. Revised Basis Sets for the LANL Effective Core Potentials. J. Chem. Theory Comput. 2008, 4, 1029–1031. [Google Scholar] [CrossRef]
- O’Boyle, N.M.; Tenderholt, A.L.; Langner, K.M. A Library for Package-Independent Computational Chemistry Algorithms. J. Comp. Chem. 2008, 29, 839–845. [Google Scholar] [CrossRef] [PubMed]
PcZnI | PcZnII | PcZnIII | PcZnIV | PcZnV | PcZnVI | |
---|---|---|---|---|---|---|
Bond length [Å] | ||||||
Zn-N1 | 2.0446 | 2.0431 | 2.0439 | 2.0434 | 2.0430 | 2.0429 |
Zn-N2 | 2.0445 | 2.0447 | 2.0444 | 2.0437 | 2.0440 | 2.0447 |
Zn-N3 | 2.0446 | 2.0447 | 2.0448 | 2.0436 | 2.0440 | 2.0447 |
Zn-N4 | 2.0446 | 2.0431 | 2.0444 | 2.0443 | 2.0431 | 2.0430 |
Zn-NPy | 2.1507 | 2.1561 | 2.1520 | 2.1566 | 2.1665 | 2.1545 |
Bond angle [°] | ||||||
N1-Zn-NPy | 103.3821 | 103.5133 | 103.5577 | 103.4910 | 103.4002 | 103.5540 |
N1-Zn-NPy-C1Py | −44.9626 | −44.9945 | 43.7557 | 46.0764 | 44.4751 | −45.0138 |
PcZnI | PcZnII | PcZnIII | PcZnIV | PcZnV | PcZnVI | |
---|---|---|---|---|---|---|
E | −0.7681 | −0.7584 | −0.7668 | −0.7568 | −0.7444 | −0.7518 |
μ | 5.1699 | 4.5939 | 7.1704 | 4.6423 | 4.8229 | 6.1184 |
PcZnI | PcZnII | PcZnIII | PcZnIV | PcZnV | PcZnVI | |
---|---|---|---|---|---|---|
LUMO | −4.6615 | −4.6800 | −4.6498 | −4.6860 | −4.6849 | −4.6699 |
Eg | 1.8732 | 2.1975 | 2.0958 | 2.2000 | 2.1796 | 1.9624 |
HOMO | −2.7883 | −2.4824 | −2.5540 | −2.4860 | −2.5053 | −1.8095 |
Bond Length [Å] | Zn-N1 | Zn-N2 | Zn-N3 | Zn-N4 | Zn-NPy | Bond Angle [°] | N1-Zn-NPy | N1-Zn-NPy-C1Py |
---|---|---|---|---|---|---|---|---|
Pc(PcZnI)3 | ||||||||
2.0689 | 2.0670 | 2.0689 | 2.0670 | 2.2074 | 101.7536 | −0.0422 | ||
2.0454 | 2.0454 | 2.0456 | 2.0456 | 2.4225 | 90.8825 | −44.7312 | ||
2.0454 | 2.0454 | 2.0456 | 2.0456 | 2.4221 | 90.8705 | 44.7480 | ||
(X-ray) a | 2.0009 | 2.0044 | 2.0100 | 2.0080 | 2.1558 | 104.3568 | 107.2625 | |
Pc(PcZnII)3 | ||||||||
2.0676 | 2.0686 | 2.0658 | 2.0686 | 2.2115 | 100.9246 | −1.1096 | ||
2.0452 | 2.0453 | 2.0457 | 2.0456 | 2.4315 | 90.7744 | −43.6966 | ||
2.0452 | 2.0454 | 2.0457 | 2.0456 | 2.4866 | 90.7829 | −43.7065 |
Pc(PcZnI)3 | Pc(PcZnII)3 | |
---|---|---|
DFT | −3.3263 | −3.3281 |
Pc(PcZnI)3 | Pc(PcZnII)3 | |
---|---|---|
LUMO | −5.0582 | −5.0702 |
Eg | 2.0092 | 2.1766 |
HOMO | −3.0490 | −2.8936 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Szwajca, A.; Pankiewicz, R. Quantum Chemical Stability Analysis of Phthalocyanine Metal One-Dimensional Polymers with Bidentate Ligands. Molecules 2024, 29, 4111. https://doi.org/10.3390/molecules29174111
Szwajca A, Pankiewicz R. Quantum Chemical Stability Analysis of Phthalocyanine Metal One-Dimensional Polymers with Bidentate Ligands. Molecules. 2024; 29(17):4111. https://doi.org/10.3390/molecules29174111
Chicago/Turabian StyleSzwajca, Anna, and Radosław Pankiewicz. 2024. "Quantum Chemical Stability Analysis of Phthalocyanine Metal One-Dimensional Polymers with Bidentate Ligands" Molecules 29, no. 17: 4111. https://doi.org/10.3390/molecules29174111
APA StyleSzwajca, A., & Pankiewicz, R. (2024). Quantum Chemical Stability Analysis of Phthalocyanine Metal One-Dimensional Polymers with Bidentate Ligands. Molecules, 29(17), 4111. https://doi.org/10.3390/molecules29174111