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Abstract: Morphological control of metal-organic frameworks (MOFs) at the micro/nanoscopic scale
is critical for optimizing the electrochemical properties of them and their derivatives. In this study,
manganese organic phosphate (Mn-MOP) with three distinct two-dimensional (2D) morphologies
was synthesized by varying the molar ratio of Mn2+ to phenyl phosphonic acid, and one of the
morphologies is a unique palm leaf shape. In addition, a series of 2D Mn-MOP derivatives were
obtained by calcination in air at different temperatures. Electrochemical studies showed that 2D
Mn-MOP derivative calcined at 550 ◦C and exhibited a superior specific capacitance of 230.9 F g−1

at 0.5 A g−1 in 3 M KOH electrolyte. The aqueous asymmetric supercapacitor and the constructed
flexible solid-state device demonstrated excellent rate performance. This performance reveals the
promising application of 2D Mn-MOP materials for energy storage.

Keywords: metal-organic framework; manganese organic phosphate; manganese compounds;
supercapacitor; solid-state device

1. Introduction

Metal-organic frameworks (MOFs) possess distinct advantages, including the uni-
form distribution of metal centers and adjustable functional groups for various appli-
cations [1–6]. Two-dimensional (2D) MOFs with exceptional specific surface area (SSA)
and ordered porosity are more favorable for ion migration than common porous carbon
or zeolite materials [7–9]. Given the focus on energy issues, 2D MOFs are recognized
as promising materials for supercapacitor (SC) electrodes due to their unique structural
characteristics [10,11]. The performance of SCs is significantly influenced by the choice
of electrode materials depending on their working principle. However, the low electrical
conductivity of most MOFs limits their application in SCs [12–15]. An effective strategy
is to adjust the geometric size and morphology of MOFs, which address these issues and
provide opportunities to integrate new properties and functions while preserving their
original characteristics.

Metal organophosphates (MOPs) provide both carbon and phosphorus sources at a
molecular level, facilitating the introduction of conductive components into metal phos-
phides. Compared to oxides, hydroxides, sulfides, and phosphides, metal phosphates with
non-metal PO4

3− anions typically offer better electrochemical performance due to their
high electrochemical activities, non-toxicity, and chemical stability. The strong P-O covalent
bonds boost the redox potential and improve the chemical structure stability of manganese
phosphate [16,17]. For enhancing the performance of SCs, it is essential to have a chemically
stable structure and short diffusion path length of the charge carrier electrode. MOPs have
become a momentous part of MOFs-based materials [18]. However, many ligands in the
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MOP framework are insulators, bringing about inferior conductivity [19,20]. Moreover,
these large-sized bulk materials have poor stability and are prone to decomposing in strong
acid/alkali systems. Consequently, modifying MOP materials for practical applications has
attracted wide attention. Heat treatment is a simple and scalable method to obtain MOP
derivatives (carbon-based materials or metal compounds) [21,22]. MOP derivatives typi-
cally exhibit excellent chemical and physical properties due to the presence of the retaining
structure of the pristine MOP [23]. The size and morphology of MOP derivatives greatly
influence their properties, making morphology control a research hotspot [24–26]. The
micro/nano structure of MOFs can be effectively adjusted by altering reaction conditions,
such as reaction temperature, reaction time, pH value, reactant molar ratio, and the type
and amounts of surfactants and regulators.

Herein, a simple and effective calcination strategy was proposed to prepare a series of
manganese organic phosphate (Mn-MOPs) samples as electrode materials for SCs. The Mn-
MOP derivatives with different morphologies were obtained by adjusting the molar ratio
of metal ions to ligands. As the molar ratio changed from 1:3, 3:5 to 1:1, the morphology of
Mn-MOF changed from a palm leaf and nanometer strip to a nanometer sheet. The Mn-
0.05-550 product showed better electrochemical performance with a specific capacitance of
230.9 F g−1 at 0.5 A g−1 in 3 M KOH. Moreover, the performance of Mn-MOP derivatives
in flexible solid-state SC was also excellent. This work proposed a novel concept of MOP
materials for energy storage.

2. Results and Discussion
2.1. Morphological and Structural Analysis

The synthesis of Mn-MOP of different morphologies and their derivates is shown
in Figure 1a. Two-dimensional nanomaterials with three different morphologies were
prepared by a simple one-step solvothermal reaction of manganese(II) acetylacetonate
(C10H14MnO4) and phenyl phosphonic acid in N,N-dimethylformamide (DMF) solution,
with C10H14MnO4 as a source of metal ions and phenyl phosphonic acid as a connector
support. The influence of the molar ratio of reactants on their morphologies was also
studied. Mn-MOPs with three different morphologies were obtained only by changing
the molar ratio of Mn2+ to phenyl phosphonic acid. A molar ratio of 1:3 results in the
palm leaf morphology, which is designated as Mn-DMF-0.15. When the molar ratio is
3:5, the morphology of the product becomes a nanoscale strip, which is named Mn-DMF-
0.05. When the molar ratio is 1:1, the morphology of the product becomes a nanosheet,
called Mn-DMF-0.2. Figure 1b illustrates the calcination path of Mn-DMF-0.05 deriva-
tives. The products obtained after calcination are named Mn-0.05-x, where x refers to the
calcination temperature.

According to the electrochemical performance, Mn-DMF-0.05 was used as the precur-
sor for calcination. The thermogravimetric analysis results showed that double main weight
loss occurred at 20 to 900 ◦C (Figure S3). The first apparent weight loss stage (150–180 ◦C)
resulted from the disappearance of crystalline water. Due to the gradual decomposition of
the organic group, the second weight loss stage occurred between 232 and 580 ◦C. When the
calcination temperature was more than 580 ◦C, the organic group decomposed completely.
Therefore, we chose the four temperatures (150, 250, 350, and 550 ◦C) for calcination in the
air atmosphere. The SEM and TEM images display the overall morphology changes of
the Mn-DMF-0.05 after treatment at different calcination temperatures (Figures 2 and S1).
The Mn-0.05-150, Mn-0.05-250, and Mn-0.05-350 samples with an average length of 3–5 µm
maintain their nano-strip morphologies (Figure 2a–c), and some pores could be observed
in Mn-0.05-350 (Figure 2e–g). The Mn-0.05-550 sample maintains its partial nano-strip
morphology as shown in Figure 2d,h. The morphology of the Mn-0.05-550 maintains
the nano-strip shape, and the edges become round. The interplanar spacing of 0.31 and
0.29 nm is consistent with that of (021) and (−201), respectively. The selected area electron
diffraction (SAED) patterns prove a good crystallinity of Mn-0.05-550 (Figure 2i,j). The
energy dispersive X-ray (EDX) results of Mn-0.05-550 demonstrated that Mn, O, C, and P
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were distributed throughout the nanoribbon (Figure 2k). It can be concluded that the mor-
phology and spatial structure of Mn-MOP derivatives changed obviously after treatment at
a calcination temperature of 550 ◦C.
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The XRD patterns of the Mn-MOP derivatives are displayed in Figures 3a and S2. The
crystal structure of Mn-MOP derivatives was consistent with that of Mn-MOP, when the cal-
cination temperature was lower than 350 ◦C. Mn-MOP became manganese pyrophosphate
(Mn2P2O7) when the calcination temperature was 550 ◦C. The main peaks of Mn-0.05-550
appeared at 28.9◦, 30.3◦, 34.6◦, and 41.5◦, which correspond to the (021), (−201), (220), and
(131), respectively (PDF#29-0891-550). According to the FT-IR spectra, the functional groups
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of the Mn-MOP precursor are preserved in samples calcined at relatively low temperatures.
Meanwhile, Mn-0.05-550 displays strong peaks at 937.2 and 1076.1 cm−1, which results
from the vibration absorption of the P-O bond. The apparent signal at ~555.4 cm−1 arises
from Mn-O. The stretching vibration peak of the benzene ring disappeared because the
Mn-MOP precursor is calcined at 550 ◦C, which demonstrates that Mn-MOP was entirely
decomposed, resulting in the formation of Mn2P2O7. These results obtained by FT-IR are
consistent with those of the XRD results (Figure 3b). The chemical states of the individual
Mn, O, C, and P elements in these samples are determined by XPS. The main elemental
components of Mn-MOP derivatives are Mn, O, C, and P (Figure 3c). A broad peak for Mn
2p of Mn-0.05-550 depicted in Figure 3d is divided into several binding energy regions. The
two main peaks at 641.3 eV and 653.4 eV correspond to Mn 2p3/2 and Mn 2p1/2, respectively.
This is a typical XPS signature of Mn2+, confirming the presence of Mn2+ in the sample [27].
In addition, a few portion peaks at 645.1 eV, 655.4 eV, and 642.5 eV can be observed, corre-
sponding to Mn3+ (Mn 2p3/2 and Mn 2p1/2, respectively) and its satellite peak [28,29]. In
addition, the P 2p spectrum exhibits two representative peaks at 132.99 eV and 133.84 eV
(Figure 3e), indicating different chemical environments, i.e., PO4

3− and PO3
− [30]. The

XPS spectrum of O 1s displays peaks at 531.0 eV and 532.6 eV, corresponding to the P-O
and -OH bonds, respectively (Figure 3f) [27]. In general, manganese pyrophosphate is the
primary component of the MOP derivatives, with Mn2+ being the predominant oxidation
state in the sample. It is observed that the as-prepared Mn-0.05-550 had a specific surface
area of 130.4 m2 g−1, as displayed in Figure S4a. The pore-size distribution of Mn-0.05-550
was examined using the Barret–Joyner–Halenda (BJH) method. Remarkably, the prepared
Mn-0.05-550 possesses maximum pores of 2–10 nm (Figure S4b), suggesting a mesoporous
nature, which can assist efficient ion diffusion and charge transport.
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2.2. Electrochemical Performance Studies

The electrochemical performances of Mn-MOP and Mn-0.05-x were evaluated in
a three-electrode system. The Mn-0.05-x electrodes exhibited clear redox peaks in the
cyclic voltammetry (CV) curves at varied scan rates and potentials (Figures 4b, S5 and S6).
These results demonstrate that the Mn-MOP and Mn-0.05-x electrodes show faradaic
pseudocapacitive behavior. Among them, the peak current of the Mn-0.05-550 electrode
is higher than that of other samples, showing a significantly enhanced electrochemical
activity [31].
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In addition, this work investigates the charge transfer kinetics of Mn-0.05-550 by CV
at different scan rates (Figure 4d). These results show that there is both a diffusion control
process and a surface capacitance control process upon cycling [32]. The capacitance contri-
butions are calculated as shown in Figures 4e,f and S7–S12. The capacitance contributions
increase with the increase in scan rates, which indicates that the charge storage efficiency is
high. Compared with other electrodes, Mn-0.05-550 has a higher capacitive contribution,
which is proved by galvanostatic charge–discharge (GCD) tests. According to the GCD
curves (Figures 4a,c and S13), Mn-0.05-550 has the highest specific capacitance. The specific
capacitances of Mn-0.05-550 are achieved at 230.9, 223.7, 223.2, 220.2, and 212.5 F g−1 at
0.5, 1, 2, 3, and 5 A g−1, respectively. The cycle stability of the Mn-0.05-550 electrode was
tested at 4 A g−1 (Figure 4g). The capacitance retention of Mn-0.05-550 is approximately
84% at the 3000th cycle. The decrease of the specific capacitance results from the collapse
of Mn-0.05-550 nanosheets upon cycling [33,34]. As shown in Figure S14, the Mn-0.05-550
sample exhibits a slope greater than that of all other electrode samples. The result indicates
that a lower ion diffusion resistance can achieve superior supercapacitive performance [35].
In addition, a comparative analysis of the electrochemical performance of the Mn-0.05-550
electrode against other manganese-based compounds is presented (Table S1). According to
the comparison results, it was demonstrated that the Mn-0.05-550 electrode demonstrates
either superior or comparable specific capacitance compared to previous studies, exhibiting
its excellent electrochemical performance.
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The aqueous asymmetric SC is assembled by using Mn-0.05-550 and AC as the positive
and negative electrodes. The CV curves for the Mn-0.05-550//AC device at various scan
rates and voltages are presented in Figure 5a,b. Moreover, even at 100 mV s−1, the CV
profile of the Mn-0.05-550//AC device is consistently maintained, demonstrating that the
Mn-0.05-550//AC aqueous-based device exhibits superb rate capability. The GCD curves of
Mn-0.05-550//AC (Figure 5c) were investigated, and the specific capacitances are depicted
in Figure 5d. When the current density increased, the capacitances of Mn-0.05-550//AC
devices were 81.6, 71.7, 66.7, 63.8, and 60.8 F g−1, respectively, with capacitance retention
values of 100, 87.9, 81.8, 78.2, and 74.6%, respectively. As shown in Figure 5e, we tested the
cycle stability of the Mn-0.05-550//AC device. At the 4000th cycle, the capacitance retention
of the Mn-0.05-550//AC aqueous device was 92% of the initial capacity at 4 A g−1.
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We also assembled the flexible solid-state device. The shapes of each CV curve
maintained the original shapes with the increase in scan rates ranging from 5 mV s−1 to
100 mV s−1, demonstrating the superb rate capability of the Mn-0.05-550//AC solid-state
device (Figure 6a). Figure 6b displays the GCD profiles of the Mn-0.05-550//AC device
at varied current densities, and the corresponding specific capacitances were 52.50, 51.00,
48.33, 43.00, and 35.67 mF cm−2 at 0.2, 0.3, 0.5, 1, and 2 mA cm−2 (Figure S15). The flexibility
of the Mn-0.05-550//AC-based solid-state device was assessed by testing it under different
bending conditions. The Mn-0.05-550//AC-based device showed a loss of 4.8% after
500 cycles when bending (Figure 6c,d). We also tested the stability of the Mn-0.05-550//AC
flexible solid-state device at 3 mA cm−2. The capacitance retention of ~87.7% was achieved
at the 3000th cycle (Figure 6e). An increase of the capacity retention could be observed
up to 500 cycles, which can be ascribed to the activation process of the Mn-0.05-550//AC
device [36]. These results above show that the Mn-0.05-550//AC device shows promise for
practical applications.
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3. Materials and Methods
3.1. Materials

All the chemicals in this study, including C10H14MnO4, phenylphosphonic acid, DMF,
Nickel foam, were used as received without further purification. All aqueous solutions
were freshly prepared with high-purity water (18 MΩ cm−1).

3.2. Materials Synthesis
3.2.1. Synthesis of Mn-DMF-0.15

C10H14MnO4 (0.05 mmol) and C6H7O3P (0.15 mmol) were dissolved in 5 mL DMF and
stirred at room temperature. The mixture was dispensed into a Teflon-lined stainless-steel
autoclave. The autoclave was maintained at 120 ◦C for 12 h, and then naturally cooled to
room temperature. The resulting precipitate was thoroughly washed several times with
DMF and ethanol, respectively.

3.2.2. Synthesis of Mn-DMF-0.05

C10H14MnO4 (0.03 mmol) and C6H7O3P (0.05 mmol) were dissolved in 5 mL DMF and
stirred at room temperature. The mixture was dispensed into a Teflon-lined stainless-steel
autoclave. The autoclave was maintained at 120 ◦C for 12 h, and then naturally cooled to
room temperature. The resulting precipitate was thoroughly washed several times with
DMF and ethanol, respectively.

3.2.3. Synthesis of Mn-DMF-0.2

C10H14MnO4 (0.2 mmol) and C6H7O3P (0.2 mmol) were dissolved in 5 mL DMF and
stirred at room temperature. The mixture was dispensed into a Teflon-lined stainless-steel
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autoclave. The autoclave was maintained at 120 ◦C for 12 h, and then naturally cooled to
room temperature. The resulting precipitate was thoroughly washed several times with
DMF and ethanol, respectively.

3.2.4. Preparation of Mn-0.05-X

Among the Mn-DMF-0.05 precursors synthesized above, the samples with nano-strip
morphologies were selected and calcined in air at 150, 250, 350, and 550 ◦C. The heating
rate was maintained at 1 ◦C min−1, then the reaction stopped and the temperature was
allowed to reduce naturally. The obtained products were denoted as M-0.05-x, where x
represents the activation temperatures.

3.3. Material Characterization

The morphological features were characterized by scanning electron microscopy
(Zeiss, Oberkochen, Germany), high resolution transmission electron microscopy (FEI
part of Thermo Fisher Scientific now), Hillsboro, United States), and energy dispersive
spectroscopy (EDS) mapping. X-ray diffraction (XRD) patterns were examined on a Bruker
D8 Advanced X-ray diffractometer (Cu Kα radiation: λ = 0.15406 nm). The chemical states
were analyzed using X-ray photoelectron spectroscopy (XPS) with monochromatic Al
Kα excitation under vacuum higher than 1 × 10−7 Pa. In addition, a Fourier Transform-
Infrared Radiation (FT-IR) measurement was performed on a BRUKER-EQUINOX-55
IR spectrophotometer. The thermogravimetric analysis (TGA) was performed under air
atmosphere with a heating rate of 10 ◦C min−1 by using a Pyris 1 TGA thermogravimetric
analyzer. All electrochemical measurements were carried out using a CHI 660E instrument.

3.4. Fabrication of the Electrodes in a Traditional Three-Electrode System

The electrochemical measurements were carried out with a CHI760e working station
in 3.0 M KOH solution at room temperature. Galvanostatic charge–discharge (GCD), cyclic
voltammetry (CV), and electrochemical impedance spectroscopy (EIS) methods were used
to investigate the capacitive properties of the Mn-MOP and Mn-0.05-x electrodes. The EIS
measurements were conducted in the frequency range of 100 kHz to 0.01 Hz at the open
circuit voltage.

For the three-electrode cell, the working electrode was made by mixing the active
materials, acetylene black, and polytetrafluoroethylene at a weight ratio of 80:15:5. The
slurry was coated on a piece of nickel foam (~1 cm2), which was then pressed into a thin foil
at a pressure of 10 MPa. The typical mass loading of the electrode material was 1.0 mg. A
platinum electrode and Hg/HgO electrode were used as counter and reference electrodes.

3.5. Fabrication of the Aqueous Electrochemical Energy Storage Device

Aqueous electrochemical energy storage devices were assembled by employing the
Mn-0.05-550 as a positive electrode, and activated carbon was used as a negative electrode.
The mass loading for the negative electrode was determined by balancing the charges stored
in each electrode. Generally, the charges stored by positive and negative electrodes can be
determined by q+ = C+ × ∆E+ × m+ and q– = C– × ∆E– × m–, where C+, C– represent the
specific capacitance of the positive electrode and the negative electrode (F g−1), respectively;
∆E is the potential range (V); m+, m– is the weight of the active material in the positive
electrode and the negative electrode (g), respectively. The charges are balanced by the
equation of q+ = q–, where q+ and q– represent the charges stored in the positive and
negative electrodes, respectively. Therefore, m+/m– = C– × ∆E–/C+ × ∆E+. The specific
capacitance of the purchased activated carbon electrode was 168 F g−1 when the current
density was 1 A g−1. The electrochemical performance of the devices was measured at
room temperature in a two-electrode electrochemical full cell. The electrolyte was 3.0 M
KOH aqueous solution.
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3.6. Fabrication of the Solid-State Flexible Electrochemical Energy Storage Device

The positive and negative electrodes were prepared using the same method as the
electrodes in the aqueous device. The PVA/KOH gel electrolyte was prepared as follows:
1.52 g PVA was added to 15 mL deionized water and the as-obtained solution was heated
to 75 ◦C for 30 min, then 5 mL KOH aqueous solution was added dropwise into the gel
solution under stirring. The positive and negative electrodes were placed on different sides
of the PET substrate, and then coated with the gel solution covering the active materials.
After the excess water was vaporized, the positive and negative electrodes, including
electrolyte, were sandwiched between two pieces of PET substrate. Then, the flexible
solid-state device was fabricated.

3.7. Calculation

The mass-specific capacitance (C/F g−1) of the device can also be calculated using:

C = Q/(m × ∆V) =
∫

Idt/(m × ∆V) = I × tdischarge/(m × ∆V) (1)

where m is the mass of the activated materials, I is the discharge current, tdischarge is the
discharge time, and ∆V is the potential drop during discharge.

The area-specific capacitance (C/mF cm−2) of the device can also be calculated using:

C = Q/(A × ∆V) =
∫

Idt/(A × ∆V) = I × tdischarge/(A × ∆V) (2)

where A is the surface area of the device, I is the discharge current, tdischarge is discharge
time, and ∆V is the potential drop during discharge.

4. Conclusions

In summary, Mn-MOPs with three different morphologies were prepared through
the solvothermal method. When molar ratio of reactants was 3:5, the morphology of
Mn-MOP is a nano-strip. Meanwhile, the Mn-0.05-550 sample retained the nano-strip
morphology of the Mn-DMF-0.05 precursor. As an electrode material of SC, Mn-0.05-550
had a better specific capacitance of 230.9 F g−1 at 0.5 A g−1, and possessed good cycle
stability. Additionally, it was particularly noteworthy that the assembled aqueous/solid-
state device had a good rate capability and superb cycling performance. The design of the
Mn-0.05-550//AC flexible aqueous/solid-state device showed potential in the fields of
portable and flexible electronics.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/molecules29174186/s1, Figure S1: SEM images of (a) Mn-DMF-
0.15; (b) Mn-DMF-0.05; (c) Mn-DMF-0.2; TEM images of (d) Mn-DMF-0.15; (e) Mn-DMF-0.05; (f) Mn-
DMF-0.2; Figure S2: (a) XRD patterns of Mn-DMF-x; (b) FT-IR spectra of Mn-DMF-x; Figure S3:
TG curves of Mn-DMF-0.05; Figure S4: (a) N2 adsorption-desorption isotherms and (d) pore size
distribution curves of Mn-0.05-550; Figure S5: The CV curves with a scan rate at 20 mV s−1 of active
materials in a three-electrode cell in 3.0 M KOH aqueous solution at different potentials: (a) Mn-
DMF-0.15; (b) Mn-DMF-0.05; (c) Mn-DMF-0.2; (d) Mn-0.05-150; (e) Mn-0.05-250; (f) Mn-0.05-350;
Figure S6: The CV curves of active materials in a three-electrode cell in 3.0 M KOH aqueous solution
at different scan rates: (a) Mn-DMF-0.15; (b) Mn-DMF-0.05; (c) Mn-DMF-0.2; (d) Mn-0.05-150; (e) Mn-
0.05-250; (f) Mn-0.05-350; Figure S7: CV curve with the capacitive fraction shown by the shaded
area of Mn-DMF-0.15 at various scan rates in a three-electrode cell. (a) 5 mV s−1; (b) 10 mV s−1;
(c) 20 mV s−1; (d) 50 mV s−1; (e) 100 mV s−1; (f) the percent of capacitive contribution of the Mn-DMF-
0.15; Figure S8: CV curve with the capacitive fraction shown by the shaded area of Mn-DMF-0.05 at
various scan rates in a three-electrode cell. (a) 5 mV s−1; (b) 10 mV s−1; (c) 20 mV s−1; (d) 50 mV s−1;
(e) 100 mV s−1; (f) the percent of capacitive contribution of the Mn-DMF-0.05; Figure S9: CV curve
with the capacitive fraction shown by the shaded area of Mn-DMF-0.2 at various scan rates in a three-
electrode cell. (a) 5 mV s−1; (b) 10 mV s−1; (c) 20 mV s−1; (d) 50 mV s−1; (e) 100 mV s−1; (f) the percent
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of capacitive contribution of the Mn-DMF-0.2; Figure S10: CV curve with the capacitive fraction
shown by the shaded area of Mn-0.05-150 at various scan rates in a three-electrode cell. (a) 5 mV s−1;
(b) 10 mV s−1; (c) 20 mV s−1; (d) 50 mV s−1; (e) 100 mV s−1; (f) the percent of capacitive contribution
of the Mn-0.05-150; Figure S11: CV curve with the capacitive fraction shown by the shaded area of
Mn-0.05-250 at various scan rates in a three-electrode cell. (a) 5 mV s−1; (b) 10 mV s−1; (c) 20 mV s−1;
(d) 50 mV s−1; (e) 100 mV s−1; (f) the percent of capacitive contribution of the Mn-0.05-250; Figure S12:
CV curve with the capacitive fraction shown by the shaded area of Mn-0.05-350 at various scan rates
in a three-electrode cell. (a) 5 mV s−1; (b) 10 mV s−1; (c) 20 mV s−1; (d) 50 mV s−1; (e) 100 mV s−1;
(f) the percent of capacitive contribution of the Mn-0.05-350.; Figure S13: The GCD curves of active
materials in a three-electrode cell in 3.0 M KOH aqueous solution at different current densities: (a)
Mn-DMF-0.15; (b) Mn-DMF-0.05; (c) Mn-DMF-0.2; (d) Mn-0.05-150; (e) Mn-0.05-250; (f) Mn-0.05-350;
Figure S14: The EIS of the active materials in a three-electrode cell in 3.0 M KOH aqueous solution at
room temperature; Figure S15: Specific capacitance at different current densities of Mn-0.05-550//AC
solid-state flexible device; Table S1: Comparison of supercapacitors performance of manganese-based
compounds electrodes. References [37–44] are cited in the supplementary materials.
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