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Abstract: This research investigates the utilization of an ionic liquid combination of solidified floating
organic drop micro-extraction (IL-SFODME) to augment the concentration of trace amounts of lead,
working as a preliminary stage before electrothermal atomic absorption spectrometry (ETAAS) analy-
sis without the use of chelating agents. Key parameters impacting the microextraction efficiency—
including pH, the volume of the ionic liquid (1-Hexyl-3-methylimidazolium hexafluorophosphate,
HMIMPF6), temperature, extraction time, and stirring speed—were methodically examined to de-
termine optimal conditions. Under detected optimized conditions, an enhancement factor of 71.2
was obtained for a 15 mL sample solution. The calibration curve exhibited linearity within the
concentration range of 0.2–2.5 µg/L, with a detection limit (3σ) of 0.054 µg/L and a quantification
limit (10σ) of 0.18 µg/L. For seven replicate measurements of 0.5 µg/L lead, the relative standard
deviation (RSD) was ±2.30%. This method was effectively implemented to extract and quantify
lead in both reference water and different real water samples, showcasing significantly efficient
extraction performance.

Keywords: lead; preconcentration; water samples; ionic liquid; electrothermal atomic absorption
spectrometry; IL-SFODME

1. Introduction

Heavy metals are a category of metals and metalloids that possess high densities,
atomic weights, or atomic numbers [1]. These elements, such as lead, mercury, cadmium,
and arsenic, are characterized by their significant industrial utility and presence in various
technological and manufacturing processes [2]. Metals can be originated by natural or an-
thropogenic processes [3,4]. Heavy metals play crucial roles in numerous sectors, including
electronics, metallurgy, agriculture, and energy production [5]. The unique properties of
heavy metals, such as high electrical conductivity, malleability, and resistance to corrosion,
make them indispensable in the advancement of modern technology and industry [6].

Over the years, industrial growth has led to the extensive consumption of the world’s
natural resources for mass production, resulting in significant environmental pollution
globally [7]. Numerous organic and inorganic pollutants adversely impact air, water, and
soil, thereby threatening the health of humans and other living organisms [8]. Heavy
metals, as inorganic pollutants, are particularly concerning because they cannot biodegrade
and tend to accumulate in living organisms over time [9]. Among these, lead is a toxic
element historically utilized by humans. Recognized for its ductility, corrosion resistance,
low conductivity, and softness, lead has been employed in various industries such as
paint, construction, mining, ceramics, automotive, and petrochemicals [10,11]. Lead is
not biodegradable and tends to accumulate in the body through ingestion, inhalation, or
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dermal contact, leading to severe health issues, including cognitive impairment, kidney
diseases, intellectual disability, and hypertension [12,13]. Consequently, lead, which is
challenging to eliminate from the body, poses a significant threat to living organisms. The
United States Environmental Protection Agency (USEPA) classifies lead as a priority toxic
metal, necessitating careful monitoring and control of its levels [14]. According to the
World Health Organization (WHO) and USEPA, the maximum allowable concentrations
of lead in drinking water are 0.01 mg/L and 0.015 mg/L, respectively [15,16]. Therefore,
it is imperative to monitor and control parameters that directly affect water quality, such
as pH, hardness, temperature, dissolved organic matter concentration, and heavy metal
concentration, to safeguard both aquatic life and essential water resources [17]. Detecting
low levels of lead and other heavy metals is crucial for maintaining the quality and safety
of water.

Various analytical techniques have been employed to detect lead from different sam-
ples, including Flame Atomic Absorption Spectroscopy (FAAS) [18], Inductively Coupled
Plasma-based spectrometry (ICP-OES) [19], and Electrothermal AAS (ETAAS) [20]. Among
these methods, ETAAS is preferred due to its advantages over conventional techniques
in terms of small reagent consumption, reduced risk of sample contamination, and im-
proved detection limits [21]. However, ETAAS faces challenges such as low sensitivity and
signal interference due to the complex matrices of environmental samples. Therefore, a
preconcentration step is necessary to separate the analyte from the sample matrix. Several
techniques, such as liquid–liquid extraction, dispersive liquid–liquid microextraction [22],
cloud point extraction [23], ion exchange [24], co-precipitation [25], and solid phase extrac-
tion (SPE) [26], have been extensively utilized for lead preconcentration. Solidified floating
organic drop microextraction (SFODME) offers significant advantages due to allowing
efficient extraction of target analytes. This technique involves the use of a quite small
volume of organic solvent, which floats on the surface of the solution of the sample and
also solidifies easily close to room temperature after completion of extraction. The benefits
of SFODME include reduced solvent consumption, short and practical sample preparation,
and the ability to achieve high preconcentration factors.

The integration of green chemistry practices in laboratory settings marks a significant
recent advancement. Green chemistry is characterized by a thorough reexamination of
experimental procedures, prioritizing the use of environmentally friendly materials and
efficient waste management systems. New methodologies have been developed to evaluate
the effectiveness of green chemistry practices compared to traditional techniques. One
major challenge is devising sample preparation methods that are both efficient and sus-
tainable. The Green Analytical Chemistry (GAC) approach depends on various factors,
including sample collection, preparation, energy consumption, reagents, instrumentation,
and overall methodology. To determine the environmental impact of any procedure, a
comprehensive evaluation of these factors is essential. Sample preparation is especially
critical as it involves the concentration of trace-level analytes and the removal of interfering
substances. SFODME stands out due to its requirement for extremely low volumes of
extraction solvent. Its advantages include simplicity, cost-effectiveness, minimal use of or-
ganic solvents, elimination of chelating agents, and the ability to achieve high enhancement
factors, distinguishing it from traditional methods in terms of environmental sustainability
and efficiency [27].

This proposed study demonstrates the application of solidified floating organic drop
microextraction (SFODME) for the analysis of lead ions in water samples, followed by
electrothermal atomic absorption spectrometry (ETAAS) for quantification. In this study,
the approach employs 1-Hexyl-3-methylimidazolium hexafluorophosphate (HMIMPF6),
an ionic liquid, in lieu of a chelating agent, with 1-dodecanol employed as the extraction
solvent. Literature research reveals that this proposed method is the first application of the
combination of ionic liquid and SFODME methods without the use of chelating agents for
lead extraction. The method is evaluated based on its limit of detection (LOD), limit of quan-
tification (LOQ), and precision, showing excellent performance in these areas. Additionally,



Molecules 2024, 29, 4189 3 of 14

it exhibits linearity at trace levels and achieves satisfactory preconcentration. Currently,
researchers are focused on developing more environmentally friendly microextraction
techniques. This method aligns with green chemistry principles due to its low sample
consumption, minimal use of toxic organic solvents and energy, short extraction time, low
cost, and satisfactory enhancement factor. Using this approach, lead determination at trace
levels, especially in water samples, is effectively achievable with ETAAS.

2. Results
2.1. Optimization of IL-SFODME Method
2.1.1. Selection of Extraction Solvent

In the IL-SFODME method, choosing an adequate extraction solvent is crucial and
needs to fulfill a number of requirements. Firstly, the solvent must possess a density lower
than that of water to ensure it remains on top of the aqueous phase. Additionally, it is
crucial for the solvent to have a freezing point close to ambient temperature, approximately
25 ◦C, to enable solidification after the extraction process. To minimize the loss of the
organic phase, the solvent should exhibit low volatility and have minimal to no solubility in
water. Moreover, the solvent should demonstrate a high efficiency in extracting the target
analyte. The solvent should have low toxicity and be used sparingly in accordance with
the principles of green chemistry and environmental sustainability. Potential candidates
for the extraction solvent include 1-bromohexadecane, 1,10-dichlorodecane, 1-dodecanol,
1-undecanol, 2-dodecanol, and n-hexadecane. Table 1 provides data on the melting points
and extraction efficiencies of these solvents. Among these, 1-dodecanol is notable for its
extraction efficiency of approximately 98.1% (Table 1). Considering its high extraction
efficiency, along with factors such as cost-effectiveness and availability, 1-dodecanol was
selected as the extraction solvent.

Table 1. Melting temperatures and extraction efficiencies of extraction solvents used in SFODME.

Organic Solvent Melting Point
(◦C)

Extraction Efficiency of Pb
(%)

1-dodecanol 21–24 98.1

2-dodecanol 17–18 97.2

1-undecanol 16 96.5

1-bromohexadecane 17–18 97.1

n-hexadecane 18 95.8

1,10-diclorodecane 14–16 96.2

2.1.2. Optimization of pH

The pH level is the main factor influencing both the formation of metal complexes and
their extraction processes. This research examined the influence of pH on the preconcentra-
tion of Pb (II) ions across a pH spectrum ranging from 2.1 to 9.0, as depicted in Figure 1. To
adjust the pH of the extraction medium, 0.5 mL of various buffer solutions were utilized:
0.2 mol/L KCl and 0.2 mol/L HCl for pH levels between 2.1 and 2.7; 0.1 mol/L potas-
sium hydrogen phthalate and 0.1 mol/L hydrochloric acid for pH values from 3.2 to 4.1;
0.1 mol/L potassium hydrogen phthalate and 0.1 mol/L sodium hydroxide for pH ranges
of 5.2 to 6.5; and 0.1 mol/L tris(hydroxymethyl) aminomethane combined with 0.2 mol/L
HCl for pH levels from 8.1 to 9.0. The optimal extraction of the complex was observed
at pH 2.7, leading to the decision to buffer all subsequent samples to pH 2.7 for further
analyses. At pH values below or above the optimal pH of 2.7, the ion-associate-complex
(Pb(II)-HMIMPF6) likely becomes charged, hindering its transfer to the organic phase.
Given the solubility product constant (Ksp) of lead hydroxide, it is anticipated that at pH
values exceeding 8.15, lead precipitates as its hydroxide compound [28].
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Figure 1. Effect of pH. Conditions: C0: 0.75 µg/L Pb(II); sample volume: 15 mL; 0.5 mL buffer
solution; ionic liquid amount: 10 µL HMIMPF6; extraction time: 15 min; extraction temperature:
26 ◦C; extraction speed: 400 rpm; added dodecanol amount: 100 µL; final volume: 200 µL.

2.1.3. Optimization of Buffer Amount

The volume of buffer solution used in the extraction process plays a critical role in the
efficiency of Pb(II) ion preconcentration. To identify the optimal buffer volume, various
amounts were tested: 0.1, 0.2, 0.3, 0.5, 1, and 2 mL (Figure 2). Each buffer volume was
assessed for its effectiveness in maintaining the desired pH and ensuring the complete
extraction of Pb(II) ions. The experiments revealed that using 0.3 mL of buffer solution
yielded the most effective results. This volume consistently maintained the pH at the
optimal level of 2.7, facilitating the complete extraction of the Pb(II)-HMIMPF6 complex.
Lower volumes, such as 0.1 mL and 0.2 mL, were inadequate in stabilizing the pH, leading
to incomplete extraction. Conversely, the use of larger volumes, such as 1 mL, did not lead
to a significant enhancement in extraction efficiency and proved to be less practical for the
procedure. This is primarily due to this study’s emphasis on minimizing chemical usage
to align with green chemistry principles. Consequently, a buffer volume of 0.3 mL was
determined to be optimal for the subsequent experiments, thereby ensuring reliable and
consistent extraction of Pb(II) ions.
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Figure 2. Effect of added amount of buffer. Conditions: C0: 0.75 µg/L Pb(II); sample volume: 15 mL;
pH: 2.7; ionic liquid amount: 10 µL HMIMPF6; extraction time: 15 min; extraction temperature: 26 ◦C;
extraction speed: 400 rpm; added dodecanol amount: 100 µL; final volume: 200 µL.



Molecules 2024, 29, 4189 5 of 14

2.1.4. Optimization of Ionic Liquid Amount

The amount of ionic liquid employed in the extraction procedure is a critical factor
influencing the effectiveness of Pb(II) ion preconcentration. To determine the ideal volume,
various amounts of ionic liquid were evaluated, specifically 2.5, 5, 10, 15, 25, and 50 µL.
Each volume was tested for its ability to extract the Pb(II)-HMIMPF6 complex effectively.
Experimental findings revealed that the optimal volume for achieving maximum extraction
efficiency was 15 µL of ionic liquid (Figure 3). This volume ensured the formation of a
stable Pb(II)-HMIMPF6 complex, leading to the complete extraction of Pb(II) ions. Volumes
less than 10 µL, such as 2.5 µL and 5 µL, were insufficient for complete complex formation,
resulting in incomplete extraction. On the other hand, increasing the volume beyond 15 µL,
including 25 µL and 50 µL, did not significantly improve extraction efficiency. Therefore,
15 µL was identified as the optimal volume of ionic liquid, striking the best balance between
complex formation and practical efficiency in the extraction process.
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Figure 3. Effect of ionic liquid amount. Conditions: C0: 0.75 µg/L Pb(II); sample volume: 15 mL;
0.3 mL buffer pH: 2.7; extraction time: 15 min; extraction temperature: 26 ◦C; extraction speed:
400 rpm; added dodecanol amount: 100 µL; final volume: 200 µL.

2.1.5. Optimization of Extraction Time

To assess the extraction efficiency within a designated timeframe, the transfer of the
analyte from aqueous samples to the organic solvent droplet is essential. Consequently,
the duration of extraction emerges as a crucial factor that can greatly influence the overall
efficiency. A series of experiments were performed under controlled conditions to investi-
gate the impact of extraction time on efficiency, with durations ranging from 5 to 90 min.
The results, illustrated in Figure 4, showed that absorbance values increased with longer
extraction times until stabilizing at 15 min. Therefore, an extraction time of 15 min was
selected as optimal for subsequent experiments.

2.1.6. Optimization of Extraction Temperature

To evaluate the impact of temperature on the extraction of Pb(II) ions using the ionic
liquid-supported SFODME technique, experiments were performed over a temperature
range from 22 ◦C to 68 ◦C with the help of a multi-heater magnetic stirrer (Velp Scientifica
Srl, Multi HS-6, Velate MB, Italy). The maximum absorbance, illustrated in Figure 5, was
recorded at 26 ◦C. Beyond this temperature, an increase in solubility of the organic phase
led to a decrease in the analytical signal. Consequently, subsequent experimental studies
were conducted at 26 ◦C, which corresponds to room temperature in Ankara, Turkey.
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Figure 4. Effect of extraction time. Conditions: C0: 0.75 µg/L Pb(II); sample volume: 15 mL; 0.3 mL
buffer pH: 0.3; ionic liquid amount: 10 µL; extraction temperature: 26 ◦C; extraction speed: 400 rpm;
added dodecanol amount: 100 µL; final volume: 200 µL.
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Figure 5. Effect of extraction temperature. Conditions: C0: 0.75 µg/L Pb(II); sample volume: 15 mL;
0.3 mL buffer pH: 2.7; ionic liquid amount: 10 µL; extraction time: 15 min; extraction speed: 400 rpm;
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2.1.7. Optimization of Extraction Speed

Agitating the sample solution enhances the speed at which equilibrium is reached
between the sample solution and the droplet, facilitating the diffusion of analytes into the
organic phase. To investigate this effect, experiments were conducted with stirring rates
ranging from 0 to 800 rpm. Higher stirring rates exceeding 650 rpm were noted to decrease
absorbance, likely due to splashing and droplet damage. As illustrated in Figure 6, the
optimal stirring rate was identified as 650 rpm.

2.1.8. Optimization of Added Dodecanol Amount

In various extraction methodologies, the volume of the solvent used for extraction
plays a crucial role in determining the efficiency of the extraction process. The effective
transfer of analytes into the solvent microdrop is directly proportional to the surface area
of contact between the aqueous phase and the extracting phase. Consequently, an increase
in the volume of the drop leads to an enhancement in both the contact area and the overall
extraction efficiency. However, further increases in drop volume can cause a negative effect
on extraction efficiency. To investigate the impact of extraction solvent volume, different
volumes of 1-dodecanol, ranging from 35 to 180 µL, were utilized in the extraction process.
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The results demonstrated a positive correlation between analyte absorbance and increasing
volumes of 1-dodecanol within the range of 35–75 µL, as shown in Figure 7. Over this
range, a slight decrease in absorbance was noted between 75 and 100 µL, and for volumes
exceeding 100 µL, the absorbance levels remained stable. Therefore, a volume of 75 µL of
1-dodecanol was determined to be the optimal choice for further experimentation.
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Figure 6. Effect of mixing speed. Conditions: C0: 0.75 µg/L Pb(II); sample volume: 15 mL; 0.3 mL
buffer pH: 2.7; ionic liquid amount: 10 µL; extraction time: 15 min; extraction temperature: 26 ◦C;
added dodecanol amount: 100 µL; final volume: 200 µL.
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Figure 7. Effect of added extraction solvent. Conditions: C0: 0.75 µg/L Pb(II); sample volume: 15 mL;
0.3 mL buffer pH: 2.7; ionic liquid amount: 10 µL; extraction time: 15 min; extraction temperature:
26 ◦C; mixing speed: 650 rpm; final volume: 200 µL.

2.1.9. Optimization of Final Volume

The modified final volume significantly impacts the enhancement factor in the extrac-
tion process. High enhancement factors can be achieved by reducing the dilution of the
organic phase and the final volume; however, there is a minimum threshold for the final
volume for several reasons. Firstly, the ideal final volume for the AAS (Atomic Absorption
Spectroscopy, Thermo Fisher Scientific, Waltham, MA, USA) system must accommodate at
least three replicate analyses to calculate the standard deviation. Furthermore, it is essential
that the viscosity of the final volume is suitable to avoid any obstruction during the suction
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and injection phases of the autosampling process. Another important factor is to maintain
an adequate volume height when the autosampler tip is submerged in the vial, ensuring
that a precise quantity of the standard or actual sample is obtained. Experiments were
carried out to examine how the final volume of the organic phase influences extraction
efficiency, utilizing solutions with varying final volumes between 100 and 350 µL. As
expected, the enhancement factors decreased as the preconcentrated solution’s final vol-
ume increased. The solution with the highest absorbance value, indicating the greatest
extraction efficiency, had a final volume of 175 µL, which was the smallest effective final
volume (Figure 8). However, the 100 µL volume had a high standard deviation, likely due
to its high viscosity, which negatively affected absorbance values.

Molecules 2024, 29, x FOR PEER REVIEW 8 of 15 
 

 

2.1.9. Optimization of Final Volume 
The modified final volume significantly impacts the enhancement factor in the ex-

traction process. High enhancement factors can be achieved by reducing the dilution of 
the organic phase and the final volume; however, there is a minimum threshold for the 
final volume for several reasons. Firstly, the ideal final volume for the AAS (Atomic Ab-
sorption Spectroscopy, Thermo Fisher Scientific, Waltham, MA, USA) system must accom-
modate at least three replicate analyses to calculate the standard deviation. Furthermore, 
it is essential that the viscosity of the final volume is suitable to avoid any obstruction 
during the suction and injection phases of the autosampling process. Another important 
factor is to maintain an adequate volume height when the autosampler tip is submerged 
in the vial, ensuring that a precise quantity of the standard or actual sample is obtained. 
Experiments were carried out to examine how the final volume of the organic phase in-
fluences extraction efficiency, utilizing solutions with varying final volumes between 100 
and 350 µL. As expected, the enhancement factors decreased as the preconcentrated solu-
tion’s final volume increased. The solution with the highest absorbance value, indicating 
the greatest extraction efficiency, had a final volume of 175 µL, which was the smallest 
effective final volume (Figure 8). However, the 100 µL volume had a high standard devi-
ation, likely due to its high viscosity, which negatively affected absorbance values. 

 
Figure 8. Effect of final volume. Conditions: C0: 0.75 µg/L Pb(II); sample volume: 15 mL; 0.3 mL 
buffer pH: 2.7; ionic liquid amount: 10 µL; extraction time: 15 min; extraction temperature: 26 °C; 
mixing speed: 650 rpm; added dodecanol amount: 75 µL. 

2.2. Interference Studies 
In order to evaluate the feasibility of selectively recovering the analyte amidst the 

presence of interfering ions, a procedure was conducted utilizing a 15 mL solution that 
contained 0.75 µg/L of lead, supplemented with foreign ions at different concentration 
levels. The tolerance limit was defined as the concentration at which the introduced ion 
caused less than a ±5% relative error in the determination of Pb. Table 2 presents the max-
imal tolerance limits for the cations and anions. The results indicate that a significant num-
ber of the employed ions exhibit negligible impact on the determination of ultra-trace lead 
in water samples. 

Table 2. Tolerance limits (error < 5%) of diverse ions on the determination of 0.75 µg/L Pb(II) by the 
proposed method. 

Ion [Pb(II)]/[Ion] Added As Ion [Pb(II)]/[Ion] Added As 
K+ >1/5000 KCl Al3+ >1/500 Al(NO3)3 
Na+ >1/5000 NaCl Fe3+ 1/300 Fe(NO3)3 
Zn2+ 1/500 Zn(NO3)2 Cr3+ >1/75 Cr(NO3)3 
Ca2+ >1/400 CaCO3 Co2+ 1/1000 Co(NO3)2 

0.00

0.05

0.10

0.15

0.20

0 50 100 150 200 250 300 350 400

Ab
so

rb
an

ce

Final Volume (µL)
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2.2. Interference Studies

In order to evaluate the feasibility of selectively recovering the analyte amidst the
presence of interfering ions, a procedure was conducted utilizing a 15 mL solution that
contained 0.75 µg/L of lead, supplemented with foreign ions at different concentration
levels. The tolerance limit was defined as the concentration at which the introduced ion
caused less than a ±5% relative error in the determination of Pb. Table 2 presents the
maximal tolerance limits for the cations and anions. The results indicate that a significant
number of the employed ions exhibit negligible impact on the determination of ultra-trace
lead in water samples.

2.3. Analytical Performance of Proposed Method

The evaluation of the analytical performance of the proposed method was conducted
through a series of experiments and calculations. The enhancement factor was calculated
by taking the ratio of the slope of the calibration line derived from Pb(II) ion enrich-
ment to the slope of the calibration line obtained from aqueous solutions lacking enrich-
ment. In this investigation, the enhancement factor for Pb(II) ions was determined to
be 71.2 (0.2135/0.0030). The method exhibited a linear range of 0.2–2.5 µg/L for lead
ions. The limit of detection (LOD), defined as three times the standard deviation (3s)
of 10 measurements at the lowest concentration on the calibration plot, was found to be
0.054 µg/L. The limit of quantification (LOQ), representing ten times the standard devi-
ation (10s) of 10 measurements, was determined to be 0.18 µg/L, indicating the lowest
concentration that can be reliably quantified. The %relative standard deviation (%RSD)
for 0.5 µg/L lead was ±2.30% (n = 7). As detailed in Table 3, the proposed method
demonstrates excellent analytical performance.
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Table 2. Tolerance limits (error < 5%) of diverse ions on the determination of 0.75 µg/L Pb(II) by the
proposed method.

Ion [Pb(II)]/[Ion] Added As Ion [Pb(II)]/[Ion] Added As

K+ >1/5000 KCl Al3+ >1/500 Al(NO3)3

Na+ >1/5000 NaCl Fe3+ 1/300 Fe(NO3)3

Zn2+ 1/500 Zn(NO3)2 Cr3+ >1/75 Cr(NO3)3

Ca2+ >1/400 CaCO3 Co2+ 1/1000 Co(NO3)2

Cd2+ 1/500 Cd(NO3)2 Se3+ 1/2000 Na2SeO4

Hg2+ >1/50 HgCl2 SCN− 1/2000 NH4SCN

Mn2+ >1/2000 Mn(NO3)2 Cl− >1/5000 NaCl

Ni2+ 1/500 Ni(NO3)2 CO3
2− 1/500 Na2(CO3)

Mg2+ 1/300 MgSO4 SO4
2− 1/5000 MgSO4

Cu2+ >1/200 Cu(NO3)2 CH3COO− 1/2000 CH3COONa

Table 3. Analytical performance of the proposed method.

Regression Equation A = xC + y 0.2135C + 0.0003

Correlation Coefficient 0.9983

Enhancement Factor 71.2

Linear Range µg/L 0.2–2.5

Linear Range without enrichment µg/L 15–125

LOD 3s (µg/L) 0.054

LOQ 10s (µg/L) 0.18

Precision RSD (%) [0.5 µg/L] n = 7 2.30

2.4. Accuracy of the Method

To validate the efficacy of the proposed method, recovery experiments were performed
using certified reference material. NRC-AQUA-1 (Drinking Water Certified Reference Ma-
terial for trace metals and other constituents) served as the validation medium, and results
are presented as an average of four replicates. Table 4 demonstrates a significant correlation
between the results obtained and the established reference values. The recovery rates
further validate the precision of the proposed method for measuring lead concentrations.

Table 4. Determination of lead in certified material (n = 4).

Sample Certified (µg/L) Found (µg/L) Recovery %

NRC-AQUA-1 Drinking Water 1.37 ± 0.09 1.39 ± 0.12 101.1

2.5. Analysis of Real Samples

In order to illustrate the practical application of the proposed methodology to actual
water samples, lead ions were introduced at designated concentrations into 15 mL of tap
water, seawater, and wastewater. Subsequently, the concentrations of lead were quantified
utilizing the IL-SFODME technique. The findings regarding the concentration of Pb(II) in
these water samples are presented in Table 5.
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Table 5. Determination of Pb(II) in real water samples (n = 4).

Tap Water
(Beytepe—Ankara)

Seawater
(Marmara Sea—Istanbul)

Wastewater
(Big Scale WWTP—Ankara)

Added
(µg/L)

Found
(µg/L)

Efficiency
(%)

Added
(µg/L)

Found
(µg/L)

Efficiency
(%)

Added
(µg/L)

Found
(µg/L)

Efficiency
(%)

* BDL - * BDL - * BDL -

1.00 1.01 101.0 1.00 0.98 98.0 1.00 1.03 103.0

2.00 2.03 101.5 2.00 1.99 99.5 2.00 2.05 102.5

* BDL: below detection limit.

3. Materials and Methods
3.1. Reagents and Materials

The Pb(II) solution used in this study was prepared using a stock standard solution
(1000 mg/L) of Pb(II) obtained from Certified Reference Material (Certificate #883-02) (Inor-
ganic Ventures, Christiansburg, VA, USA). Working standard solutions were prepared by
appropriate dilution of the stock standard solutions. The extraction solvent, 1-dodecanol
(CH3(CH2)10CH2OH), was sourced from Merck, while 1-Hexyl-3-methylimidazolium hex-
afluorophosphate (HMIMPF6), an ionic liquid (IL) forming ion pairs with lead ions, was
obtained from Sigma-Aldrich, St. Louis, MO, USA). For pH adjustment, a phthalate buffer
solution was employed, prepared by combining 0.1 mol/L potassium hydrogen phtha-
late (Merck, Darmstadt, Germany) and 0.1 mol/L hydrochloric acid (Merck) in suitable
proportions. Ethanol (Merck) was used to dilute the organic phase. Matrix modifier
chemicals: palladium nitrate (Pd(NO3)2) (Matrix Modifier, Inorganic Ventures, Inc. 1(800)
669–6799, 10% HNO3 10,000 µg/mL palladium nitrate) and magnesium nitrate hexahy-
drate (Mg(NO3)2·6H2O) (Merck) were added in the amount of 0.005 mg Pd + 0.003 mg
Mg(NO3)2 allows a pretreatment temperature of 1000 ◦C. The appropriate amount of them
was injected during the analysis. The concentrations of matrix modifiers were calculated
using the recommended conditions obtained from Perkin Elmer. To assess the accuracy of
the method, NRC-AQUA-1 Drinking Water Certified Reference Material for trace metals
and other constituents, certified reference material from National Research Council Canada
(NRC-CNRC), and Beverage Reference Materials were utilized. To ensure the integrity of
laboratory materials, all equipment used in the experiments was soaked overnight in a 10%
HCl solution and then rinsed three times with deionized water.

3.2. Instrumentation

All chemicals used in the experiments were of analytical grade, and solutions were pre-
pared using ultrapure water with a resistance of 18.1 MΩ cm, generated by an Elga Purelab
Type-1 ultrapure water device (ELGA LabWater, Lane End, UK). pH measurements were
conducted using a Thermo Orion 4-Star pH-conductivity meter (Mettler-Toledo GmbH,
Zürich, Switzerland). The sample solutions were heated to the necessary temperature and
stirred at the proper speed using a Velp Multi HS-6 multi-heater magnetic stirrer (Velp
Scientifica, Usmate Velate, Italy).

Lead concentrations were determined using a Perkin Elmer AAnalyst 800 Atomic
Absorption Spectrometer (Spectralab Scientific Inc., Markham, Canada) equipped with a
longitudinal Zeeman effect background correction system. A Perkin Elmer electrodeless
discharge lamp (EDL) provided radiation at 283.3 nm with a 0.7 nm spectral bandpass.
Atomization was performed using a transversely heated graphite tube with an integrated
pyrolytic graphite platform. Sample injection was automated using a Perkin-Elmer AS-800
autosampler (Profcontrol GmbH, Schönwalde-Glien, Germany). Argon gas at a flow rate of
250 mL/min served as the inert gas during all stages except for atomization, where the flow
was halted. Absorbances were calculated from peak areas obtained during the analysis
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3.3. Procedure

Aliquots of 15 mL, containing either sample or standard lead solutions, were prepared
and transferred into 30 mL wide-neck glass bottles with locking lids. Each bottle was
equipped with a stirrer bar for mixing. To adjust the pH to 2.7, 0.3 mL of buffer solution
was added to each aliquot. Sequentially, 75 µL of 1-dodecanol extraction solvent and 10 µL
of HMIMPF6 ionic liquid were injected into the sample solution using a micro-syringe. The
bottles were tightly closed and stirred for 15 min at 650 rpm and 25 ◦C using a magnetic
stirrer. During stirring, the lower-density organic solvent droplet floated on the aqueous
surface, facilitating the extraction of Pb(II) ions with the assistance of the ionic liquid.

After extraction, the sealed bottles were cooled in a refrigerator at 4 ◦C, causing the
1-dodecanol to solidify within approximately 10 min due to its melting point being close
to room temperature (24 ◦C). The solidified droplet was then transferred to micro-vials
in the autosampler using a mini spatula, diluted to 175 µL with ethanol in a conical vial,
and tightly sealed with parafilm. All standard, real, and modifier samples were loaded
into an AS 800 Autosampler (Waltham, MA, USA). In the calibration and determination
step, the autosampler sequentially drew 10 µL of Pd, 10 µL of Mg(NO3)2, and 20 µL of
the calibration/sample solutions from separate vials into the tubing and simultaneously
injected them into the graphite furnace. The parafilm was removed immediately before
sampling. The furnace program detailed in Table 6 was carried out, and the results were
recorded, as shown in Figure 9. Each analysis was conducted in triplicate.

Table 6. Furnace heating program for lead analysis.

Stage Temperature
(◦C)

Ramp Time
(s)

Hold Time
(s)

Gas Flow
(mL/min)

Drying 1 110 1 20 250

Drying 2 130 15 20 250

Pyrolysis 1000 10 10 250

Atomization a 1500 0 3 0

Clean-Out 1800/2450 b 1 3 250
a Reading step. b Set for reference and real samples.
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The application of solidified floating organic drop micro-extraction (SFODME) com-
bined with 1-Hexyl-3-methylimidazolium hexafluorophosphate ([HMIM][PF6]) as the ionic
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liquid, without the use of a chelating agent, followed by analysis using ETAAS, represents a
novel approach for the determination of Pb in environmental water samples. This method
proved highly effective, leveraging [HMIM][PF6]’s advantageous properties, such as low
volatility, high thermal stability, and efficient extraction capabilities for Pb. SFODME facili-
tates practical separation of the preconcentrated lead phase from the aqueous phase due to
the easy solidification of 1-dodecanol near room temperature, allowing simple removal of
the solidified drop using a spatula.

The IL-SFODME-GFAAS technique demonstrated eye-catching analytical perfor-
mance, characterized by high sensitivity, a satisfying enhancement factor, and low detection
limits, as summarized in Table 7. Comparative analysis with other methods reported in
the literature indicates superior or comparable enhancement factors. This method stands
out for its operational simplicity, cost-effectiveness, and alignment with principles of
green chemistry, particularly minimizing the use of auxiliary substances and energy and
reducing derivatives.

Table 7. Comparison of proposed IL-SFODME with the literature for the determination of lead.

Preconcentration Method Instrument Enhancement Factor Limit of Detection (µg/L) Reference

SPE FAAS 20 3.7 [29]

SPE FAAS 200 0.4 [30]

DLLME FAAS 70 2.6 [31]

UAµE-DES FAAS 71.6 0.66 [32]

UA-SS-LPME FAAS 101.6 0.63 [33]

CPE ETAAS 50 0.08 [34]

DLLME ETAAS 78 0.039 [35]

LPME ETAAS 52 0.2 [36]

DLLME ETAAS - 0.08 [37]

LLE ICP-MS 23.3 0.011 [38]

IL-SFODME ETAAS 69.2 0.075 This work

SPE: Solid phase extraction, DLLME: dispersive liquid–liquid microextraction, UAµE-DES: ultrasonic assisted mi-
croextraction method based on deep eutectic solvent, UA-SS-LPME: Ultrasonic assisted switchable solvent
based on liquid phase microextraction, CPE: Cloud point extraction, LPME: liquid phase microextraction,
LLE: liquid–liquid extraction, IL-SFODME: ionic-liquid solidified floating organic drop microextraction.

Key advantages of this methodology include minimal sample consumption, avoid-
ance of toxic organic solvents, practical extraction duration, affordability, and significant
enhancement factor. By enabling lead analysis in water samples, even at trace levels,
using conventional ETAAS, this approach enhances the accessibility and applicability of
environmental monitoring. Importantly, this study represents the first application of the
combined IL-SFODME method without a chelating agent for lead extraction, underscoring
its simplicity, speed, and suitability for routine environmental water sample analysis.
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