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Abstract: ATTO 565, a Rhodamine-type dye, has garnered significant attention due to its remarkable
optical properties, such as a high fluorescence quantum yield, and the fact that it is a relatively
stable structure and has low biotoxicity. ATTO 565 has found extensive applications in combina-
tion with microscopy technology. In this review, the chemical and optical properties of ATTO 565
are introduced, along with the principles behind them. The functionality of ATTO 565 in confo-
cal microscopy, stimulated emission depletion (STED) microscopy, single-molecule tracking (SMT)
techniques, two-photon excitation–stimulated emission depletion microscopy (TPE-STED) and fluo-
rescence correlation spectroscopy (FCS) is discussed. These studies demonstrate that ATTO 565 plays
a crucial role in areas such as biological imaging and single-molecule localization, thus warranting
further in-depth investigations. Finally, we present some prospects and concepts for the future
applications of ATTO 565 in the fields of biocompatibility and metal ion detection. This review does
not include theoretical calculations for the ATTO 565 molecule.

Keywords: high-resolution microscopy; fluorescent Rhodamine dye; stimulated emission depletion
microscopy; fluorescent labeling; fluorescence correlation spectroscopy; 3D single-molecule tracking

1. Introduction

Fluorescent dyes are important tools across various domains such as biological imag-
ing, cell tracking, and molecular probing. They play an essential role in advancing modern
life sciences and materials science. In recent years, there has been a continuous surge in
the research and development of novel fluorescent dyes [1]. As a type of Rhodamine dye,
ATTO 565 shows notable traits, including intense absorption, high fluorescence quantum
yield, and exceptional thermal and photo-stability [2]. These remarkable properties have
rendered it extensively applicable in the field of single-molecule detection applications and
high-resolution microscopy [3]. The structure of ATTO 565 is shown in Figure 1A. ATTO
565 is used in stimulated emission depletion (STED) microscopy. To overcome Abbe’s
diffraction limit, stimulated emission is employed to deplete the fluorescent state. This
generates focal regions of molecular excitation significantly smaller than the diffraction
limit and significantly increases the resolution [4]. ATTO 565 is a suitable fluorescent dye
in STED due to its superior performance. Wildanger et al. used ATTO 565 as a fluorescent
labeling dye for immunofluorescence staining of mammalian PtK2 cells. Compared to the
confocal image, the STED image clearly shows the structures and spaced fibers of cells [5],
as shown in Figure 1B,C.

Besides its contribution to STED, ATTO 565 is also used in visually evaluating the drug
delivery potential and studying the mechanism of drug delivery [6]. All these applications
reveal that ATTO 565 is a promising fluorescent dye with great potential. In this review,
the applications of ATTO 565 in various types of microscopy techniques are explored,
revealing the significant capabilities of ATTO 565 in assisting researchers to explore the
microscopic world.
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Figure 1. (A) The structure of ATTO 565. (B) The confocal image of PtK2 cells. C1 and C2 are the two 
selected representative locations. The fibers at C1 are relatively sparse, while at C2, they are denser, 
with three clusters stacked together. The intensity of green in the main image represents photon 
density, while the inset directly depicts the shape and color of the excitation light. The FWHM at 
(B) is shown in (D) with blue lines. (C) The STED image of PtK2 cells. C1 and C2 are the same 
position as in (B). The intensity of green in the main image represents photon density, while the 
inset directly depicts the shape and color of the STED depletion light. The full-width-half-maximum 
(FWHM) at (C) shown in (D) with pink lines. (D) The line graphs show the FWHM at the arrow 
location. The blue arrows (and lines) mark the confocal observations, while the pink/red arrows 
mark the STED observations. Upper image for C1; lower image for C2. It can be observed that the 
confocal microscope is unable to distinguish the number of fibers at location C2, whereas the STED 
microscope shows three peaks, corresponding to three fibers. Taken with permission from [5]. 

2. The Properties of the ATTO 565 Dye 
2.1. Chemical Properties 

Rhodamine dyes, as organic compounds, are a type of fluorescent dyes commonly 
used in biological, chemical, and fluorescence microscopy research. The molecular 
structures of Rhodamine dyes are based on a xanthene core which acts as the 
chromophore [7]. The primary differences between Rhodamine dyes lie in the various 
substituents on the xanthene framework. For example, there are two dimethylamino 
substituents on the xanthene core of Rhodamine B and two ethylamine groups for ATTO 
532, as shown in Figure 2A,B. 

 
Figure 2. (A)The structure of Rhodamine B. An− indicates anion. (B) The structure of ATTO 532. 

There is a delocalized π system in the xanthene structure. When a molecule absorbs 
a photon, it undergoes a π → π* transition, subsequently emitting fluorescence during the 
de-excitation process [7]. Close to the xanthene ring, most Rhodamine dyes have a 

Figure 1. (A) The structure of ATTO 565. (B) The confocal image of PtK2 cells. C1 and C2 are the
two selected representative locations. The fibers at C1 are relatively sparse, while at C2, they are
denser, with three clusters stacked together. The intensity of green in the main image represents
photon density, while the inset directly depicts the shape and color of the excitation light. The FWHM
at (B) is shown in (D) with blue lines. (C) The STED image of PtK2 cells. C1 and C2 are the same
position as in (B). The intensity of green in the main image represents photon density, while the
inset directly depicts the shape and color of the STED depletion light. The full-width-half-maximum
(FWHM) at (C) shown in (D) with pink lines. (D) The line graphs show the FWHM at the arrow
location. The blue arrows (and lines) mark the confocal observations, while the pink/red arrows
mark the STED observations. Upper image for C1; lower image for C2. It can be observed that the
confocal microscope is unable to distinguish the number of fibers at location C2, whereas the STED
microscope shows three peaks, corresponding to three fibers. Taken with permission from [5].

2. The Properties of the ATTO 565 Dye
2.1. Chemical Properties

Rhodamine dyes, as organic compounds, are a type of fluorescent dyes commonly used
in biological, chemical, and fluorescence microscopy research. The molecular structures
of Rhodamine dyes are based on a xanthene core which acts as the chromophore [7].
The primary differences between Rhodamine dyes lie in the various substituents on the
xanthene framework. For example, there are two dimethylamino substituents on the
xanthene core of Rhodamine B and two ethylamine groups for ATTO 532, as shown in
Figure 2A,B.
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There is a delocalized π system in the xanthene structure. When a molecule absorbs a
photon, it undergoes a π → π* transition, subsequently emitting fluorescence during the
de-excitation process [7]. Close to the xanthene ring, most Rhodamine dyes have a carboxyl
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substituent (or a similar substituent), which has a significant influence on the fluorescent
properties of Rhodamine dyes.

For ATTO 565, the carboxyl group can dissociate to form a proton and the carboxylate
under a basic protonic solvent environment, for example, when ATTO 565 is dissolved in
ethanol (Figure 3A) [8]. The protonation of the carboxylate group leads to a shift in the
absorption spectrum (Figure 3B) and reduces its emission intensity. This is the principle of
the first kind of pH sensor. Grant et al. utilized the property of Rhodamine materials to
develop a pH sensor centered around Seminaphthorhodamine-1 carboxylate (SNARF-1C)
(Figure 4A) [9]. Under the same parameters and two known pH values, the ratio of the
fluorescence intensities generated is always consistent. This allows for the measurement of
all pH values relative to a standard acidic pH, with the fluorescence intensity ratio of the
Rhodamine molecules used as a calibration. For example, Figure 4B shows the fluorescence
intensity ratios of SNARF-1C measured in a phosphate-buffered saline (PBS) environment.
Although there is a lack of relevant research, considering the structural similarity between
ATTO 565 and SNARF-1C, and most importantly, because ATTO 565 also contains a benzoic
acid group, ATTO 565 also has potential as a pH meter.
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The second method for preparing Rhodamine dyes as pH meters utilizes the reversible
ring-opening reaction of Rhodamine dyes. Li et al. synthesized a Lyso-DR molecule
containing a Rhodamine structure [10]. This molecule features an intramolecular lactam
structure that does not fluoresce in the closed form but emits fluorescence upon ring-
opening in acidic environments. Although ATTO 565 does not have a lactam structure, it
can still undergo a similar reversible ring-opening reaction at different pH values.

In an alkaline environment, the carboxyl group loses a proton, leading to a nucleophilic
attack on the central carbon atom to form a five-membered lactone structure. This closed-
form structure interrupts the xanthene chromophore, generally causing Rhodamine dyes
not to exhibit absorption or emission peaks within the visible light range. In comparison,
in acidic or neutral environments, the xanthene structure remains in its original state,
which is referred to as the open form. The open form of Rhodamine demonstrates superior
fluorescence performance [11]. ATTO-TEC GmbH measured the absorption spectra of
ATTO 565 in open form and closed form, shown in Figure 3B. They used trifluoroacetic
acid (TFAc) and triethylamine (TEA) to influence the structure of ATTO 565. The switch
of ATTO 565 between open and closed forms is shown in Figure 5 [8]. The result shows
that the maximum absorbance of the open form is about four times higher than that of the
closed form: the closed form of ATTO 565 barely absorbs and emits light (Figure 6). The
structural conformational changes between the open and closed forms allow Rhodamine
dyes to be used in different experimental conditions because their fluorescent properties
can be controlled by altering pH or light exposure conditions, and this makes them highly
valuable in fields such as cell biology, molecular biology, and biological imaging [12].
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Lampidis et al. have already demonstrated that certain Rhodamine dyes exhibit
selective accumulative biotoxicity to cancer cells without harming normal cells due to the
higher plasma membrane potential of carcinoma cells. This implies that ATTO 565 also
holds significant potential for in vivo experiments [13].

2.2. Photophysical Property

The fundamental characteristics of ATTO 565 were assessed by ATTO-TEC GmbH [14].
The emission and absorption spectra of ATTO 565 are shown in Figure 7A. The wavelength
of the strongest absorption peak is ~564 nm, which is the origin of its name. The wavelength
of the emission maximum is 590 nm. There is a clear Stokes shift for ATTO 565. This makes
the use of ATTO 565 convenient for fluorescence excitation experiments as it reduces the
influence of excitation light on the emission spectrum. The molar absorptivity of ATTO 565
is 1.2 × 105 M−1 cm−1. This high absorptivity coefficient indicates that ATTO 565 possesses
high sensitivity, enabling it to effectively absorb light even at low concentrations. The
fluorescence quantum yield of ATTO 565 is 90%, which implies that ATTO 565 efficiently
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converts the absorbed energy into fluorescence emission, even under low concentration
conditions of the analyte, producing a strong fluorescence signal. The optical data are
shown in Table 1.
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Table 1. The optical data of ATTO 565 [14].

λabs (nm) 564

εmax (M−1cm−1) 1.2 × 105

λfl (nm) 590

Φfl (%) 90

τfl (ns) 4.0
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To gain insights into the properties of the dye, researchers employed single-molecule
fluorescence spectroscopy to acquire typical emission intensity time traces of individual
ATTO 565 molecules on a glass surface in a normal environment. The fluorescence time
trace of dye 565 is shown in Figure 7B [15]. The intensity fluctuations are obvious. Several
intermittencies happened before the final photobleaching at 105 s. During these intermit-
tencies, the molecule stops emitting fluorescence, and this change in intensity is usually
named “blinking”. When the trace is magnified at 28 s, one blinking event lasts 330 ms, as
shown in Figure 7C [15].

Some possible explanations for the blinking phenomenon have been proposed. One
common explanation is the three electronic state theory shown in Figure 8. When the
molecule absorbs the energy from the photon, it is excited from ground state S0 to the first
excited state S1. After a very short excited state lifetime, it goes back to the S0 state with
the emission of radiation. This is the reason for the “on time” of fluorescent dye molecules.
However, there is a possibility that the molecule converts from the S1 to the triplet excited
state T1. It will stay in T1 with a longer excited state lifetime than in S1 since conversion back
to the ground state from T1 is spin forbidden. In the end, the molecule relaxes to S0. This
pathway proceeds entirely through intersystem crossing and is completely non-fluorescent,
manifesting as a molecular dark state on a macroscopic scale. Also, intensity fluctuations in
some cases may result from environmental variations, such as minor temperature changes,
which can impact the absorption spectrum [16].
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Figure 8. Three electronic states are proposed as one of the explanations for blinking. S0 is the ground
state. S1 is the first excited state. Molecule could go through radiative relaxation and go back to
S0 from S1 with the emission of fluorescence. Refer to the end of the review for meanings of other
symbols. The molecule could also go through the intersystem crossing and go to the first triplet
excited state T1 state then relax to S0 without any fluorescence which implies the dark state. kexc:
Excitation rate constant, kic: Internal conversion rate constant, krad: Radiative decay rate constant,
kisc: Intersystem crossing rate constant, kisc’: Reverse intersystem crossing rate constant. Straight
arrows indicate that the process involves radiation (i.e., photons), while curved arrows represent
non-radiative processes. Taken with permission from [16].

Further research, however, has revealed some evidence suggesting that the blinking
phenomenon of ATTO 565 may not necessarily follow the three electronic state theory.
Yeow et al. used the data of fluorescence intensity time trace to make the autocorrelation
curve for ATTO 565 with an excitation wavelength of 543 nm [15]. Figure 9 is a schematic
representation of the simulated autocorrelation function of fluorescent dye fluorescence,
which closely resembles the actual experimental results of ATTO 565. Fitting the curve
using Formula (1) allows us to obtain some key parameters. Using the formula brought
forward by Krichevsky et al. to fit the curve [17], the average triplet state lifetime yielded
a value of 6 µs. A more specific explanation of the autocorrelation curve is in Section 3.4.
In Formula (1), Neff denotes the average number of fluorescent molecules in ROI, F is the
fraction of molecules that are in the triplet state, and w is a parameter about the volume of
the ROI.

G(t) = {[1 − F + Fexp (−t/τtri)]/[(1 − F) Neff]} × [(1 + t/τdiff) (1 + t/w2 τdiff)
0.5]−1 (1)
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Figure 9. Simulation diagram of the autocorrelation function of the fluorescence signal of fluores-
cent molecules.

However, the measured dark state time of a single molecule in Figure 7C is 3 × 105 µs,
and it is tens of thousands of times bigger than τtri. This indicates that the three electron
states may not explain the blinking of ATTO 565 well.

Another proposed theory is based on four electronic states shown in Figure 10. After
being excited to S1, the molecule has two pathways to reach the dark state D. One involves
intersystem crossing to T1 followed by electron tunneling to the dark state, while the other
pathway directly involves electron tunneling to the dark state. Yeow et al. conducted
Monte Carlo simulations to test the validity of the dual-pathway model and found that
reproducing the observed fluorescence intermittency behavior in the experiments requires
the simultaneous consideration of both pathway 1 and pathway 2 [15].
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Figure 10. Four electronic states explain the blinking phenomenon. Refer to the end of the document
for meanings of other symbols. kex: Excitation rate constant, kisc: intersystem crossing rate constant,
ks: Intersystem crossing rate constant from the singlet state, k1–3

tun: Tunneling rate constant, kt: Triplet
quenching, S0: Ground singlet state, S1: First excited singlet state, T1: First excited triplet state, D:
Dark state. Reprinted (adapted) with permission from [15].
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As a fluorescent dye, ATTO 565 will suffer photobleaching under high-intensity
lighting. ATTO 565 molecules were placed in different-intensity lighting conditions and we
tested their bleaching time histogram, as shown in Figure 11 [15].
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Figure 11. ATTO 565 molecules were put into lighting at different intensities. (A) 1136 W/cm2,
(B) 568 W/cm2, (A) 284 W/cm2, the average bleaching times are 18.2 s (A), 21.8 s (B), and 63.0 s (C), #
represents number. Reprinted (adapted) with permission from [15].

To further elucidate the mechanism of photo-bleaching in ATTO 565, researchers
monitored changes in fluorescence intensity over time in different media. The groups with
air condition exhibit biexponential decay and the group with nitrogen condition exhibits
monoexponentially decay, as shown in Figure 12A. A four-electron energy level hypothesis
has been proposed to explain biexponential decay, as shown in Figure 12B. There are two
different pathways of photobleaching. In the first one, the molecule will form a radical D
state, and the bleaching rate is determined from the rate of molecule transfer from T1 to
B1 which is the bleached state, and D to B2. In the other pathway, the molecule would not
form a D state, and the bleaching rate is determined only by kb. From the macroscopic
perspective, the decay rate of ATTO 565 molecular populations in air is determined by two
rate constants due to the two pathways.
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for A. k3 = 2.2 × 10−3 s−1 and k4 = 1.2 × 10−2 s−1 for B. k5 = 8.5 × 10−4 s−1 for C. (B) Energy-level
diagram used to explain photobleaching. kex: Excitation rate constant, kisc: intersystem crossing rate
constant, ks: Intersystem crossing rate constant from the singlet state, k1–3

tun: Tunneling rate constant,
kt: Triplet quenching, kb: bleach rate constant, S0: Ground singlet state, S1: First excited singlet state,
T1: First excited triplet state, D is the radical state and B is the bleached state. Refer to the end of the
document for meanings of other symbols. Reprinted (adapted) with permission from [15].
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The bleaching mechanism in the air is related to oxygen. “The quenching mechanism
is most likely due to an oxygen-dependent reaction whereby reactive singlet oxygen (1O2)
formed from the reaction between T1 and triplet oxygen (3O2) can attack and eventually
destroy the molecules” (see p. 1732), as stated by Yeow et al. [15]. When there is a lack of
oxygen in the environment, bleaching may occur due to reactions with the surrounding
matrix in T1/D [15].

3. The Application of ATTO 565 in Microscopy
3.1. Applications of ATTO 565 in Confocal Microscopy
3.1.1. Utilizing ATTO 565 for Assessing the Effectiveness of Nanostructures

ATTO 565 can be directly employed in fluorescent imaging of nanometer-sized struc-
tures. The concept of “Lab-on-a-chip” represents a groundbreaking approach that con-
solidates various chemical and biological analysis functions onto a single compact chip,
designed for handling extremely minute liquid volumes, down to less than a pico-liter. This
chip comprises numerous microchannels, necessitating a convenient method for assessing
the effectiveness of these microchannels [18]. Due to its excellent fluorescence performance,
ATTO 565 stands out in fulfilling this requirement.

Wang et al. utilized ATTO 565 in conjunction with a confocal microscope to assess
the performance of Proton Beam Writing (PBW), a technique for fabricating and etching
micro and nanostructures [19]. Poly(methyl methacrylate) (PMMA) was selected as the
material of the whole nanofluidic structure because it exhibits good reproducibility in
PBW [20], and its transparency facilitates fluorescence detection. They initiated the process
by employing a 2 MeV photon beam to create nanofluidic channels with a width of 100 nm
and a depth of 2 µm, followed by the design of inlet and outlet channels. Subsequently, a
1 nM ATTO 565 solution was introduced into the nanosystem using a syringe pump. Laser
lines, generated at 543 nm with a HeNe laser, were then employed to excite ATTO 565.
Fluorescence correlation spectroscopy (FCS) was utilized to determine the time it takes for
the liquid to first flow out of the nanoscale pipeline and to completely flow out, aiding in
guiding the practical applications of nanoscale pipelines. Additionally, confocal microscopy
captured side-view images of the nanoscale pipelines. The result is presented in Figure 13,
where it can be observed that the diameter of the nanoscale pipelines is approximately
100 nanometers, and its shape is perfectly straight.
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Figure 13. (A) The SEM image of the nanochannel. (B) The confocal microscope image of the
nanochannel. The fluorescence of ATTO 565 in red demonstrates the connectivity of microchannels.
The diameter of the pipeline is 100 nanometers. Reprinted (adapted) with permission from [19].
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3.1.2. Utilizing ATTO 565 for Assessing the Effectiveness of Biostructures

ATTO 565 is commonly utilized in biology to label and visualize biological molecules,
cell structures, and biological processes for research and monitoring purposes. For example,
Roizard et al. employed ATTO 565 to visualize the binding of G-protein receptors (GPCRs)
to G proteins on the kidney cell membrane and determined their reaction kinetics param-
eters [21]. GPCRs are a class of protein receptors widely present on the cell membrane
that can interact with G proteins [22]. To introduce fluorescent dyes like ATTO 565 into
the membrane and measure the reactions using microscopes effectively, it is necessary
to transform the cell membrane into solid-supported membranes, which involves fixing
biological membranes on a solid surface. Researchers achieved this by immobilizing cells
on agarose beads coated with wheat germ agglutinin (WGA) and then flipping the cell
membrane inside-out onto the agarose beads through stirring, as depicted in Figure 14A.
WGA is a type of protein that can bind with glycans on the plasma membrane and sub-
sequently fix the cell membrane, facilitating ligand binding. Within the membrane, A2AR
fused with mCitrine (A2AR-Citrine) is located. A2AR represents a type of GPCR, and citrine
is employed as a marker. These components are generated by a plasmid within the cell.
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Figure 14. (A) Cover the cell membrane inside-out on agarose beads using stir and wash. WGA on
the beads immobilizes the cell membrane. (B) Confocal microscope image of Gαβγ-ATTO 565 on
the beads. (C) Confocal microscope image of APEC-ATTO 633 on the beads. Scale bars of (B,C) are
20 µm (D) Shows the time-responsive fluorescence curve. Black circle curve illustrates the binding
level of APEC to GPCR over time. The hollow circle curve illustrates the dynamic binding of APEC
and GPCR in the presence of buffer. The black triangle curve shows the binding of Gαβγ and GPCR
indicated by ATTO565 fluorescence. Reprinted (adapted) with permission from [21].

The A2A-AR agonist (APEC) is combined with ATTO 633 [23]. ATTO 633 is another
Rhodamine dye like ATTO 565 but with different absorption and emission wavelengths.
The G protein Gαβγ is combined with tris-NTA-Pro8-ATTO 565, a fluorescent probe de-
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scribed in detail in Section 3.2.3. Three fluorescent dyes were employed in this experiment
to clearly distinguish GPCR, ligand, and G protein. Firstly, the membrane was exposed
to a 60 nM APEC-ATTO 633 solution, followed by exposure to 17 nM Gαβγ-ATTO 565,
and fluorescent data-recording commenced. The excitation wavelengths for ATTO 633 and
ATTO 565 are 633 nm and 561 nm, respectively. Confocal microscope images are presented
in Figure 14B,C, confirming successful binding of the ligand and G protein to the cell mem-
brane. Figure 14D illustrates the binding status of the fluorescent dyes with GPCRs. The
fluorescence intensity data revealed a reverse effect of G proteins on the binding equilibrium
between the ligand and GPCRs. With the addition of G protein-ATTO 565, the fluorescence
intensity of ATTO 633 on the cell membrane gradually increased to its maximum, indicating
peak binding of APEC and GPCRs. Subsequently, the increased fluorescence intensity of
ATTO 565 suggests that as more G proteins bind to GPCRs, APEC gradually dissociates
from the ligand, with a significantly higher degree of dissociation compared to when G
proteins are absent. This implies that the presence of G proteins increases the dissociation
constant of the ligand–receptor complex. Therefore, the dissociation constant (KD) of the
ligand–GPCR complex could be calculated using the Cheng–Prusoff equation.

Ki = IC50/(1 + L/KD) (2)

Ki is the dissociation constant of the inhibitor with receptor (ATTO 565-Gαβγ-GPCR) and
L is the concentration of APEC-ATTO 633. The KD is calculated as 12 ± 3 nM and this
implies that the G protein indeed exerts an inhibitory effect on APEC-GPCR.

The experiments described above show the dynamic bonding events between G
proteins or selective ligand such as APEC and biological receptor GPCRs, which can be
monitored at the ~100 nm scale using fluorescent dyes at nanomolar concentration.

3.1.3. Application of ATTO 565 in Multilevel Imaging in 3D Structure

ATTO 565 is utilized in conjunction with microscopy for imaging nanoscale 3D struc-
tures. In tissue engineering, Poly-ε-caprolactone (PCL) materials have proven particularly
beneficial in promoting the healing and recovery of tissues, such as bones, owing to
their internal micron-sized bubbles that provide space for cell adhesion and growth [24].
Cicuéndez et al. effectively demonstrated the growth status and distribution of HOS cells
on the hydroxyapatite (HA) using ATTO 565 [25]. HA was synthesized through the reaction
between calcium nitrate tetrahydrate and triethylphosphite. To render HA porous, Pluronic
F127 surfactant was added as a macro-pore former during the sol-gel synthesis process. The
SEM image of HA, shown in Figure 15A, depicts a structure replete with porous features
ranging in size from 1 to 0.4 mm. Researchers seeded the HOS cells in the pores at a density
of 2 × 105 cells mL−1 and incubated them for 4 days. Subsequently, the cells were washed
with PBS and fixed in paraformaldehyde [25].

Filamentous Actin (F-actin) is a versatile globular protein found abundantly in most
eukaryotic cells, serving as a vital component of the cellular cytoskeleton [26]. Essentially,
F-actin constitutes the cytoskeleton; so, its localization using fluorescent dyes enables the
localization of the cell itself. Fluorescence immunostaining is the method employed to label
F-actin. Phalloidin serves as the mediator to mark F-actin with ATTO 565. Initially extracted
from poisonous mushrooms, phalloidin has been shown to bind to amino acid residues
117, 119, and 355 of F-actin, demonstrating a strong affinity for F-actin [27]. Furthermore,
through organic chemistry methods, Rhodamine dyes can be conjugated to phalloidin
via a thiourea linkage. The chemical structure of Rhodamine–phalloidin is depicted in
Figure 15B. Additionally, Rhodamine–phalloidin probes are readily available for purchase.
Cells on HA were incubated with ATTO 565-phalloidin and subsequently washed with PBS.
The excitation wavelength was set at 563 nm. Confocal microscopy images are presented
in Figure 15C. By adjusting the depth of the focal plane, images of various depths of the
sample could be captured, demonstrating the replication of cells on HA and the formation
of interconnected cell groups at varying depths within the porous structure [25].
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Figure 15. (A) The SEM image of HA pores. The white part is the HA backbone. The diameters of 
pores are ranged from 1 µm to 400 µm. The subfigure shows the tiniest pores with about 1 µm 
diameter. (B) The chemical structure of Rhodamine–phalloidin. These two molecules are conjugated 
by a thiourea. (C) These three images demonstrate the capability of ATTO565 to localize HOS cells 
at different depths in space from 10 µm to 32 µm. The red part is the fluorescence emitted by 
ATTO565, indicating the location of HOS cells. Reprinted (adapted) with permission from [25].  

Figure 15. (A) The SEM image of HA pores. The white part is the HA backbone. The diameters
of pores are ranged from 1 µm to 400 µm. The subfigure shows the tiniest pores with about 1 µm
diameter. (B) The chemical structure of Rhodamine–phalloidin. These two molecules are conjugated
by a thiourea. (C) These three images demonstrate the capability of ATTO565 to localize HOS cells at
different depths in space from 10 µm to 32 µm. The red part is the fluorescence emitted by ATTO565,
indicating the location of HOS cells. Reprinted (adapted) with permission from [25].

F-actin has been shown to be associated with the repair of plasma membranes [28].
Marg et al. also used ATTO 565-phalloidin to demonstrate this phenomenon. The re-
searchers employed a confocal microscope to irradiate a 2.5 × 2.5 µm area of the plasma
membrane of primary human myoblasts at maximum power (10 mW diode laser, 488 nm
laser line) for 38 s, inducing damage to the cell membrane. Subsequently, the cells were
fixed with formaldehyde–PBS solution and blocked with BSA. Following this, F-actin
staining was performed using phalloidin–ATTO 565. To capture different levels of the cell,
a z-scan was conducted during the experiment. The results, depicted in Figure 16, revealed
F-actin accumulation at the wound site, forming a “dome” structure [29]. This evidence
supports the notion that F-actin plays a crucial role in plasma membrane repair. Conversely,
findings from the localization of green fluorescent protein (GFP)-dysferlin indicate that
Caveolin does not accumulate at the injury site, suggesting that Caveolin is not involved in
cellular repair.
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Figure 16. The confocal microscope images of F-actin. The red emission light comes from ATTO 565-
phalloidin-F-actin and green emission light comes from GFP-dysferlin-caveolin. The number 
marked in the lower left corner is the Z value, which represents the depth of the focal plane. 
Reprinted with permission from [29]. 

3.2. Applications of ATTO 565 in STED 
3.2.1. Applications of ATTO 565 in CW STED 

Ernst Abbe, the renowned German physicist, proposed the formula for the limitation 
of optical microscope resolution, expressed as d = λ/(2nsinθ), where d represents the 
resolution, λ is the wavelength of light, and n × sinθ is the numerical aperture (NA). This 
equation delineates the limit for the resolution of optical microscopy, suggesting that 
optical microscopy cannot distinguish two points separated by less than half the 
wavelength of light. It is widely accepted that the best resolution achievable by optical 
microscopy is approximately 200 nm [30]. However, the advent of stimulated emission 
depletion (STED) microscopy, introduced by Stefan W. Hell, surpasses this limit and sets 
a new standard for microscope resolution. 

The fundamental principle of STED involves the addition of high-power laser light 
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Figure 16. The confocal microscope images of F-actin. The red emission light comes from ATTO
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3.2. Applications of ATTO 565 in STED
3.2.1. Applications of ATTO 565 in CW STED

Ernst Abbe, the renowned German physicist, proposed the formula for the limitation
of optical microscope resolution, expressed as d = λ/(2nsinθ), where d represents the
resolution, λ is the wavelength of light, and n × sinθ is the numerical aperture (NA). This
equation delineates the limit for the resolution of optical microscopy, suggesting that optical
microscopy cannot distinguish two points separated by less than half the wavelength of
light. It is widely accepted that the best resolution achievable by optical microscopy is
approximately 200 nm [30]. However, the advent of stimulated emission depletion (STED)
microscopy, introduced by Stefan W. Hell, surpasses this limit and sets a new standard for
microscope resolution.

The fundamental principle of STED involves the addition of high-power laser light
to a conventional laser scanning microscope, inducing molecules to undergo stimulated
emission, returning from the excited state (S1) to the ground state (S0) without fluores-
cence radiation [30]. By restricting the region emitting fluorescence, the resolution is
significantly enhanced.

Rhodamine dyes, including ATTO 565, are widely employed in STED microscopy
because of their exceptional fluorescence characteristics. Firstly, the power of the STED
beam is 10,000 to 100,000 times greater than the power of the excitation beam used in a
confocal microscope, which can lead to a strong photobleaching effect [31]. In this case,
ATTO 565 is suitable for STED measurements due to its high photostability. After 30 min
of exposure to 2.4 W/cm2 beam, 55% of ATTO 565 molecules were photobleached. For
comparison, 60% to 70% of cyanine dye are photobleached in 30 min under a 14 mW/cm2
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beam [32]. Secondly, according to the principle of STED explained above, a suitable
fluorescent dye for STED should have a strong depletion ability, which means that it should
easily stop emitting light under the STED depletion beam. The rate of the depletion can be
described as σS10∗(λ) = λ4E(λ)φf/(8πcn2τ), where λ is the wavelength of STED light and
E is the emission spectrum of dyes at λ. σ is the cross section of the depletion, which is
positively correlated with the depletion rate [33]. The other parameters are not related to
this topic. From this equation, it can be intuitively observed that, in order to maximize σ

as much as possible, the optimal value of λ will appear slightly after the emission peak,
influenced by the parameters λ to the fourth power and E(λ). However, selecting STED λ

too close to the emission peak introduces a new issue: increased noise. In most cases when
using a microscope, it is advisable to avoid situations where the wavelength of the light
source is similar to that of the light emitted by the fluorescent dye; that is also the reason a
Stokes shift is preferred. In summary, a suitable dye for STED needs to have a long and
strong red tail to allow users to more comfortably choose the STED wavelength, avoiding
noise and improving depletion efficiency. ATTO 565 has an evident red tail in fluorescent
spectra, which is another reason to be used in STED.

ATTO 565 contributes to the research in the biochemistry domain, which always needs
high-resolution images at the organelle scale. Here, a typical example is presented. The
classical fluid mosaic model indicated that proteins are embedded in the lipid bilayer and
can move or remain fixed. However, it could not explain why many membrane proteins
with similar structures cluster together such as receptors and syntaxins [34]. In this case,
Willig et al. used STED microscopy with ATTO 565 to study the fine structure of syntaxin
clusters on the cell membrane. They first used ultrasound treatment to remove the upper
part of a PC12 cell and left a cell sheet. The cell sheet was then fixed in 4% paraformalde-
hyde in phosphate-buffered saline (PBS) to prevent crosslinking of syntaxins [35]. Then,
the cell sheet was incubated with HPC-1 which acted as primary antibodies to combine
syntaxin 1A/B [36]. Then, they chose ATTO 565-coupled goat-anti-mouse lgG as secondary
antibodies to combine with HPC-1.

To avoid the excitement by STED light, usually control λSTED < λEXC. In this case, a
common 532 nm laser diode was chosen as the exciting light, and a 647 nm line of a krypton
laser was chosen as CW STED light. The clusters labeled with fluorescence were displayed
as light spots in the microscopic images. A similar research conducted by Sieber et al.
marking clusters with green fluorescent protein (GFP) also showed the high resolution of
STED. The result is shown in Figure 17 and it is clear that STED microscopy employing
fluorescent dye achieves a level of resolution significantly surpassing that of conventional
optical light microscopy. The points of clusters are separated much better in STED. With the
same method, Sieber et al. calculated that the average of diameter of the cluster is 55 nm,
with each cluster containing approximately 90 syntaxins [37].
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Figure 17. The confocal and STED microscope image of syntaxin-GFP. Low, medium and high indicate
the fluorescent protein expression level. (A,B) The confocal images. Membrane sheets showing highly
variable syntaxin levels were distinguishable by their staining intensities and were occasionally found
within the same field of view. (C,D) In STED mode, photos taken at the same location which is
marked with the red box in (A,C), show significantly improved resolution. Reprinted with permission
from [38].

3.2.2. Applications of ATTO 565 in T-Rex STED

The resolution of STED microscopy has been well defined by the following equation:

∆r = λ/[2NA (1 + ISTED/IS)0.5] (3)

where ∆r represents the FWHM, indicating the resolution, and Is is the intensity of STED
light at which half of the molecules are quenched. NA stands for numerical aperture and λ

is the wavelength. The resolution is primarily determined by ISTED, which is the maximum
intensity of the STED light [39]. From Equation (3), it is clear that increasing the intensity
of STED light is a method to enhance the resolution. However, Dyba and Hell conducted
a photobleaching experiment of RH-414 under STED conditions and obtained a general
result for fluorescent dyes, indicating that increasing STED light intensity also leads to the
photo-bleaching of fluorescent dyes, as shown in Figure 18.
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In this scenario, the use of ATTO 565 dye combined with T-Rex STED addresses the
issue of photobleaching. The key characteristic of T-Rex is the pulsed nature of both the
excitation light and STED light. In this setup, molecules in the triplet state have more
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time to return to the ground state during the gap between pulses, rather than immediately
absorbing more photons and undergoing photobleaching. The typical lifetime of T1 is 1 µs,
and the traditional STED pulse repetition rate is 80 MHz, with a gap time of 0.0125 µs.
Donnert et al. reduced the pulse repetition rate to 0.25 MHz, resulting in a gap time four
times longer than τT. This extended gap time provides molecules with more opportunities
to relax to the ground state, effectively preventing further photobleaching [41].

Wildanger et al. used ATTO 565 with a T-Rex STED microscope to observe the tubular
network of mammalian PtK2 cells [5]. Using anti-mouse IgG and sheep anti-mouse IgG,
the method to connect ATTO 565 with the target tubular network is the same as in the
case in Section 3.2. The excitation light and T-Rex STED light were both generated by a
supercontinuum source, with a pulse length of 82 pm generated by a master oscillator.
An interference filter was employed to selectively filter the excitation light wavelength
to around 532 nm. T-Rex STED light is effective when the wavelength is set around the
red tail of the dye’s emission spectrum, within a range of 20 nm. In this case, the T-Rex
STED light needs a prism-based wavelength selector, which is more precise. The STED
wavelength is selected as 650 nm. The result is shown in Figure 19. The images obtained
with STED are significantly clearer than those from the confocal microscope. In the confocal
microscope, the FWHM at arrow A1 is approximately 240 nm, whereas the FWHM value
for T-Rex STED is 60 nm. This means that the resolution of T-Rex STED is four times
that of the confocal microscope [5]. Although the T-Rex STED reduced the likelihood of
photobleaching at 565 nm, the supercontinuum source in T-Rex STED spectroscopy cost
about EUR 400,000. Considering such a high price, exploring alternative substitutes for the
instrument can be considered.

Molecules 2024, 29, 4243 18 of 35 
 

 

 
Figure 19. (A) The image of the tubular fibers was obtained with a confocal microscope. A1 and A2 
are two selected typical positions, marked by blue arrows. At A1, the fiber distribution is sparse with 
only one fiber, whereas at A2, the fiber distribution is dense with three fibers. (B) The image of the 
same tubular fibers was scanned with a STED microscope. B1 and B2 correspond to the same 
positions as A1 and A2, marked by pink/red arrows. (C) The line graphs show the FWHM at the 
arrow location. Upper image for A1 (blue line) and B1 (pink line) and lower image for A2 (blue) and 
B2 (pink). It is evident that the red STED spectrum distinguishes the three fibers, while the confocal 
spectrum fails to do so. Scale bar: 1 µm. Reprinted/adapted with permission from [5]. 

3.2.3. ATTO 565 in TPE-STED Microscopy 
The excitation pathway of ATTO 565 mentioned above primarily involves a single-

molecule process. That is, a high-energy photon interacts with the ATTO 565 molecule, 
promoting it to a higher energy level. In contrast, emerging two-photon excitation 
fluorescence microscopy involves the interaction of two photons with ATTO 565. As 
shown in Figure 20A, two near infrared photons with a lower energy compared to a 
normal excitation photon (which could be 400–700 nm) interact with the fluorescent 
molecule in 10−16 to 10−18 s and excite the molecules. After that, the molecular process is 
almost identical to the single-photon excitation process. TPE has two advantages. First, 
the near-infrared light used in TPE penetrates biological samples more easily. Second, TPE 
excitation requires a high-density photon region. As shown in Figure 20B, regular 
excitation light can excite the sample throughout the entire conical area, causing ATTO 
565 molecules to fluoresce, while TPE excites the sample only near the focal point. This 
makes TPE suitable for 3D sample microscopy [42]. 

Moneron et al. used a 1060 nm pulsed TPE light source with 7–15 mW power as the 
central excitation light for the STED microscope and a 200 mW continuous STED ring-
shaped light as the depletion beam to illuminate the nucleus of mammalian PtK2 cells. In 
the cell nucleus, the transcription regulator NFκB was labeled with ATTO 565 via primary 
and secondary antibodies. It is worth noting that to increase the probability of TPE, the 
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Figure 19. (A) The image of the tubular fibers was obtained with a confocal microscope. A1 and A2
are two selected typical positions, marked by blue arrows. At A1, the fiber distribution is sparse
with only one fiber, whereas at A2, the fiber distribution is dense with three fibers. (B) The image of
the same tubular fibers was scanned with a STED microscope. B1 and B2 correspond to the same
positions as A1 and A2, marked by pink/red arrows. (C) The line graphs show the FWHM at the
arrow location. Upper image for A1 (blue line) and B1 (pink line) and lower image for A2 (blue) and
B2 (pink). It is evident that the red STED spectrum distinguishes the three fibers, while the confocal
spectrum fails to do so. Scale bar: 1 µm. Reprinted/adapted with permission from [5].

3.2.3. ATTO 565 in TPE-STED Microscopy

The excitation pathway of ATTO 565 mentioned above primarily involves a single-
molecule process. That is, a high-energy photon interacts with the ATTO 565 molecule,
promoting it to a higher energy level. In contrast, emerging two-photon excitation fluores-
cence microscopy involves the interaction of two photons with ATTO 565. As shown in
Figure 20A, two near infrared photons with a lower energy compared to a normal excitation
photon (which could be 400–700 nm) interact with the fluorescent molecule in 10−16 to
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10−18 s and excite the molecules. After that, the molecular process is almost identical to the
single-photon excitation process. TPE has two advantages. First, the near-infrared light
used in TPE penetrates biological samples more easily. Second, TPE excitation requires a
high-density photon region. As shown in Figure 20B, regular excitation light can excite the
sample throughout the entire conical area, causing ATTO 565 molecules to fluoresce, while
TPE excites the sample only near the focal point. This makes TPE suitable for 3D sample
microscopy [42].
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Figure 20. (A) TPE excitation process of fluorescent molecules. Red curved arrows represent the
excitation process of photons interacting with the molecule, red straight arrows indicate the process
of the molecule transitioning to a higher energy level, blue arrows represent vibrational relaxation,
and yellow arrows represent the fluorescence process. (B) Compared to conventional excitation light,
TPE excites a smaller volume of the region.

Moneron et al. used a 1060 nm pulsed TPE light source with 7–15 mW power as the
central excitation light for the STED microscope and a 200 mW continuous STED ring-
shaped light as the depletion beam to illuminate the nucleus of mammalian PtK2 cells. In
the cell nucleus, the transcription regulator NFκB was labeled with ATTO 565 via primary
and secondary antibodies. It is worth noting that to increase the probability of TPE, the
photon density of the TPE light must be higher than that of regular excitation light, which
can lead to significant photobleaching effects on ATTO 565. Therefore, a pulsed excitation
light was used. More details can be obtained from the original paper, but we can conclude
that the resolution of TPE microscopic images was significantly improved with the aid of
STED [43].

3.2.4. Optimized Fluorophores with ATTO 565

In the cases mentioned above, the fluorescent dye ATTO 565 is conjugated to the target
by immunoassay. The drawback of this method is that the combination of dye and target
is irreversible and inflexible, especially when the dye is photobleached. The optimization
of fluorophores is necessary. Lata et al. pioneered a noncovalent fluorescent labeling
method [44]. The designed fluorescent molecule is tris-nitrilotriacetic acid (trisNTA)-oligo
ethylene glycol (OEG)-fluorophores as shown in Figure 21. The fluorophores applied were
Rhodamine dyes and are connected to OEG using organic chemistry. The OEG serves as
the connector and imparts different properties to the molecule depending on its length [45].
On the other end, trisNTA acts as a chelator. The carboxyl groups chelate with metal ions
such as Ni and Cu. Based on the properties of these metal ions, they also possess two
electronic orbitals that can chelate with the imidazole structure on the His-tag added to
the protein [46]. This forms the binding chain from the fluorescent dye ATTO 565 to the
target molecule.
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Figure 21. The structure of trisNTA-OEG-ATTO 565. The fluorophore could be any kind of Rhodamine
dye. Reprinted (adapted) with permission from [44].

There are two advantages of this noncovalent strategy. First, the reaction between NTA
and the target protein is reversible. If an imidazole solution is added to the environment,
the trisNTA bound to the protein can be detached [47]. Researchers stained the Sf9 cells
with FEW646-trisNTA, and the fluorescent dye was washed away after adding a 150 mM
imidazole solution. The result of imidazole substitution is shown in Figure 22, which
reveals the reversibility of this fluorescence dye staining process. This provides a new
solution for reducing photobleaching effects: by replacing with imidazole, the already
photobleached dye can be washed off and then replaced with a new dye.
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Figure 22. (A) Image of Sf9 cells stained by FEW646tris-NTA. (B) The fluorescent dye is washed away
after incubation in 100 mM imidazole, indicating the reversible stain. On the left side are the confocal
fluorescent images, and on the right side are the transmission images of Sf9 cells. Reprinted (adapted)
with permission from [44].

The other advantage of the NTA-based fluorophore comes from the adjustable-length
connector. Studies have shown that transition metal ions could quench the fluorophore [44].
This phenomenon is due to the electron transfer from metal ions to the fluorophore. The
process could be indicated as F* + MII → F− + MIII, where F means fluorophore and M is a
transition metal such as Cu or Ni. The thermodynamic data ∆Go

eT support the feasibility of
this reaction, while the deprotonation of nitrogen stabilizes the uncommon trivalent metal
ions [48]. However, studies have also shown that the length of the connector directly affects
this process. Grunwald et al. designed an NTA-based ATTO 565 fluorophore that uses rigid
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(polyproline-II) PP-II helices as the connector, as shown in Figure 23A [45]. At different
connector lengths, the fluorophore exhibits varying emission spectra. Experimental results
indicate that as the length of PP-II increases, the fluorescence intensity becomes stronger,
demonstrating a lower probability of quenching by transition metal ions. The result also
shows that when the monomer number reaches eight, the effect of the connector in reducing
fluorescence quenching reaches saturation (Figure 23B,C). Thus, selecting eight PP units as
connectors would facilitate the attainment of the highest possible fluorescence brightness
yield for ATTO 565.
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Figure 23. (A) The structure of trisNTA-PPII-ATTO 565. X indicates the monomer number of PP-II.
(B) The fluorescence spectrum shows that fluorescence intensity is positively correlated with the
connector length. (C) The fluorescence spectrum indicates that when the monomer number reaches
eight, the fluorescence intensity is essentially equivalent to that of the free fluorophore. Reprinted
(adapted) with permission from [45].

In summary, the trisNTA-connector-ATTO 565 fluorophore can be reversibly stained
onto the target, exhibiting a replaceable effect, and the length of the connector is adjustable,
enhancing its fluorescence quantum yield. High-resolution imaging, such as tracking
individual receptors in a native cell, can also be achieved [49].

3.2.5. Usage of ATTO 565 with Other Dyes in Dual-Color STED Microscopy

Kempf et al. used ATTO 565 and Dyomics 485 to label transport proteins and synaptic
proteins in rat brain tissue and visualized them using dual-color STED microscopy to
determine the distribution of these distinct proteins. Dual-color STED microscopy uses
multiple excitation light sources to simultaneously excite two fluorescent molecules, and
employs different wavelengths of depletion light to selectively suppress the fluorescence
emissions of these two molecules [50].

The VGluT1 labeled with ATTO 565 appears green, while the synapsin labeled with
Dyomics 485 appears red. When VGluT1 and synapsin are co-labeled and interact, the
combined fluorescence appears purple, as shown in Figure 24A. The confocal and STED
microscopy images are shown in Figure 24B and C, respectively. It is evident that relying
solely on confocal microscopy results could lead to incorrect conclusions, whereas the STED
microscopy images reveal additional information on isolated synapsin.
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Figure 24. (A) The luminescence colors of the protein under different binding conditions. The green
oval represents ATTO 565, the green circle represents VGluT, the red oval represents Dyomics 485,
and the red circle represents synapsin, while the product of the reaction between VGluT and synapsin
is represented by a purple circle. (B) Confocal microscope image. (C) STED microscope image,
showing more details. (D–F) Shows an enlarged view of the area highlighted by the white square.
Scale bar 500 nm with a pixel size of 19 nm. Reprinted with permission from [50].

3.3. ATTO 565 in Single-Molecule Tracking (SMT)

Much information is averaged out when observing many molecules simultaneously.
Instead of observing a group of molecules at the same time, an SMT technique only
records the information of individual molecules [51]. With SMT, one can obtain more
information from the molecular perspective, such as the position, diffusion coefficient, and
photobleaching condition [52].

3.3.1. The Basic Principle of 2D Single-Molecule Tracking

To make the target molecule visible, a fluorescent dye is always conjugated with the
target. The dye is excited and emits fluorescence, which indicates the location of the target
molecule. In an SMT experiment, a traditional microscope such as a confocal microscope
or widefield fluorescent microscope is sufficient to record the fluorescence. As mentioned
before, the diffraction limit makes the resolution limit of a traditional microscope around
200 nm. This means that in the image generated by CCD, the shape of one molecule is
always a blurry circle with a diameter of at least hundreds of nanometers, as shown in
Figure 25A. This is why in an SMT experiment, a very low sample density is required to
minimize the overlap of two molecules.
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Figure 25. (A) A scheme of an individual fluorescent signal emitted by a single molecule. The
intensity in the middle is the highest, which indicates the location of the molecule. (B) A scheme
shows the distribution of intensity in one signal. Reprinted (adapted) with permission from [53].
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The location of the molecule is reasonably regarded as the centroid of the signal, and
the signal is divided into many pixels, as shown in Figure 25B. Light intensity is weighted
along the x-axis using Function (4).

µx =
[
∑My

i=1 ∑Mx
i=1 xi Iij

]
/
[
∑My

i=1 ∑Mx
i=1 Iij

]
(4)

Iij indicates the intensity of light on pixel (i, j). X and y are the coordinates of pixels
along the x-axis and y-axis. µx is the coordinate where the signal is maximum. The
calculation for µy is the same. The coordinate of the molecule is then (µx, µy) [52]. Then,
the coordinates x and y are inputted into Function (5), which is a Gaussian distribution
function:

I(x, y) = 4ln2N exp
{
−4ln2

[(
(x − µx

2)
2/w2 +

(
y − µ

y
2
)2/w2

)]}
(5)

where N is the photon number hit at the point (x, y), and w is related to NA. After fitting
the data into the function, the µx, µy can be obtained [52]. The track of a molecule can then
be calculated after obtaining its position.

3.3.2. The Application of ATTO 565 in 2D Single-Molecule Tracking

The pathways of HIV assembly and replication in cells have attracted the attention of
researchers. One essential step is the synthesis and transportation of envelope glycoprotein
(Env), which is located on the outer surface of the HIV particle, to interact with the host
cell membrane, allowing HIV entry into the host cell. It is generally accepted that Env is
synthesized in the endoplasmic reticulum and transported to the cell membrane by vesicles,
and then assembled on the polypeptide Gag, as shown in Figure 26A [54]. The principle of
this process is still unclear, and it is believed that the long cytoplasmic tail of gp41 (Env-CT),
which is a part of Env, is related to the assembling process.
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Figure 26. (A) The scheme of transportation and assembling of Env in the target cell. The green object
is Env and it is finally confined at the Gap. ai represents the synthesis of Env in the endoplasmic
reticulum, aii represents the synthesis of Gag at the cell membrane, b indicates the diffusion of
assembled Env trimers on the cell membrane, c and d represent the occasional recycling process
of Env trimers, e represents the occasional endocytosis of trimers, and f represents the binding of
Env trimers with Gag. (B,C) The result of the SMT. The displacement of WT-Env is smaller than
others, indicating that the assembling of CT∆144-Env-ATTO 565 and d8-Env-ATTO 565 on the Gap is
obstructed. In (B), the first row of images shows an overhead view of multiple molecular trajectories,
with representative regions highlighted by red boxes. The enlarged view of these regions is shown in
the second row of images. n.s. indicates not significant using one-way ANOVA with Tukey’s post-test
and *** indicates p < 0.0001. Reprinted (adapted) with permission from [55].
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Carmen et al. used ATTO 565 to mark the wild-type Env (WT-Env) and removed
CT Env (CT∆144-Env) on the cell and used SMT to record the track of the molecules,
concluding that the Env-CT does affect the assemble of Env [55].

The researchers infected CEM-A cells with three groups of HIV. The first group con-
sisted of the original HIV, inducing host cells to synthesize WT-Env. The second group was
genetically edited HIV, causing host cells to synthesize CT∆144-Env. The third group was
also genetically edited HIV, leading to host cells synthesizing d8-Env.

The marking of the Env is also through immunolabeling. Anti-Env antibodies b12
are conjugated with ATTO 565 and incubated with the infected cells. Then, the diffusion
track of marked Env is recorded by interferometric photo-activated localization microscopy
(iPALM). The result is shown in Figure 26B. The molecules with a high estimated slope of
the moment scaling spectrums are classified as mobile molecules and the track is shown in
light green. The rest is classified as confined molecules and shown in dark green.

The track of CT∆144-Env-ATTO 565 and d8-Env-ATTO 565 was shorter than that of
WT-Env-ATTO 565, with a smaller diffusion coefficient. Conversely, WT-Env-ATTO 565
molecules were more trapped, i.e., more likely to combine with the Gap. This leads to the
conclusion that Env-CT promotes the assembling of Env on the Gap.

3.3.3. The Principle of Locating Molecules on Z-Axis

Traditional microscopes could only capture a two-dimensional image of the sample.
The method of capturing multiple 2D images to depict 3D structures is still unsatisfac-
tory. By introducing a cylindrical lens (CL) into the microscope system, the trajectory of
molecules on the Z-axis can be recorded.

Different from traditional convex lenses, the focal lengths of CL on the X and Y-axis
are slightly different due to the different curvature [56], as shown in Figure 27A. Because
of the different curvature, the shape of the object’s image corresponds one-to-one with its
distance from the lens, as shown in Figure 27B. When the ellipticity of image is measured,
the Z value can also be obtained.
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Figure 27. (A) CL has focus a for the Y-axis and focus c for the X-axis, and b is the middle point of
them. On the other side, it has focus planes A, C and B. The red arrows indicate the x, y coordinate
axes of the section. The green and yellow arrows represent incident light from different planes.
(B) The image of the red fluorescent latex bead with and without a CL. Reprinted (adapted) with
permission from [57].
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3.3.4. The Application of ATTO 565 in 3D Single-Molecule Tracking with Light
Sheet Microscopy

Traditional microscopes have the light source and the eyepiece positioned on opposite
sides of the object. Light travels through the object and enters the eyepiece, producing
an image for the observer [58]. However, this optical setup has its limitations. Firstly, the
resulting image often suffers from significant noise due to background light flooding into
the eyepiece indiscriminately, resulting in a poor signal-to-noise ratio (S/N). Secondly,
traditional light microscopes are constrained by Rayleigh and Abbe’s criteria, meaning they
cannot resolve two points less than 200 nm apart [59].

A reconfiguration of the optical components gives rise to the light sheet microscope
(LSM), addressing the aforementioned drawbacks. Illustrated in Figure 28A, the illumi-
nation light is redirected away from the eyepiece, with only scattered or fluorescent light
being observed. This creates a dark environment for the observer, minimizing noise. The
illumination light passes through a slit, allowing only a thin sheet of light to illuminate the
sample. This selective illumination reduces noise significantly, resulting in higher contrast
compared to traditional microscopes. However, practical applications may impose spatial
constraints on component arrangement [60]. For example, while arranging lenses vertically
is common in LSMs, focusing light onto the sample can sometimes be challenging, as
depicted in Figure 28B.

Molecules 2024, 29, 4243 25 of 35 
 

 

Secondly, traditional light microscopes are constrained by Rayleigh and Abbe’s criteria, 
meaning they cannot resolve two points less than 200 nm apart [59]. 

A reconfiguration of the optical components gives rise to the light sheet microscope 
(LSM), addressing the aforementioned drawbacks. Illustrated in Figure 28A, the 
illumination light is redirected away from the eyepiece, with only scattered or fluorescent 
light being observed. This creates a dark environment for the observer, minimizing noise. 
The illumination light passes through a slit, allowing only a thin sheet of light to 
illuminate the sample. This selective illumination reduces noise significantly, resulting in 
higher contrast compared to traditional microscopes. However, practical applications 
may impose spatial constraints on component arrangement [60]. For example, while 
arranging lenses vertically is common in LSMs, focusing light onto the sample can 
sometimes be challenging, as depicted in Figure 28B. 

 
Figure 28. (A) The scheme shows the biggest difference between the LSM and traditional micro-
scope. The light passes through the sample and does not directly go into the eyepiece. (B) Diagram 
of space constraint. (C) The LSM system used by Li et al. Reprinted (adapted) with permission from 
[61]. 

Li et al. assembled the LSM system shown in Figure 28C to observe epidermal growth 
factor (EGF) molecules on A549 cell membranes with ATTO 565 [61]. A cylindrical lens is 
put between the tube lens and the image sensor (CCD) to create two focal planes. The cell 
was placed on a Pellin–Broca prism to reduce space constraints for the lenses and make it 
easier to generate the calibration curve. The sample was tilted at 17.5° due to the prism. 

To generate the calibration curve, the researchers added a drop of diluted 40 nm 
fluorescent beads solution (10 pM) on an A549 cell. Some of the beads were fixed on the 
cell membrane after 15 to 20 min of incubation. The observation system was moved 
horizontally while recording the images. The horizontal movement resulted in a change 
in the Z value of the observed beads. The relationship is shown in Function (6). 

dz = sin(17.5π/180) dx (6) 

The scatter of PSF to Z and the calibration curve are shown in Figure 29. 

（A ） （C）（B）

Figure 28. (A) The scheme shows the biggest difference between the LSM and traditional micro-scope.
The light passes through the sample and does not directly go into the eyepiece. (B) Diagram of space
constraint. (C) The LSM system used by Li et al. Reprinted (adapted) with permission from [61].

Li et al. assembled the LSM system shown in Figure 28C to observe epidermal growth
factor (EGF) molecules on A549 cell membranes with ATTO 565 [61]. A cylindrical lens is
put between the tube lens and the image sensor (CCD) to create two focal planes. The cell
was placed on a Pellin–Broca prism to reduce space constraints for the lenses and make it
easier to generate the calibration curve. The sample was tilted at 17.5◦ due to the prism.

To generate the calibration curve, the researchers added a drop of diluted 40 nm
fluorescent beads solution (10 pM) on an A549 cell. Some of the beads were fixed on
the cell membrane after 15 to 20 min of incubation. The observation system was moved
horizontally while recording the images. The horizontal movement resulted in a change in
the Z value of the observed beads. The relationship is shown in Function (6).

dz = sin(17.5π/180) dx (6)

The scatter of PSF to Z and the calibration curve are shown in Figure 29.
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A549 cells were incubated with a solution containing 1.59 µM EGF-biotin-
streptavidin-ATTO 565. Subsequently, the movement of individual EGF molecules was 
monitored using LSM. The image of EGF and its movement scheme are depicted in Figure 
30A. At −0.02 s, a blurry molecule appeared within the field of view, indicating it was out 
of the focal plane. The movement trajectory from 0 s to 8 s is visualized in three dimensions 
in Figure 30B. After 1.28 s, the molecule either moved away from the region of interest 
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Figure 29. The calibration curve was measured by fluorescent beads and LSM. The image exhibits
varying degrees of ellipticity at different distances from the focal plane. Each green dot represents the
semi-major axis value of the Gaussian ellipse at the corresponding height (z), while the red triangles
represent the semi-minor axis value. Reprinted (adapted) with permission from [61].

The detection of EGF relies on the biotin/streptavidin system, with EGF-biotin and
streptavidin-ATTO 565 readily available on the market. Each streptavidin molecule pos-
sesses four biotin binding sites [62]. Leveraging this robust biotin–streptavidin interaction,
up to four ATTO 565 molecules can bind to a single EGF molecule. This approach not
only enhances the fluorescent intensity of the target molecule compared to other labeling
methods discussed in this review but also extends the duration of observation.

A549 cells were incubated with a solution containing 1.59 µM EGF-biotin-streptavidin-
ATTO 565. Subsequently, the movement of individual EGF molecules was monitored
using LSM. The image of EGF and its movement scheme are depicted in Figure 30A. At
−0.02 s, a blurry molecule appeared within the field of view, indicating it was out of the
focal plane. The movement trajectory from 0 s to 8 s is visualized in three dimensions in
Figure 30B. After 1.28 s, the molecule either moved away from the region of interest (ROI)
or underwent photobleaching.
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Figure 30. (A) The 2D image time sequence (a)–(k) was shot by the LSM. The molecule went into
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3.4. ATTO 565 in Fluorescence Correlation Spectroscopy (FCS)

FCS is a technique that fully utilizes the fluctuation in equilibrium. Many observations
in a chemical system start with an imbalance and end at the equilibrium state. However, FCS
starts at the equilibrium. FCS records all fluctuations after the system reaches equilibrium
and uses correlations to obtain information such as the viscosity, triplet state lifetimes,
number of fluorophores, and so on [63].

For example, a series of periodical signals is shown in Figure 31A, and a series of noises
in Figure 31C. It is hard to distinguish them from the intensity–time line graph. However, if
transformed into the autocorrelation function form (ACF), it is straightforwardly observed
that there is lot of information contained in the ACF of the periodical signal (Figure 31B,D).
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If two variables, a and b, both vary with one parameter u, they are not correlated when
they satisfy the following conditions:

<a(u) × b(u)> = <a(u)> <b(u)> (7)

<x> indicates the expectation of x. If these two variables are correlated to some extent, then
Function (7) is not valid and a new variable could be defined:

G = <a(u)b(u)>/<a(u)> <b(u)> (8)

where G is the correlation coefficient, which measures the degree of correlation between
parameters a and b. When G deviates from 1, parameters a and b are positively or negatively
correlated. In an FCS experiment, parameters a and b could be the intensity of fluorescence
and u the time. By reformulating Function (8) and fitting it with data, the desired parameters
could be obtained. An example is introduced below.

Pan et al. used FCS to calculate the diffusion time of ATTO 565 in a PAAc solution [64].
The researchers dissolved ATTO 565 into PAAc solvent and used 543 nm laser lines to
excite the fluorescent dye. There is only one group of parameters at a certain time; Function
(8) is transformed into an ACF form:

G(t) = <a(u) a(u + t)>/<a(u)> <a(u + t)> (9)

Function (9) points out the correlation between parameter a and parameter a after
time t. In this experiment, there is already a specific form of Function (10), which is written
as follows:

G(t) = [Ae−t/B/(1 + A) + 1)](1 + t/td)−1(1 + t/K2td)−0.5/N + 1 (10)

where N is the number of fluorescent dyes in the ROI and td is the diffusion time of ATTO
565. A is the fraction of ATTO 565 which is in the triplet state, i.e., the dark state. B is
the time of triplet state. After fitting the data into Function (10), the diffusion time can be
obtained. The result is shown in Table 2.

Table 2. The diffusion time of ATTO 565 in different concentrations of AAc [64].

AAc Concentration (%) Diffusion Time (s)

0.25 4.51 × 10−5

2.5 5.27 × 10−5

5 5.76 × 10−5

8 6.53 × 10−5

9 7.12 × 10−5

10 7.34 × 10−5

3.5. Other Applications of ATTO 565
3.5.1. Detection of Intracellular Structures by ATTO 565

By integrating Structured Illumination Microscopy (SIM) and the construction of
fluorescent probes mentioned above, Han et al. developed an ATTO 565-based fluorescent
probe for observing intracellular lysosomes with STED microscopy [65].

The structure of the fluorescent probe is shown in Figure 32 and it consists of three
components. The left end is the recognition unit containing an epoxy-succinyl group, which
specifically binds to lysosomes. The middle section is the cell-penetrating peptide (rR)3R2,
which assists the fluorescent probe in penetrating the cell membrane. The right end is
linked to the fluorescent molecule ATTO 565.
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Figure 32. Structure of the ATTO 565 molecular probe for detecting intracellular structures. Re-used
with permission from [65].

This fluorescent probe exhibits good cell permeability. As shown in Figure 33A,
the fluorescent probe effectively enters the cells after a 30 min incubation with live cell
cultures. Cytotoxicity assays also indicate that 85% of the cells remain viable after 30 min of
incubation. SIM series images demonstrate the process of lysosomal fission–fusion labeled
by ATTO 565 (Figure 33B).
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Figure 33. (A) Penetration of the ATTO 565 probe into the cell population after 30 min. (B) Lysosomal
fission–fusion process captured by SIM. Green arrows indicate two lysosomes, while blue arrows
mark the fused lysosome. Re-used with permission from [65].

3.5.2. ATTO 565 in Fluorescence Lifetime Imaging Microscopy (FLIM)

Fluorescence Lifetime Imaging Microscopy (FLIM) measures the time it takes for
fluorescent molecules to return from the excited state to the ground state, providing
richer molecular information compared to traditional fluorescence microscopy. This is
particularly useful for detecting subtle changes in chemical environments. FLIM employs
short-pulsed lasers with pulse widths in the picosecond (ps) to nanosecond (ns) range
as the excitation source, and uses high-time-resolution photomultiplier tubes to capture
fluorescence photons for accurate measurement of the fluorescence signal decay process.
ATTO 565 is also suitable for this microscopy technique. Bowman et al. use DNA point
accumulation in nanoscale topography (DNA-PAINT) to make super-resolution imaging of
DNA origami samples by wide-field FLIM and an ATTO 565 fluorescent probe [66]. Cy3B
and Atto 565 labeling on DNA origami structures reveals lifetime differences at binding
sites along the structures, as shown in Figure 34.
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Figure 34. FLIM images of DNA origami samples stained in dual channels, scale bar 1 µm, insets
100 nm. Re-used with permission from [66].

4. Future Prospects

The research presented in this review highlights the primary application of ATTO 565
within the field of biochemistry. ATTO 565 is predominantly employed for the imaging of
biological structures across a wide range of scenarios. However, there is a noticeable scarcity
of studies addressing the biocompatibility of ATTO 565. Therefore, in the future, it would
be beneficial to conduct more extensive investigations into the biocompatibility of ATTO
565. This could encompass experiments to assess the toxicity of ATTO 565 on life cells,
examine whether ATTO 565 has the potential to induce gene mutations or genetic toxicity,
and evaluate the biodegradability of ATTO 565. The findings from these experiments
would contribute to better elucidating the potential impact of the fluorescent dye itself on
biological structures during bio-imaging experiments.

Apart from its applications in the field of biological labeling, ATTO 565 may have
the ability to undergo reactions with metal ions following structural modifications. Some
Rhodamine dyes could change between closed form and open form as long as there is a
nitrogen atom in proximity to the xanthene ring, as shown in Figure 35 [67]. It is believed
that if the structure of ATTO 565 is slightly modified by replacing the oxygen atom of its
carboxyl group with a nitrogen atom through organic chemistry methods, ATTO 565 can
also exhibit properties of altering its conformation in response to the action of metal ions
and emit fluorescence. Limited research has explored this application; thus, the authors
believe that ATTO 565 holds promise for the detection of environmental heavy metal ions.
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To achieve this concept, the first step is to determine the appropriate organic reaction
pathway to modify the ATTO 565 molecule. It should also be determined whether metal
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ions of different types, but with the same concentration, have varying degrees of impact on
the fluorescence intensity of ATTO 565. Subsequently, the fluorescence intensity response
curve of ATTO 565 to different concentrations of metal ions should be determined. The
fundamental principle of using ATTO 565 to detect the content of environmental metal ions
involves mixing the environmental sample with an ATTO 565 solution and subsequently
measuring the fluorescence intensity using a fluorescence spectrophotometer. The fluo-
rescence intensity emitted by ATTO 565 is directly proportional to the metal ion content.
Finally, the potential interactions between ATTO 565 and various metal catalysts should
be determined.

In conclusion, there is a need for further research on the biocompatibility and metal
ion detection aspects of ATTO 565. Recent work has shown that ATTO 565 can be used to
visualize bone apatite nanofibers by using confocal microscopy [68].

5. Conclusions

The chemical and optical characteristics of ATTO 565 unveil the outstanding fluores-
cent properties of this Rhodamine system. ATTO 565 can be applied in confocal microscopy
for the detailed observation of microstructure and chemical bonding on cell membranes.
ATTO 565 is very suitable for 2D and 3D single-molecule tracking, FCS, CW STED, and
T-Rex STED, pushing the resolution of microscopy to new heights.

The research exemplified in this review demonstrates that ATTO 565 is a highly
versatile fluorescent dye. Beyond fulfilling the functions like other fluorescent dyes, ATTO
565 can serve as a flexible scaffold, allowing researchers to modify its structure or combine
it with other molecules, endowing ATTO 565 with a multitude of novel properties. In
summary, the excellent fluorescence performance of ATTO 565 and its multiple tunable
sites make it a fluorescent dye worthy of in-depth investigation and research application.

ATTO 565 has demonstrated extensive adaptability across various microscopy tech-
niques, yet it has predominantly been utilized in studies involving fixed cells. It is widely
recognized that observing living samples provides more dynamic and informative re-
sults. However, ATTO 565’s application in live samples remains limited. This constraint
highlights the need for chemical modifications to enhance its bio-compatibility, thereby
significantly expanding its potential applications.
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Abbreviations and Symbols

A2AR Adenosine A2A receptor
APEC A2A-AR agonist
ACF Autocorrelation function
CW Continue wave
CCD Charge-coupled device
CEM-A cells Acute lymphoblastic leukemia, All cells
CT Cut tail
CL Cylindrical lens
Env Envelope glycoprotein
FCS Fluorescence correlation spectroscopy
F-actin Filamentous actin
FWHM Full-width-half-maximum
GPCRs G-protein receptors
GFP Green fluorescent protein
HOS Hos osteoblast- like cells
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HA hydroxyapatite
His-tag histidine residues tag
IC50 Half maximal inhibitory concentration
KD Dissociation constant
lgG Immunoglobulin G
LAP Linear assignment problem
LSM Light sheet microscope
NA Numerical aperture
OEG oligo ethylene glycol
PtK2 Potorous tridactylus kidney epithelial cells
PBW Proton Beam Writing
PCL Poly-ε-caprolactone (PCL) materials
PBS Phosphate-buffered saline
PP Polyproline
PSF Point spread function
ROI Region of Interest
STED Stimulated emission depletion microscopy
SEM Scanning electron microscope
Sf9 Spodoptera frugiperda
SMT Single-molecule tracking
S/N Signal to noise ratio
T-Rex Triplet-state relaxation
tris-NTA tris(hydroxymethyl)aminomethane-nitrilotriacetic acid
WGA Wheat germ agglutinin
WT Wild type
An− Anion
λabs Absorption wavelength
εmax Molar extinction coefficient at maximum absorption wavelength
λfl Fluorescence peak wavelength
Φ Fluorescence quantum yield
τ Fluorescence lifetime
S0 Ground state
S1 First excited singlet state
T1 First triplet state
Kisc Intersystem crossing rate
Krad Radiative decay rate
Kexc Excitation rate
Kic Internal conversion rate constant
Ktun Radiative decay rate constant
Kt Total decay rate constant
Ks Radiative decay rate Constant
Kex Non-radiative decay rate Constant
Neff Average number of targets in ROI
Tdiff Diffusion time of targets in ROI
D Dark state
Gαβγ G protein heterotrimer α, β and γ

∆r Full-width-half-maximum
βrev Reversal efficiency
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