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Abstract: Olive mill wastewater (OMW) poses a significant environmental challenge and health
concern in olive-producing countries, including Jordan. Surfactant micelles are frequently employed
as solubilizing agents to enhance the water solubility of chemical compounds. This study aims
to leverage the sodium dodecyl sulfate (SDS) micelles in a multi-step process to detoxify OMW
for agricultural and industrial uses and reduce its impact. The OMW was treated in multiple
steps: screening, coagulation with different chemicals, and distillation with different surfactants.
The treatment steps were monitored using LC–MS, GC–MS, ICP–MS, chemical oxygen demand
contents, and total phenolic compounds. The detoxification of OMW was evaluated using standard
germination assays, MTT assays using tissue culture, and toxicity assays using fluorescence bacteria.
Following the treatment, the seed growth rate improved significantly from 0% to 100%. The GC–MS
revealed a substantial decrease in pollutants. The concentration of polyphenols was reduced to
2.5%, while the COD level decreased to 35%. The toxicity in bacteria was significantly reduced in a
time-dependent manner, and the toxicity in human cells decreased by 95%. Additionally, between
50% and 95% of metals in OMW were removed. The multi-step SDS-based approach successfully
detoxified the OMW and enhanced water quality, which would pave the road for its direct application
in industry and agriculture.

Keywords: olive mill wastewater; detoxification; sodium dodecyl sulfate; micelles; tissue culture;
antibacterial; characterization

1. Introduction

The Mediterranean countries are known as the primary global producers of olive oil,
as they account for 98% of global olive oil production [1]. For instance, Jordan produced
more than 20 thousand tons of olive oils in 2022 [2]. Unfortunately, the olive oil extraction
process produces large amounts of polluted water as a liquid by-product called olive mill
wastewater (OMW) [3], the estimated volume of which is about 30 million m3 per year [4].
Subsequently, thousands of cubic meters of OMW and thousands of tons of solid waste are
produced in Jordan [5].
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Olive oil mill wastewater (OMW) is a significant environmental challenge due to its
high chemical oxygen demand (COD), organic load, and phenolic content, all of which can
cause phytotoxicity and impede microbial growth [6–8]. Moreover, as OMW is discharged
into surface water or spread on the land, it can pollute surface and groundwater bodies,
harm agricultural fields and the environment, and harm public health [2,4,9–12]. Further-
more, researchers have found that OMW is toxic to plants even after 100-fold dilution and
affects seed germination [13].

Various methods have been explored to address this problem, such as electro-
coagulation [14], electro-Fenton reaction combined with anaerobic digestion [15], and
the integration of Fenton’s reaction with anaerobic treatment [16]. Additionally, technolo-
gies like reverse osmosis [17], electrochemical oxidation [18], catalytic oxidation [19], and
distillation [20] have been investigated for their efficacy in treating OMW. More about the
current methods of treatment were discussed in detail previously [2]. However, despite
advancements, each treatment approach encounters its own set of challenges and limita-
tions, hindering their widespread adoption and effectiveness [2], such as high operational
costs [21], incomplete treatment [22], seasonal variability [23], environmental concerns and
safety [24], and limited applicability [25].

The efficiency of conventional treatment methods is limited due to the presence
of a large amount of organic matter [22]. Moreover, the presence of substances like
tyrosol, hydroxytyrosol, and polyphenols in OMW further complicates the treatment
process [26,27]. Therefore, the treatment of OMW is complex and expensive [28,29]. More-
over, the current treatment methods may not fully comply with discharge limits and
regulatory standards [30,31]. Thus, a unique, safe, and cost-effective treatment of OMW
that produces harmless by-products without harming plants, humans, or microorganisms
is required [28].

Micelles have been extensively studied for their ability to enhance the solubility
of poorly water-soluble compounds, including drugs. The formation of micelles using
surfactants has been shown to significantly improve the water solubility of drugs, leading
to enhanced bioavailability, reduced toxicity, improved drug stability, and altered drug
distribution [32,33].

Micelles are self-assembling colloidal systems composed of a hydrophobic core sur-
rounded by a hydrophilic corona, which can enhance the solubility of poorly water-soluble
compounds [4]. Hence, micelles can effectively capture hydrophobic molecules from water,
assisting in the elimination of pollutants [34]. Furthermore, micelles have been investigated
for their capacity to eliminate both anionic and neutral pollutants from water [35].

Sodium dodecyl sulfate (SDS) is a strong anionic surfactant with the formula
NaC12H25SO4. SDS is often selected for the effective removal of heavy metals in wa-
ter [36]. Also, SDS was used to extract the phenolic compounds from OMW for industrial
uses by a mixture of nonionic/anionic surfactants [36].

Previous applications of surfactants were observed in micellar-enhanced ultrafiltration
(MEUF). The proposed approach involves the introduction of a surfactant into contam-
inated water at a concentration exceeding the critical micelle concentration (CMC). The
micelles should be larger in size to be retained in a membrane with a pore size larger than
required for pollutant retention [37]. However, this method has many limitations, such
as frequent pore obstruction. This may lead to permeate flux reduction and permeation
of surfactant monomers and, subsequently, potential toxicity due to the leakage of the
surfactant monomer [38].

In this work, a multi-step method (coagulation–flocculation–sedimentation) along with
SDS micelle-distillation was used to reduce the toxicity of OMW, prevent potential sec-
ondary toxicity from the surfactant, and collect the polyphenols from OMW. The detoxifi-
cation steps were monitored using liquid chromatography–mass spectrometry (LC–MS),
gas chromatography–mass spectrometry (GC–MS), inductively coupled plasma–mass spec-
trometry (ICP–MS), high chemical oxygen demand contents, and total phenolic compounds.
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The detoxification of OMW was evaluated using standard germination assay, MTT assay
using tissue culture, and toxicity assay using fluorescence bacteria.

2. Results and Discussion
2.1. Coagulation–Flocculation–Sedimentation

This step is to manipulate the electrical charges to promote the aggregation of sus-
pended solid materials into larger flocs, which can then settle more readily. This floccule
can capture various hazardous compounds and remove them from the liquid [39]. Several
chemicals were tested: alum, ferrous sulfate, eggshell, and lime (CaOH2). The best result
was achieved using lime (CaOH2) at a concentration of 30 g/L; the volume of sediment
was 60% of the total volume, whereas it was less in other agents. This result suits well with
the previously published works [39].

Typically, the pH of untreated OMW falls within the acidic range of 4–6 [40]. In this
study, the pH of the OMW was measured at 4.5. Upon coagulation, the pH increased
significantly, reaching a pH = 12. The significant increase in pH is due to the use of a
high concentration of lime [41]. This high alkalinity may facilitate further degradation of
compounds that are hard to remove. It is important to mention that the treated water after
this step did not neutralize. The neutralization would add an extra step, and it has been
reported that electrolytes that may be generated from the neutralization step affect the
micelle formation [42].

2.2. Selection of Surfactant and Determination of Total Phenolic Compounds

According to the results of total phenolic compounds (Table 1), the coagulation step
alone with lime (CaOH2) successfully removed 56% of the total polyphenols. Subjecting
the coagulated OMW to distillation (without the presence of any surfactant) reduced the
polyphenols by 88%. To further remove the polyphenol contaminants, distillation with
three different types of surfactants (anionic, cationic, and neutral) was evaluated. The
neutral surfactants were used to keep the reaction as environmentally safe as possible.
Neutral surfactants, in general, are biodegradable and based on natural fatty acids and
sugar alcohol sorbitol [43].

Table 1. The effect of different surfactants on the residual polyphenol contents. Experiments were
conducted in triplicate, and the error represents the means± standard deviation.

Treatment Step Residual Phenols %

Coagulation 43 ± 7.1
Distillation of coagulated OMW 11.9 ± 2.2

Distillation of coagulated OMW + SDS 2.5 ± 0.6
Distillation of coagulated OMW + span 80 14 ± 2.1
Distillation of coagulated OMW + span 20 11 ± 1.6
Distillation of coagulated OMW + CTAB 11.2 ± 2.4

Distillation with sodium lauryl sulfate was the best in removing polyphenolic com-
pounds, as the residual percentage decreased to approximately 2.5%. The results of other
surfactants (span 80, span 20, and CTAB) were 14%, 11%, and 11.2%, respectively. Therefore,
SDS was solely used in further experiments.

Furthermore, to determine the optimum concentration of SDS, five different concentra-
tions, CMC, CMC*2, CMC*4, CMC/2, and CMC/4, were evaluated. The highest clearance
percentage was observed at all concentrations that were either equal to or more than the
CMC, or 2.31 g/L or 0.008 mol/L. Micelles form at these concentrations.

Micelles have a hydrophobic core where many types of lipids and lipophilic com-
pounds are entrapped, and the hydrophilic surface can form many interactions with polar
compounds [3]. Micelles have been extensively studied for their ability to enhance the solu-
bility of poorly water-soluble compounds, including drugs. The formation of micelles using
surfactants has been shown to significantly improve water solubility [32,33]. For instance,
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the use of micelles has been reported to increase the solubility of drugs like imiquimod,
fluocinolone acetonide, docetaxel, paclitaxel, curcumin, and thymoquinone [44–48]. More-
over, the solubility enhancement achieved through micelles has been linked to their ability
to form nano-sized structures [49]. The formation of micelles is influenced by factors such
as surfactant properties, critical micelle concentration (CMC), and the structure of the
micelles themselves [50,51]. These micelles, typically ranging around 80 nm in size, provide
a favorable environment for solubilizing poorly soluble compounds [52,53]. The micelle
formation process involves interactions between hydrophobic and hydrophilic segments of
surfactants, leading to the creation of stable structures that can encapsulate the chemicals
or other hydrophobic molecules [54,55].

Sodium dodecyl sulfate (SDS) micelles have been extensively studied for their ability
to enhance the solubility of various chemicals [56]. These micelles can interact with different
compounds to form micelle–chemical aggregates, improving solubility. For instance, SDS
has been used to enhance the solubility and dissolution rate of poorly soluble active
pharmaceutical ingredients [53,57], such as cosmetics [58].

Furthermore, the use of SDS micelles has been explored in the removal of lead and
mercury from aqueous solutions, showcasing the diverse applications of SDS micelles
beyond solubility enhancement [59,60].

OMW contains a high load of organic compounds, including the following organic
groups: benzoic acids and derivatives, aromatic conpounds, fatty acids, cinnamic acids,
phenyl ethyl alcohols, other phenolic acids, flavonols, flavones, lignans, isochromans, and
secoiridoids [61]. It is expected that distillation may remove 90% of the polyphenols and
organic compounds. However, OMW contains a high concentration of volatile organic
compounds, including organic acids. It has been reported that more than 60 volatile
chemical compounds are present in OMW [61], including short-chain fatty acids (six
or fewer carbons) [62]. Hence, by distillation, all volatile organic compounds will be
concentrated in the distilled product. SDS-micelle will form extra interactions with such
compounds; therefore, a large portion of the volatile compounds will be removed.

Different types of bonds are established during the interaction between micelles and
the contaminants. For example, fatty acids possessing an extended alkyl chain, such as
stearic acid, may establish a hydrophobic interaction with the micelle’s core. Additionally,
aromatic compounds such as styrene are also bound to the core. The toxic compound,
alcohol tyrosol, is more likely to interact with the head and tail of the micelle in a hydrophilic
and hydrophobic manner, respectively (Figure 1).
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Several studies have shown the efficacy of micelles in eliminating volatile organic
contaminants from water [34,35,63]. Knowing that, along with the results, the addition
of SDS micelles to OWM effectively slowed down the release of toxic compounds during
the distillation. Hence, micelles can potentially augment the effectiveness of remediation
procedures by augmenting the solubility of pollutants, thereby facilitating their removal or
degradation.

2.3. Germination Assay

The germination assay was conducted for each treatment, and several parameters
were measured (stem length and fungal contamination). Tap water was used as a positive
control. Both filtered raw OMW and coagulated did not exhibit any signs of growth, and
the mold was observed after a few days (Figure 2; Table 2). On the other hand, there was
a significant increase in stem growth and germination percentage when distillation was
applied immediately to raw and coagulated OMW; however, this was still 50% less than
in the control group. Additionally, after one week, the presence of hazy molds became
apparent. Moreover, as illustrated in Figure 2, the lime coagulation has demonstrated its
effectiveness in promoting growth in both shoot and root length and preventing mold
formation compared to the distilled raw OMW sample.
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Table 2. Germination assay parameters for all treatment steps.

Sample Name Germination % Stem Length % Fungi Growth %

Control tap water 100 100 −
Raw OMW - - +

Distilled Raw OMW 40 50 +++
Coagulated OMW - - +++

Distilled Coagulated OMW 50 80 +
CMC Distillation 100 100 −

CMC: Critical micelle concentration. Experiments were conducted in triplicate. The (+) sign represents the
presence and severity of fungal growth, the (−) sign represents the absence of the growth.
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When SDS was applied at CMC, the outcomes closely resembled those of the control
sample (tap water) in terms of the length of roots and shoots and the absence of any fungal
development.

The effect on germination has not shown a significant difference in the growth between
CMC and concentrations above it (Table 3). Therefore, SDS at CMC concentration was used
for further steps.

Table 3. Germination assay parameters for different concentrations of SDS.

Sample Name Germination % Stem Length % Fungi Growth %

CMC/4 60 40 +++
CMC/2 60 40 +

CMC 100 100 −
CMC*2 100 100 −
CMC*4 100 100 −

CMC: Critical micelle concentration. Experiments were conducted in triplicate.

It has been reported that the seed can germinate in a wide range of pH (5–8) [64]; in
this experiment, the pH of treated water after all steps was 9.0. Hence, the effect of basic
pH on growth was tested, and the results showed no differences. Subsequently, there was
no need to neutralize the pH for any further experiments.

A hypothesis was formulated suggesting that the pollutants could disrupt the earliest
stage of germination and cause the death of the embryo. Therefore, the seeds were soaked
in tap water for 8 h to initiate germination, followed by moistening with OMW over a
week. Based on the results, although the seeds effectively developed stems and roots, their
growth was slower, and the growth rate was smaller than that of the positive control. In
addition, clouds of fungal contamination were observed.

OMW contains a high concentration of phytotoxic and phenolic compounds that have
antioxidant and antimicrobial properties, such as hydroxytyrosol, tyrosol, hydroquinone,
4-aminophenol, phenol, gallic acid, caffeic acid, 3,5-di-tert-butylcatechol, quercetin, oleu-
ropein, and catechol [65,66]. It has been reported that OMW can inhibit the growth of
several fungi, such as Trichoderma spp., Fusarium spp., and Aspergillus spp. [13].

According to the fungal growth, it appears that only using SDS at CMC and above
can stop the fungal growth. So fungal contamination may already be in the OWW, and
the contaminants (polyphenols) kill all microorganisms except the fungi, or the Fungai
is already on the seeds, and the OMW pollutants facilitate the growth. In both cases, the
pollutants that were removed by SDS are responsible for both actions.

2.4. Liquid Chromatography–Mass Spectrometry Analysis

LC–MS analysis was conducted to determine the compounds present in OMW and
to evaluate the efficiency of the detoxification treatment. The list of highest-scoring com-
pounds identified in the OMW at the different treatment steps is shown in Table 4 and the
total ion chromatogram (positive and negative ionization modes) is shown in Figure 3.

It has been reported that simple biophenols (tyrosol, hydroxytyrosol, and homovanil-
lic alcohol) and complex biophenols (decarbomethoxy ligstroside aglycone and decar-
bomethoxy oleuropein aglycone) are the most abundant analytes in OMW [61].

The most suggested compound to have the highest toxicity in OMW is hydroxyl
tyrosol, which is thought to be produced from the hydrolysis reaction of oleuropein during
the milling step [4]. As shown in Table 4, hydroxy tyrosol was successfully removed via
the CMC step while existing in all other steps.
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Table 4. The highest-score compounds were identified in the OMW using LC–MS at the different
treatment steps.

Compound Name Raw-
Distilled

Raw-Coagulated-
Distilled

Raw-Coagulated-
Distilled- CMC Source Aromatic Toxicity

Scopoletin Yes Yes No Natural Yes No
Capsaicin Yes Yes Yes Natural Yes No
Humulone Yes No No Natural No No

Caffeic Acid Yes No No Natural Yes No
Umbelliferone Yes Yes Yes Natural Yes No

4-Tert-butyl 2-methylphenol Yes Yes No Synthetic Yes No

Tetramethrin Yes Yes Yes Synthetic—potent
insecticide No Yes

Eusolex 6007 Yes Yes No Synthetic—Essential
component in sunscreens Yes Yes

Isopentyl-4-
methoxycinnamate Yes Yes No Synthetic—sunscreening

agent. Yes Yes

Dodecylphenol Yes No No
Synthetic—used in the

manufacturing of epoxy
resins

Yes Yes

4-Hydroxybenzoic acid
n-butyl ester Yes Yes No

Synthetic—
bactericidal/fungicidal
additives in cosmetics.

Yes Yes

4-n-Propylphenol Yes No No Synthetic—Food additive Yes No
Dibutylphthalate Yes Yes Yes Synthetic—plasticizer Yes Yes

Octocrylene Yes Yes No Synthetic—sunscreens and
cosmetics Yes Yes

Hydrocortisone Yes Yes Yes Synthetic—Anti-
inflammatory agent No No

(4 or 7) Hydroxy-Coumarin
Plus Hydrate Yes Yes No Synthetic—Insecticides Yes Yes

Trans-nonachlor Yes Yes No Synthetic—Insecticides No No
3-(2,2-Dichlorovinyl)-2,2-

dimethylcyclopropene
carboxylic acid

Yes Yes No Synthetic—Pesticide No Yes

4-hydroxybenzoic acid propyl
ester Yes Yes Yes Natural Yes No

4-Nonylphenol Yes Yes Yes Synthetic Yes Yes
Cyprodinil Yes Yes No Synthetic Fungicide Yes Yes

2-ethylhexyl
3-(methoxyphenyl)-2-

propenoate
Yes Yes Yes Synthetwunscreen Yes Yes

Ethyl-4-aminobenzoate Yes Yes Yes Synthetic Local anesthetic Yes Yes
3-Hydroxy-4-

methoxycinnamic acid
(isoferulic acid)

Yes Yes Yes Natural Yes No

Hydroxyl tyrosol Yes Yes No Natural yes yes
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According to the results, there were unexpected compounds such as sunscreens,
pesticides, food additives, plasticizers, and pharmaceutical drugs. These chemicals may
come from water contaminants during the washing step, preparation steps, or the actual
compounds that were not included in the library. To avoid the possibility that the compound
is not included, the main olive compounds were used as a standard for identification
(Supplement Data S2).

In conclusion, the LC–MS results were inconclusive, so we conducted further instru-
mental analysis procedures.

2.5. Gas Chromatography–Mass Spectrometry Analysis

The OMW samples were assessed after the last stage of treatment (SDS) and in their
untreated state (raw). Significant variations can be seen in the chromatograms before and
after treatment. The CMC-treated OMW showed a considerable reduction in both peak
count and intensity, as shown in Figure 4.
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For example, the tyrosol peak (Figures 4 and 5A), which was initially observed at
11.6–11.8 min, fell to one-third of its original intensity, and other neighboring peaks van-
ished. Furthermore, the peaks that were present between 12.5 and 17.5 min have completely
disappeared.

The compounds in that area include organic acids like Octanoic acid, Aconitic acid,
4-Coumaric acid, Citric acid, Tranexamic acid, Quininic acid, Labdanolic acid, Fumaric
acid, Octadecenoic acid, and Stearic acid. Additionally, there are other Glucosides like
Syringaresinol diglucoside, hexopyranoside, Matairesinoside, and a wide variety of com-
pounds like Brefeldin, Triphenylene, Homovanillyl alcohol, Lapachol, Styrene, Rhodamine
B cation, Isobenzofuran, Gibban, Trimethoxyflavone, Prostaglandin A3, dimethoxyfla-
vanone, Oxytetracycline. The complete list of identified compounds is in the Supplement
Data S3.

It is important to clarify that not all peaks in the chromatogram are chemicals from
OWM, as some of them are due to the derivatization process in Figure 5B,C. Both com-
pounds were identified in the area between 15.88 and 15.91 min.
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2.6. Inductively Coupled Plasma Mass Spectrometry Analysis

It has been reported that OMW contains a significant concentration of heavy met-
als [67,68]. Heavy metal contamination can take place during the handling and processing
of olive fruits as well as from the soil [68]. Hence, all possible types of metal were mea-
sured, including heavy metals. The mechanism of adsorption of SDS towards heavy metals
involves several complex interactions primarily driven by electrostatic forces and hydropho-
bic interactions. The primary mechanism is through electrostatic attraction. The negatively
charged sulfate groups of SDS can bind to positively charged metal ions, such as Pb2+,
Cd2+, and Cu2+, leading to the formation of metal–surfactant complexes on the surface of
adsorbents [69–71]. Moreover, hydrophobic interaction also plays a significant role in the
adsorption process. The hydrophobic tail of SDS can interact with organic contaminants,
which might be chelated or interact with heavy metals, promoting the aggregation of metal
ions within the micellar structure of SDS [72,73].

The initial concentrations of metals in raw OMW are shown in Table 5. There were
many variations in metal percentages at the different stages of treatment; however, all
of the following heavy metals (Hg, Pb, Cd, As, and Mo) were under the detection limit
in all samples (Figure 6). The highest concentration of metals was in the filtered raw
sample. After the coagulation step, Ca ions have disappeared completely; it might be due
to the precipitation by lime (CaOH2), and there was a sudden increase in Sr concentration.
After distillation, K ions approach zero, and metals like Cu and Fe have increased greatly
compared to raw samples. This increase in the concentration of these ions can be explained
by their transfer to the product container of distillation, accompanied by the decrease in
the water volume [74]. At the final SDS-CMC step, the total amount of ions has decreased
significantly; Ni, Fe, and Cu approach half of their original amounts in the raw sample due
to their interaction with SDS micelles [75]. SDS is already known for its capability for the
removal of heavy metal ions [76].



Molecules 2024, 29, 4284 10 of 20

Table 5. The concentrations of metals in raw OMW. Experiments were conducted in triplicate, and
the error represents the means± standard deviation.

Treatment Step mg/L Typical OMW Values [70]

Ni 0.29 ± 0.05 -

Cu 0.25 ± 0.03 0.0021 (%)

Zn 0.575 ± 0.09 0.0057 (%)

Mg 376.036 ± 11.5 100–400 mg/L

K 1343.48 ± 23.54 2700–7200 mg/L

Ca 690.40 ± 12.4 120–750 mg/L

Mn 0.88 ± 0.20 0.0015 (%)

Fe 0.636 ± 0.08 -

Sr 6.789 ± 1.4 -

Ba 0.739 ± 0.17 -

Li 0.013 ± 0.006 -

Na 40.09 ± 2.4 40–900 mg/L

Hg BDL

Pb BDL -

Cd BDL -

As BDL -

Co BDL -

Mo BDL -
BDL: below detection limits.
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2.7. High Chemical Oxygen Demand (COD)

The Chemical Oxygen Demand (COD) test is utilized to predict the amount of oxygen
needed by the effluent. It is employed for the purpose of monitoring and regulating dis-
charges, as well as evaluating the effectiveness of treatment plants [77]. OMW contains high
concentrations of chemical oxygen demand (COD), reaching 220 g/L, mainly consisting
of phenol, lipids, acids, and sugars [18]. Hence, it has a negative impact on aquatic and
terrestrial ecosystems upon disposal [78]. Since the chemical composition of olive mill
wastewater is highly variable both qualitatively and quantitatively according to the country
and method of extraction [2,79], the COD was measured in all treatment stages. According
to the data presented in Table 6, the concentration of COD decreases gradually during the
treatment process, ultimately achieving a 65% reduction following the SDS-CMC phase.
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Table 6. The concentration of COD and the percentage of removal for each treatment step. Experi-
ments were conducted in triplicate, and the bars represent the means± standard deviation.

Treatment Step COD (g/L) % Removal

Filtered OMW 124.6 ± 15.3 0

Coagulated OMW 108.0 ± 9.7 13.3

Distilled OMW 86.58 ± 7.5 30.5

CMC step 44.14 ± 4.3 65.6

2.8. Bacteria Toxicity Assay

The presence of OMW in the environment can disrupt microbial consortia and bacterial
populations [78]. Moreover, the antimicrobial properties of OMW, particularly in its liquid
form, can inhibit the growth of plants and microorganisms, affecting the overall biodiversity
of ecosystems [78,80]. Two samples of OMW were analyzed: the first sample was filtered,
and the final sample was treated with SDS-CMC. The survival percentage was determined
by measuring the luminescence intensity of Vibrio fischeri at various time intervals over
a period of 45 min. As shown in Figure 7, extended duration has significantly amplified
the toxicity and mortality rates in filtered samples as compared to CMC samples. For
instance, the survival rate in the filter sample decreased substantially, reaching 50% after
the incubation period, while it remained constant in the SDS-CMC-treated sample. The
toxicity develops in a time-dependent manner. As per the kit instructions, the assay can last
for a maximum of 45 min before the fluorescence signal fades. The toxicity results of filtered
OMW on photobacterium Vibrio fischeri suit well with previously published [81,82].

Molecules 2024, 29, x FOR PEER REVIEW 11 of 20 

discharges, as well as evaluating the effectiveness of treatment plants [77]. OMW contains 
high concentrations of chemical oxygen demand (COD), reaching 220 g/L, mainly consist-
ing of phenol, lipids, acids, and sugars [18]. Hence, it has a negative impact on aquatic 
and terrestrial ecosystems upon disposal [78]. Since the chemical composition of olive mill 
wastewater is highly variable both qualitatively and quantitatively according to the coun-
try and method of extraction [2,79], the COD was measured in all treatment stages. Ac-
cording to the data presented in Table 6, the concentration of COD decreases gradually 
during the treatment process, ultimately achieving a 65% reduction following the SDS-
CMC phase. 

Table 6. The concentration of COD and the percentage of removal for each treatment step. Experi-
ments were conducted in triplicate, and the bars represent the means ± standard deviation. 

Treatment Step COD (g/L) % Removal 
Filtered OMW 124.6 ± 15.3 0 

Coagulated OMW 108.0 ± 9.7 13.3 
Distilled OMW 86.58 ± 7.5 30.5 

CMC step 44.14 ± 4.3 65.6 

2.8. Bacteria Toxicity Assay 
The presence of OMW in the environment can disrupt microbial consortia and bac-

terial populations [78]. Moreover, the antimicrobial properties of OMW, particularly in its 
liquid form, can inhibit the growth of plants and microorganisms, affecting the overall 
biodiversity of ecosystems [78,80]. Two samples of OMW were analyzed: the first sample 
was filtered, and the final sample was treated with SDS-CMC. The survival percentage 
was determined by measuring the luminescence intensity of Vibrio fischeri at various time 
intervals over a period of 45 min. As shown in Figure 7, extended duration has signifi-
cantly amplified the toxicity and mortality rates in filtered samples as compared to CMC 
samples. For instance, the survival rate in the filter sample decreased substantially, reach-
ing 50% after the incubation period, while it remained constant in the SDS-CMC-treated 
sample. The toxicity develops in a time-dependent manner. As per the kit instructions, the 
assay can last for a maximum of 45 min before the fluorescence signal fades. The toxicity 
results of filtered OMW on photobacterium Vibrio fischeri suit well with previously pub-
lished [81,82]. 

 

Figure 7. Toxicity assay using fluorescence bacteria over a 45 min period. Experiments were con-
ducted in triplicates, and the error bars represent the means ± standard deviation. 

Figure 7. Toxicity assay using fluorescence bacteria over a 45 min period. Experiments were
conducted in triplicates, and the error bars represent the means± standard deviation.

According to reports, the main cause of toxicity in V. fischeri is the polar portion of
OMW. Therefore, it has been recommended that diluting OMW should not be considered a
viable remedy for disposing of OMW, as the toxicity remains even at low concentrations [82].
The incubation period with tested bacteria was extended to 45 min to confirm that there
was no toxicity, as previous studies have only examined toxicity for a duration of 10 to
15 min.
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2.9. MTT Assay

In addition to its phytotoxic and bactericidal effects, OMW also exhibits high toxicity
towards human cells, with the polyphenols being the main contributors to this activity [83].
However, multiple studies reported that the polyphenol extracted from OMW (esp. hydroxy
tyrosol) has anti-cancer and antioxidant activity and improves the chemotherapy and
cytoprotective [84–86]. Furthermore, OMW extract also showed a promising ingredient for
dermal applications to improve skin health and skin protection [87].

The purification steps were evaluated using a human fibroblast (non-cancer cells), one
of the most abundant cell types in the stroma. It has a variety of functions and composes
the basic framework for tissues and organs [88]. The survival rate relative to the control
sample was quantified following each treatment stage. Figure 8 illustrates that the survival
percentage, relative to the control sample of distilled water with equivalent tonicity, was
just 3% for filtered OMW. However, it gradually climbed and reached approximately 95%
with SDS-CMC.
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2.10. Possible Use for Mass Productions

Several factors can affect the feasibility of mass production, including energy con-
sumption, capacity, production rate, and SDS (cost and toxicity). Figure 9 illustrates the
process of detoxification, including the by-products and possible solutions. The debris,
sludge, and oily waste can serve as fuel for distillation [89]. To decrease the consumption of
fossil fuels and reduce the emission of carbon dioxide, it is recommended to utilize vacuum
distillation as a means to lower the boiling point and, thus, minimize the requirement for
heating during the distillation process. Organic compound distillation has been conducted
using vacuum distillation [89]. Moreover, solar energy can be harnessed to produce the
electrical energy required for vacuum distillation. In addition, OMW can be preheated
before distillation by utilizing an indirect solar water heating system. This technology
can raise the temperature of the water to 90 ◦C. Additionally, the impact of OMW on the
efficiency of the system is negligible [90]. Moreover, it is essential to economically recover
and recycle the SDS since the surfactant comprises a significant proportion of expenses and
to avoid additional contamination of the environment. There are multiple techniques for
recovering the surfactant. These include the addition of an excess of multivalent cations
(such as Ca+2) beyond the stoichiometric value, which can lead to a significant amount
(45–55%) of surfactant precipitation [91]. Another method is to lower the temperature of
the SDS solution to 4 ◦C, which is below the reported Kriff point of SDS (16 ◦C) [92]. Other
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techniques include foam fractionation [93], electrochemical treatment [94], and acidification
at Ph = 1 [36]. The capacity and rate of detoxification have to be further evaluated.
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3. Materials and Methods
3.1. Chemicals and Materials

Analytical-grade reagents, chemicals, and HPLC-grade solvents were obtained from
Sigma-Aldrich and the local market. OMW was freshly collected in 20 L polyethylene
containers from the decenter outlet of three-phase olive oil mill processing systems located
in Irbid/Jordan during the olive harvesting season and then stored at 4 ◦C until use in
laboratory experiments.

The natural eggshell waste materials (ES) were obtained from local homes and restau-
rants to serve as coagulant material. The ES was washed with water to remove impurities,
dried for 3 h at 60 ◦C, and crushed mechanically in a mixer. The dried eggshell product
was calcined (CES) at 800 ◦C for 3 h using a muffle furnace (Carbolite, Sheffield-England),
sieved in a mesh number (40–60) to obtain grain size diameters ranging from 425–600 µm,
and stored in a dry box until use.

3.2. Methods
3.2.1. Purification Steps
Pretreatment

Samples were completely stationary for 24 h and divided into two net layers at the
macro level, and then the water layer was filtered using locally made fabric mesh to remove
large debris and particles.

Coagulation–Flocculation–Sedimentation

The process was conducted as described elsewhere [36] using the optimum concen-
tration of different agents: alum (600 mg/L) [37], ferrous sulfate (300 mg/L) [37], eggshell
(6 g/L) [38], and lime (CaOH2) (15 g/L) [36].

The OMW samples were added first into a graduated Imhoff Cone for one hour to
allow for any readily settleable solids to settle down by gravity. The supernatant was then
taken and treated by coagulation and flocculation using a conventional 6-station Jar test
apparatus (Stuart-SW6) supplied by six beakers (1.0 L each). Alum is used as a coagulant
material, and the optimum dose for TSS removal was predetermined first. A total of
500 mL of OMW was transferred to each jar-test beaker, and then six different doses of
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alum (0.5–3.0 at a 0.5 g/L interval) were added into all beakers. All beakers were subjected
to rapid mixing initially at 120 rpm for 3 min and slow mixing thereafter at 20 rpm for
30 min. Then, the contents of the beakers were allowed to settle by gravity for 1.0 h. The
alum dose corresponded to the least turbidity, and the TSS value was taken as an optimum
dose. The predetermined optimum dose of alum was then added to all OMW samples and
treated in the same manner using a jar-test apparatus. The supernatant solution was then
withdrawn, collected, and used in the next experiments. Part of this supernatant solution
was filtered through filter paper (Whattmann 40) and tested for the same parameters tested
for raw OMW to assess the effect of coagulation on OMW quality. All the experiments and
sample analysis were performed in triplicate at room temperature of 25 ± 1 ◦C without pH
adjustment.

Micellar Distillation Treatment

Different types of surfactants at the critical micelle concentration (CMC) were evalu-
ated separately: Span 80 at 0.014 g/L, Span 20 at 0.07 mg/L, hexadecyltrimethylammonium
(CTAB) at 0.334 g/L, and sodium dodecyl sulfate at 2.3 g/L (Figure 10). Moreover, SDS was
tested at different concentrations (above or below CMC: half CMC concentration, quarter
CMC concentration, double CMC concentration, and fourfold CMC concentrations). The
surfactant was dissolved in 100 mL of OMW and then distilled at 90 ◦C using standard
distillation apparatus and method [39].
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3.2.2. Total Phenolic Compounds

The test was conducted as described previously elsewhere [40,41] using
Spectrophotometer-UV 1800, Biotech Engineering Management Co., Ltd., Milton Keynes,
UK. Briefly, 125 µL of 100-diluted extract was mixed with 500 µL of distilled water and
125 µL of Folin–Ciocalteu reagent. Following 3 min of stirring, 1250 µL of 7% sodium
carbonate solution was added to the mixture. The mixture was adjusted to 3 mL with
ultrapure water and left at room temperature for 90 min in the dark. The results were
represented as mg gallic acid per mL of extract.

3.2.3. Germination Assay

The experiment was carried out following the previously described protocol, with
some modifications [36]. Ten locally obtained wheat seeds were presoaked in the tested
OMWW for 8 h before germinating under the light of a fume hood at room temperature.
To prevent drying during germination, 5 mL of treated water was added periodically to the
seeds. The entire process of germination lasted around two weeks.

3.2.4. High Chemical Oxygen Demand (COD)

The COD experiment was performed using the Lovibond COD high-range kit
(200–15,000 mg/L) following the manufacturer’s instructions [42]. The samples underwent
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a 10-fold dilution, and the experiment was conducted using the Lovibond thermal reac-
tor for 120 min at a temperature of 150 ◦C. The Lovibond Spectro Direct was used at a
wavelength of 602 nm (lambda, λ).

3.2.5. Liquid Chromatography–Mass Spectrometry Analysis (LC–MS)

The unknown sample (0.1 mL) was diluted with 0.9 mL of distilled water. Then,
1.0 mL was transferred to the autosampler, and inject 3.0 µL. The samples were analyzed
on a Bruker Daltonik (Bremen, Germany) Impact II ESI-Q-TOF System equipped with
Bruker Dalotonik (Bremen, Germany) using direct injection. The instrument was operated
using the Ion Source Apollo II ion Funnel electrospray source. The capillary voltage was
2500 V, the nebulizer gas was 2.0 bar, the dry gas (nitrogen) flow was 8 L/min, and the
dry temperature was 200 ◦C. The mass accuracy was <1 ppm; the mass resolution was
50,000 FSR (Full Sensitivity Resolution), and the TOF repetition rate was up to 20 kHz.
Standards were used for the identification of m/z with high resolution. To evaluate the
methods, standards were used (Supplement Data S1).

3.2.6. Gas Chromatography–Mass Spectrometry Analysis (GC–MS)

The OMWW samples were extracted using ethyl acetate and silylated using BSTFA [43].
The GC–MS analysis was conducted following the procedure described previously [44,45].
Briefly, one µL of the sample was subjected to the GC–MS (Chromatec Crystal GC-MSD,
Yoshkar-Ola, Russia) equipped with a CR-5 MS column (5% diphenyl, 95% dimethyl
polysiloxane, 30 m × 0.25 mm, 0.25-µm film thicknesses). In the MS detector, 70 eV electron
ionization was used. MS source temperature was 300 ◦C, and the transfer line temperature
was 230 ◦C. The temperature column was controlled from 40 ◦C for 1 min (isothermal) to
280 ◦C at 3 ◦C/min, maintaining constant lower and upper temperatures for 3 min. The
carrier gas was helium (1.0 mL/min). Estimated compound percentage concentrations
were based on relative peak areas. The same chromatographic conditions were used to
evaluate a C8–C30 n-alkane standard solution. The chemical constituents were identified
by comparing their computed Kovats retention index (KI), matching their mass spectra
with the built-in library spectra.

3.2.7. Inductively Coupled Plasma Mass Spectrometry Analysis (ICP–MS)

The experiment was conducted at the Jordanian Atomic Energy Commission as pre-
viously published [46,47] on the Thermo Scientific™ iCAP™ TQ spectrometer (Bremen,
Germany).

3.2.8. Anti-Bacterial Activity

BioTox™ WaterTox™ EVO Kit was used to determine the toxic effect of OMW on the
living bacteria Vibrio fischeri. Samples were prepared according to the manufacturer’s
protocol and using the kit reagents. The luminescence was measured using a multi-well
plate reader (Synergy HTX Multimode Reader, BioTek, Santa Clara, CA, USA).

3.2.9. Cell Culture Assay

The Human Fibroblast (PDL) cell line was obtained as a kind gift from Prof. Khaled
Al-Qaoud (Yarmouk University, Irbid, Jordan). PDL cells were cultured at 37 ◦C under
a 5% CO2 humidified atmosphere in DMEM (with high glucose and sodium pyruvate)
supplemented with 10% fetal bovine serum, 1% penicillin/streptomycin, and 1% NEAA.

Cell viability was evaluated using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium
bromide (MTT) assays to assess cell metabolic activities [95]. Exponentially growing PDL
cells were washed with PBS, shortly trypsinated, and counted. Then, cells were seeded
at a density of 5000 cells/100 µL/well in 96-well plates and cultured overnight. After-
ward, the cells were treated for 72 h with 100 µL of the water samples diluted in DMEM
(1:2.5 dilutions).
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The absorbance of the samples was recorded at 570 nm in a multiwall plate reader
(Synergy HTX Multimode Reader, BioTek, USA). Results were plotted as the mean values
of duplicates from a representative experiment that was repeated three independent times.
Survival is expressed as a percentage of control.

3.2.10. Statistical Analysis

Data were presented as mean ± SD and analyzed using Microsoft Excel with one-way
analysis of variance (ANOVA) (p < 0.05).

4. Conclusions

The multi-step SDS-based approach successfully detoxified Olive Mill Wastewater
(OMW) and significantly improved water quality, making it suitable for direct use in
industry and agriculture.

• The treatment process, involving screening, coagulation with various chemicals, and
distillation with different surfactants, effectively reduced the environmental and health
impacts of OMW.

• Monitoring via LC–MS, GC–MS, ICP–MS, chemical oxygen demand (COD), and total
phenolic compounds confirmed the efficacy of the process.

• GC–MS and LC–MS show that the total number of contaminants was reduced signifi-
cantly.

• The chemical oxygen demand in treated OMW was reduced by 66%.
• The polyphenol contents were reduced by 98%.
• The treatment process interfered with the metals, resulting in the following reductions:

Cu (45%), Ni (57%), Fe and Ba (70%), Na (80%), Zn, Mg, K, Ca, Mn, and Sr (more than
95%). All other heavy metals (Hg, Pb, Cd, As, and Mo) were under the detection limit
in the raw samples.

• The toxicity of treated OMW was successfully improved: 100% in germination assay,
100% elimination of mold growth, 95% on human cells, and 100% on fluorescence
bacteria.

• The potential use on a large scale was also discussed, and solutions were offered.
• The overall reduction in pollutants and toxicity highlights the potential of using

SDS micelles for OMW detoxification, offering a viable solution for environmental
management in olive-producing regions.

• Future work may focus on mass production.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/molecules29184284/s1, S1: The list of standards used to validate
the LC-MS method, S2: The olive oil compounds used for the identification in the LC-MS method, S3:
The complete list of identified compounds using the GC-MS method.
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