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Abstract: The utilization of MnO anodes with high storage capacity is significantly hindered by rapid
capacity fading and inadequate rate capability, stemming from substantial volume fluctuations and
low electrical conductivity. Crafting a composite comprising sulfur and fluorine co-modified MnO
nanoparticles integrated with sulfur and nitrogen co-doped carbon matrices promises enhanced
electrochemical performance yet poses formidable obstacles. Here, we present a straightforward
synthetic strategy for in situ growth of sulfur and fluorine co-modified MnO nanoparticles onto sulfur
and nitrogen co-doped carbon scaffolds. This integration effectively mitigates volume variations and
enhances electrical conductivity. As a result, the SF-MnO/SNC composite demonstrates remarkable
cycling stability and rate capability when employed as a lithium-ion battery anode. Remarkably,
it achieves a high reversible capacity of 975 mAh g−1 after 80 cycles at 0.1 A g−1 and retains a
substantial capacity of 498 mAh g−1 even at a high rate of 2.0 A g−1. The concise synthesis method
and exceptional rate properties render the SF-MnO/SNC composite a promising anode material for
lithium-ion batteries. The strategy of simultaneously doping oxides and carbon will bring new ideas
to the research of oxide anodes.

Keywords: MnO; carbon; co-doped; anode; lithium-ion batteries; rate performance

1. Introduction

Environmental degradation and global warming have compelled humanity to explore
alternative energy sources for replacing traditional fossil fuels. Lithium-ion batteries (LIBs)
have emerged as a most prevalent energy source in daily life due to their long lifespan,
low operating costs, and minimal environmental impact [1–5]. However, the current use of
graphite as the anode material in LIBs poses a limitation: Its relatively low energy density
results in prolonged charging times, significantly hindering the rapid adoption of LIBs in
electric vehicles [6–9]. Therefore, the research into high-capacity negative electrode materi-
als is paramount for the swift development and widespread implementation of LIBs in the
electric vehicle industry. Indeed, transition-metal oxide materials have garnered significant
attention due to their remarkable reversible capacities, which far exceed those of traditional
graphite anode material [10–12]. Among these materials, MnO stands out as a particularly
promising anode candidate for high-performance LIBs. Its high theoretical capacity coupled
with its natural abundance, non-toxicity, and low cost make MnO an attractive choice for
advancing LIBs technology [13–15]. Nevertheless, despite these advantages, MnO faces
significant challenges that hinder its practical application. Notably, the material undergoes
substantial volume changes during charge-discharge cycles, leading to structural instability
and rapid capacity fade. Additionally, MnO exhibits low electrical conductivity, which
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limits its rate performance and further exacerbates its capacity decay. Overcoming these
challenges is crucial for realizing the full potential of MnO as a high-performance anode
material for LIBs.

Currently, two primary strategies have been devised to surmount the drawbacks
mentioned above. One approach involves reducing the particle size to the nanoscale. The
approach would make the diffusion path and storage time of lithium ions short while also
minimizing volume changes [16–19]. The second strategy entails integrating MnO with
conductive carbon. This not only enhances the electrical conductivity of the final composite
but also accommodates volume changes during cycling processes, thereby improving rate
capability and cycling stability [20–22]. Apparently, it is logical to assume that the syner-
gistic effect of these two strategies, that is, preparing a composite of MnO nanoparticles
and carbon, could lead to superior electrochemical performance. Indeed, many research
studies on MnO anodes had similar trains of thought [23–25]. However, research on how
to further enhance the electrochemical performance based on these foundations remains
relatively scarce.

Through a thorough analysis of a substantial body of literature on anode materials, we
think element doping to modify MnO and carbon at the same time can further elevate the
electrochemical performance. Sulfur doping of metal oxides has been shown to enhance
the reversible capacity of the material [26–28]. This is attributed to the modification
of the crystal structure and electronic properties of manganese oxide, facilitating better
lithium-ion insertion and extraction processes. Fluorine doping, on the other hand, has
been proven to improve the rate capability of metal oxides [29–31]. Fluorine atoms can
stabilize the structure and increase the conductivity of the material, allowing for faster
lithium-ion diffusion. Additionally, both sulfur and nitrogen are introduced into the carbon
matrix, which can significantly boost the conductivity of carbon, leading to improved
overall electrochemical performance [32–34]. Sulfur doping can increase the charge carrier
density, while nitrogen doping can introduce additional active sites and improve the
wettability of the carbon surface. Both these doping strategies offer promising avenues for
further enhancing the performance of MnO-based materials for use in lithium-ion batteries,
complementing the strategies of nanosizing and carbon composite formation. However,
conveniently synthesizing the composite of S, F co-doped MnO nanoparticles and S, N
co-doped carbon (donated as SF-MnO/SNC) still poses huge challenges. Therefore, there
is a pressing need to develop a concise synthesis route for the preparation of SF-MnO/SNC
and further explore their performance as anodes for LIBs.

In this research, we devised an efficient approach to synthesize a composite material
comprising S, F co-doped MnO nanoparticles embedded within S, N co-doped carbon. This
composite (SF-MnO/SNC) effectively mitigates the challenge of volume expansion and sig-
nificantly enhances electrochemical reaction kinetics. When employed as the anode material
in LIBs, the SF-MnO/SNC composite exhibits exceptional electrochemical performance.

2. Results and Discussion

Our synthesis methodology primarily encompasses two key stages: the formation
of the sol and the subsequent calcination process. Polyacrylamide was selected due to its
excellent coordination with manganese ions, enabling the formation of a high-quality gel.
Turning to the calcination process, polyacrylic amide serves a dual purpose, acting as both
a carbon source and a nitrogen source. Furthermore, NH4F contributes as a fluorine source
and provides an additional nitrogen source. Similarly, (NH4)2SO4 acts as a sulfur source
and provides an additional nitrogen source. Lastly, sodium chloride plays a pivotal role as
a templating agent, facilitating the creation of porous structures. The synthesis technology
revolves around freeze drying and calcination, which are straightforward, user-friendly,
and conducive to industrial-scale production.

The crystalline architectures of the four prepared specimens were scrutinized us-
ing XRD analysis. As depicted in Figure 1a, the diffraction peaks align with the (111),
(200), (220), (311), and (222) diffraction planes, respectively. The diffraction patterns of
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SF-MnO/SNC, S-MnO/SNC, F-MnO/NC, and MnO/NC products conform to the standard
MnO phase (JCPDS No. 07-0230). Based on Debye–Scherrer formula, it can be estimated
that the size of the MnO nanoparticles for the SF-MnO/SNC sample is 36 nanometers. To
delve deeper into the subtle structural nuances of these samples, the Raman spectra are pre-
sented in Figure 1b. Two prominent peaks, observed within the ranges of 1345~1360 cm−1

and 1585~1595 cm−1, in all four samples, correspond to the D-band and G-band of carbon,
respectively [35,36]. Additionally, the peaks located at 640~655 cm−1 in all four samples
are attributed to the stretching vibration of the Mn−O bond in manganese oxide, which is
in line with the previous literature [37,38]. These findings indicate that our products are
indeed composites of carbon and manganese oxide.
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Figure 1. XRD patterns (a) and Raman spectra (b) of SF-MnO/SNC, S-MnO/SNC, F-MnO/NC, and
MnO/NC composites.

X-ray photoelectron spectroscopy (XPS) was utilized to further elucidate the chemical
state of the SF-MnO/SNC composite. The high-resolution XPS spectra for C 1s, N 1s,
Mn 2p, Mn 3s, O 1s, S 2p, and F 1s are presented in Figures 2a–f and S1. The C 1s
spectrum (Figure 2a) reveals four deconvoluted peaks at 284.8, 286.1, 287.4, and 289.1 eV,
corresponding to C−C, C−N/C−S, C−O, and C=O bonds, respectively [28]. The presence
of C−N/C−S bonds signifies the successful doping of nitrogen and sulfur into the carbon
matrix of the SF-MnO/SNC composite. The N 1s XPS spectrum (Figure 2b) exhibits three
distinct peaks centered at 398.3, 400.5, and 402.9 eV, attributed to pyridinic N, pyrrolic N,
and graphitic N, respectively [39,40]. This finding reinforces the notion of nitrogen doping
in the carbon of the SF-MnO/SNC composite, aligning with the C 1s results. The doping
amount of N for carbon was estimated to be ~6.5 at% through XPS analysis. Nitrogen
doping introduces additional active sites within the carbon structure and improves the
conductivity. The Mn 2p spectrum (Figure 2c) displays two primary peaks positioned at
641.7 and 653.3 eV, indicative of the 2p3/2 and 2p1/2 spin-orbit split of Mn2+, confirming the
presence of Mn2+ in the composite. Satellite peaks at 644.4 and 655.3 eV are also observed,
corresponding to the 2p3/2 and 2p1/2 shake-up features. These findings are consistent with
previous reports on MnO materials [41,42]. To further probe the oxidation state of Mn, the
Mn 3s region was analyzed. The spacing between Mn 3s peaks varies according to the
oxidation state of Mn. In this study, the Mn 3s spectrum (Figure 2d) exhibits two peaks,
indicative of electron coupling. Notably, an energy separation of 6.0 eV in the spectrum
corresponds to the Mn2+ state [43], confirming the presence of MnO in the composite,
in agreement with the Mn 2p results. As depicted in Figure 2e, the deconvoluted O 1s
spectrum reveals four distinct peaks. The peak centered at 530.0 eV corresponds to the
Mn–O bond [44]. The peak situated at 531.0 eV is probably attributed to the Mn–O–C
bond [45]. The presence of Mn–O–C signifies a clear chemical interaction between the S,
F co-doped MnO and S, N co-doped carbon. Two further peaks at 532.2 eV and 533.6 eV
align with adsorbed hydroxyl groups [46]. Notably, the formation of Mn–O–C bonds
can significantly enhance charge transfer rates and promote electrochemical reversibility.
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Turning to Figure 2f, it presents the high-resolution XPS spectrum of S 2p. Two peaks at
163.2 and 164.0 eV are indicative of Mn–S bonds [47]. Additionally, the peaks at 165.0 eV
and 165.5 eV correspond to C–S–C bonds within the carbon matrix [48]. Moreover, the
broad peak centered at 168.2 eV is attributed to the formation of S–O bonds, arising from
oxidation of the sample [49]. These findings reinforce the successful doping of sulfur into
both MnO and carbon. The doping amount of S for MnO nanoparticles was estimated to
be ~7.9 at% through XPS analysis. Regarding the F 1s spectrum (Figure S1), it displays a
single peak at 687.0 eV, which stems from the Mn–F bond [50]. The finding corroborates the
successful doping of fluorine into MnO. The doping amount of F for MnO nanoparticles was
estimated to be ~2.9 at% through XPS analysis. The XPS results suggest that our products
are indeed composites of S, N co-doped carbon and S, F co-doped manganese oxide.
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To gain profound insights into the porous architecture of the SF-MnO/SNC composite,
N2 adsorption/desorption analysis was employed. As depicted in Figure 3a, the N2
sorption isotherm of the SF-MnO/SNC composite exhibits a Type IV profile, indicating a
significant abundance of pores within the material [51]. This composite boasts a substantial
BET-specific surface area of 346.23 m2 g−1, accompanied by a pore volume of 0.27 cm3 g−1.
Figure 3b illustrates the pore size distribution, revealing a predominance of mesopores
ranging from 2 to 8 nm, with macropores centered around 50 nm. The formation of
this porous structure in the SF-MnO/SNC composite can be attributed primarily to the
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decomposition of polyacrylic amide during calcination and the subsequent removal of the
sodium chloride template through washing procedures.
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Figure 3. N2 adsorption–desorption isotherm (a) and pore size distribution (b) of the SF-
MnO/SNC composite.

Figure 4a,b show the TEM images of the SF-MnO/SNC composite, clearly revealing
that the majority of S, F co-doped MnO nanoparticles exhibit an irregular cubic block mor-
phology, intimately adhered to the S, N co-doped carbon framework. Notably, the carbon
framework displays an abundance of pore structures, corroborating the BET analysis find-
ings. Figure S2 shows the particle size distribution of the SF-MnO/SNC composite, from
which we can know that the average particle size of MnO nanoparticles is 43 nanometers.
This result is very close to the data calculated by the Debye–Scherrer formula. Figure 4c
presents a HRTEM image, where the discernible lattice fringe spacing of 0.224 nm aligns
with the (200) plane of MnO. Additionally, Figures S3 and 4d–i display the corresponding
HAADF image and elemental mapping of the SF-MnO/SNC composite. The concentrated
clustering of Mn, O, and F elements within the nanoparticle regions confirms the successful
incorporation of F into MnO. The uniform distribution of C and N elements within the car-
bon framework validates N-doping into the carbon matrix. Similarly, the uniform presence
of S across both MnO nanoparticles and the carbon framework attests to the successful
doping of S into both MnO and carbon. These elemental mapping results reinforce that
our products are indeed composites composed of S, N co-doped carbon and S, F co-doped
manganese oxide, in harmony with the XPS outcomes.

The TEM image presented in Figure S4 for the S-MnO/SNC composite conclusively
verifies the growth of sulfur-doped MnO nanoparticles onto sulfur and nitrogen co-doped
porous carbon scaffold. Figure S5 subsequently showcases the corresponding HAADF
image along with elemental mapping, revealing a clear congregation of Mn and O elements
at the nanoparticle sites, confirming their identity. The uniform distribution of C and
N elements throughout the carbon framework attests to the successful nitrogen doping.
Additionally, the ubiquitous presence of sulfur across both MnO nanoparticles and the
carbon framework underscores sulfur’s incorporation into both MnO and carbon, rein-
forcing the composite’s composition as S, N co-doped carbon integrated with S-doped
manganese oxide. Similarly, the TEM image in Figure S6 for the F-MnO/NC composite
verifies the growth of fluorine-doped MnO nanoparticles on an N-doped porous carbon
structure. Figure S7 displays the accompanying HAADF image and elemental mapping,
demonstrating the accumulation of Mn, O, and F elements at the nanoparticle locations,
indicative of fluorine doping in MnO. The uniformity of C and N elements within the
carbon framework confirms nitrogen doping. These elemental mapping results further
validate the composition of the F-MnO/NC composite as a blend of N-doped carbon and
fluorine-doped manganese oxide. Lastly, the TEM image in Figure S8a for the MnO/NC
composite verifies the presence of MnO nanoparticles grown on an N-doped porous car-
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bon framework. Figure S8b–f present the corresponding HAADF image and elemental
mapping, showcasing the clustering of Mn and O elements at the nanoparticle sites. The
uniform distribution of C and N elements within the carbon framework verifies nitrogen
doping. These elemental mapping outcomes conclusively indicate that the MnO/NC
composite comprises N-doped carbon integrated with manganese oxide. The particle size
of the MnO nanoparticles for MnO/NC composite is about 200 nm. The particle size of the
MnO nanoparticles for S-MnO/SNC composite is about 150~180 nm. The particle size of
the MnO nanoparticles for F-MnO/NC composite is about 80~150 nm. It is obvious that
doping with sulfur or fluorine alone will result in a decrease in particle size, while doping
with both sulfur and fluorine will result in a smaller particle size. This phenomenon is
consistent with the literature that doping can reduce particle size.
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S (h), and F (i) for SF-MnO/SNC composite.

The electrochemical properties of SF-MnO/SNC, S-MnO/SNC, F-MnO/NC, and
MnO/NC were investigated as potential anode materials for LIBs. Figure 5a presents the
initial four cyclic voltammetry (CV) curves of the SF-MnO/SNC anode at a scan rate of
0.2 mV s−1. During the initial discharge cycle, a peak observed at 1.72 V disappears in
subsequent discharges, possibly attributed to the formation of a solid electrolyte interphase
(SEI) film [52]. The broad reduction peaks in the range of 0.4 to 0.8 V are likely due to the
insertion of lithium ions into MnO and the formation of Mn and Li2O [53]. In subsequent
discharge cycles, these reduction peaks shift to a lower potential range of 0.2 to 0.5 V,
primarily because of changes in the electrode’s microstructure and reaction kinetics after the
first cycle [54]. During the initial charge cycle, the SF-MnO/SNC anode exhibits a prominent
oxidation peak at 1.26 V, corresponding to the release of lithium ions from Li2O and the
conversion of Mn to MnO [55]. Notably, a weaker oxidation peak at 2.34 V is also observed:
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a phenomenon reported elsewhere, stemming from the formation of higher oxidation states
of manganese (Mn3+ or Mn4+) and enhanced conductivity facilitated by heteroatom-doped
carbon, thereby contributing additional capacity to the electrode material [56]. During
subsequent charge cycles, the oxidation peak shifts to a slightly higher potential of 1.31 V.
Comparing the third and fourth cyclic curves, minimal changes are evident, underscoring
the excellent electrochemical reversibility of the SF-MnO/SNC anode.
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and Coulombic efficiency of the SF-MnO/SNC anode, in comparison with S-MnO/SNC, F-MnO/NC,
and MnO/NC anodes, all tested at 0.1 A g−1. (d) Rate performance evaluation of the SF-MnO/SNC,
S-MnO/SNC, F-MnO/NC, and MnO/NC anode materials. (e) Cycling stability and Coulom-
bic efficiency of the SF-MnO/SNC anode after activation, tested under a high current density of
2.0 A g−1.

Figure 5b presents a diverse range of discharging–charging potential profiles span-
ning from 0.01 to 3 V for the SF-MnO/SNC anode material under a current density of
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0.1 A g−1. Notably, the initial discharge and charge capacities for the SF-MnO/SNC anode
are 1444 and 896 mAh g−1, respectively, with an initial Coulombic efficiency of 62%. The
capacity loss observed during the initial cycle is probably because of the formation of a
SEI layer. During discharge, the voltage plateau around 0.5 V signifies the reduction of
MnO to manganese, whereas during charging, the voltage plateau near 1.3 V represents
the oxidation of Mn back to MnO. These findings are in harmony with the CV results.
Following the initial cycle, the potential profiles exhibit minimal variations, indicative of
exceptional electrochemical reversibility for the SF-MnO/SNC anode.

Figure 5c presents the cycling performance of SF-MnO/SNC, S-MnO/SNC, F-MnO/NC,
and MnO/NC anodes over 80 cycles at a current density of 0.1 A g−1. Following 80 cycles,
the SF-MnO/SNC anode demonstrates a remarkable discharge capacity of 975 mAh g−1,
which is 2.6 times of the theoretical capacity for commercial graphite anodes. The average
Coulombic efficiency across all 80 cycles is approximately 98%, suggesting excellent elec-
trochemical stability for the SF-MnO/SNC anode. Notably, a slight increase in capacity
is observed during cycling, which, according to extensive literature, can be attributed to
particle pulverization, resulting in smaller particle sizes and the emergence of new electro-
chemical active sites [57]. In contrast, the MnO/NC electrode exhibits the lowest discharge
capacity of 618 mAh g−1 after 80 cycles. The S-MnO/SNC and F-MnO/NC electrodes,
with discharge capacities of 738 and 742 mAh g−1, respectively, outperform the MnO/NC
electrode, demonstrating that the incorporation of sulfur and fluorine enhances reversible
capacity. Furthermore, the F-MnO/NC electrode exhibits superior cyclic stability compared
to S-MnO/SNC, indicating that fluorine also contributes to improved electrode stability.
The SF-MnO/SNC electrode, with the best overall electrochemical performance, under-
scores the advantage of simultaneously incorporating sulfur and fluorine for enhancing
electrochemical properties.

Figure 5d showcases the discharge capacities achieved at varying current densities
ranging from 0.1 to 2.0 A g−1. Notably, the SF-MnO/SNC anode demonstrates the superior
rate capability, delivering discharge capacities of 878, 827, 695, 607, and 498 mAh g−1 at the
10th cycle as the current density escalates from 0.1 to 2.0 A g−1. Remarkably, even when the
current density is reverted to 0.1 A g−1, the discharge capacity recovers to 918 mAh g−1,
proving that electrode materials have good adaptability to changes in current density. In
contrast, the S-MnO/SNC electrode exhibits lower discharge capacities than SF-MnO/SNC
anode, achieving 702, 607, 523, and 415 mAh g−1 at the 10th cycle under 0.2, 0.5, 1.0, and
2.0 A g−1, respectively. Similarly, the performance of the F-MnO/NC electrode is also
worse than the SF-MnO/SNC anode, with discharge capacities of 650, 552, 469, and
349 mAh g−1 under the same conditions. Among these electrodes, the MnO/NC elec-
trode displays the poorest performance, with discharge capacities of 518, 443, 382, and
304 mAh g−1 at the 10th cycle under the same conditions. Figure 5e presents the cycling
stability of the SF-MnO/SNC anode at 2.0 A g−1 for 400 cycles, following an initial activa-
tion period of five cycles. This graph underscores the exceptional cyclic durability of the
SF-MnO/SNC electrode, which maintains a substantial discharge capacity of 460 mAh g−1

even after 400 cycles at 2.0 A g−1, while boasting an average Coulombic efficiency of 99%
throughout the entire cycling process.

The electrochemical impedance spectra (EIS) for the SF-MnO/SNC, S-MnO/SNC,
F-MnO/NC, and MnO/NC negative electrodes after five cycles are presented in Figure 6a.
These spectra were fitted using the equivalent circuit depicted in Figure S9, and the corre-
sponding fitted data are provided in Table S1. Specifically, the SEI film resistances (Rf) for
the SF-MnO/SNC, S-MnO/SNC, F-MnO/NC, and MnO/NC electrodes are 27, 41, 36, and
62 Ω, respectively. Similarly, the charge transfer resistances (Rct) are 35, 54, 51, and 70 Ω.
The notably lower Rf and Rct values observed for S-MnO/SNC and F-MnO/NC compared
to MnO/NC underscore the effectiveness of sulfur and fluorine doping in individually
reducing electrochemical impedance. Furthermore, the lowest Rf and Rct values achieved
by SF-MnO/SNC indicate a synergistic effect from simultaneous sulfur and fluorine dop-
ing, leading to optimal electrochemical impedance, which facilitates rapid lithium ion and
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electron transport, thereby enhancing electrochemical performance [58]. To quantify this
further, we calculated the lithium-ion diffusion coefficients (DLi

+) for the SF-MnO/SNC,
S-MnO/SNC, F-MnO/NC, and MnO/NC electrodes using Equation (1) [59]:

DLi
+ = (R2T2)/(2A2n4F4 C2σ2) (1)
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and (b) data fitting outcomes of plots for various anodes, including SF-MnO/SNC, S-MnO/SNC,
F-MnO/NC, and MnO/NC.

In this equation, R, T, A, n, F, and C stand for the gas constant, Kelvin temperature, elec-
trode surface area, number of electrons involved in the electrochemical reaction, Faraday
constant, and lithium-ion concentration in the electrode, respectively. The value of σ is the
gradient fitted from the ZI versus ω−1/2 plot in the Warburg region. As shown in Figure 6b,
the σ values for SF-MnO/SNC, S-MnO/SNC, F-MnO/NC, and MnO/NC are 37.2, 74.4,
87.4, and 127.9, respectively. Applying Equation (1), we obtain DLi

+ values of 1.4 × 10−16,
3.5 × 10−17, 2.5 × 10−17, and 1.1 × 10−17 cm2 s−1 for the respective electrodes. Evi-
dently, the higher DLi

+ values for S-MnO/SNC and F-MnO/NC compared to MnO/NC
confirm that individual sulfur and fluorine doping accelerates lithium-ion diffusion, un-
derscoring the benefits of these doping strategies. The exceptional DLi

+ value exhibited by
SF-MnO/SNC underscores the synergy attained through concurrent sulfur and fluorine
doping, resulting in unparalleled electrochemical reaction kinetics and best rate perfor-
mance. As a result, the SF-MnO/SNC anode demonstrates remarkable electrochemical
performance, standing out as the optimal choice.

To further delve into the underlying reasons for the exceptional electrochemical per-
formance of the SF-MnO/SNC anode, CV curves were recorded at various scanning rates
ranging from 0.2 to 1.2 mV s−1. As evident from Figure 7a, minimal variations in the
electrode’s configuration were observed across the varying scanning rates, suggesting
electrode stability. Typically, the relationship between current density (i) and scanning
speed (v) adheres to Equation (2) [60]:

i = avb (2)

Utilizing Equation (2), the gradient of the log v–log i plot yields the value of b. When
0.5 < b < 1, it signifies a hybrid process encompassing both capacitive-dominated and
ionic diffusion-controlled mechanisms [61]. As depicted in Figure 7b, the b values for
the cathodic and anodic peaks are 0.79 and 0.66, respectively, confirming that the lithium-
ion storage in the SF-MnO/SNC anode proceeds through a concurrent combination of
capacitive and ionic diffusion-controlled processes. Furthermore, the contribution ratios of
these two mechanisms can be quantitatively determined using Equation (3) [62]:

i = k1v + k2v1/2 (3)
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Figure 7c demonstrates that at a scan rate of 1.0 mV s−1, 64.3% of the capacitive contri-
bution stems from pseudo-capacitive processes. Additionally, as illustrated in Figure 7d,
with the increase in scan rates from 0.2 to 1.2 mV s−1 (0.2, 0.4, 0.6, 0.8, 1.0, and 1.2 mV s−1),
the capacitance contribution rates gradually rise to 44.6%, 50.7%, 55.9%, 60.0%, 64.3%,
and 67.7%, respectively. These findings confirm that the capacitive-dominated process
dominates the SF-MnO/SNC anode when the scan rates exceed 0.4 mV s−1. Under high
scan rates, the capacitive-dominated process facilitates rapid lithium-ion storage, thereby
enhancing the exceptional rate performance of the SF-MnO/SNC negative electrode.
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3. Experimental Section
3.1. Synthesis of SF-MnO/SNC Composite

The SF-MnO/SNC sample was synthesized through the subsequent steps. Initially,
0.8 g of polyacrylamide, 0.8 g of NaCl, 0.04 g of ammonium sulfate ((NH4)2SO4), and 0.04 g
of ammonium fluoride (NH4F) were combined in 40 mL of distilled water and agitated for
10 min to produce Solution 1. Subsequently, 1.8 g of manganese gluconate was dissolved in
20 mL of distilled water and stirred for 10 min to form Solution 2. Next, Solution 2 was
introduced dropwise into Solution 1, followed by stirring for 60 min. The resulting gel
was subjected to cold treatment at −18 ◦C for 12 h, thereafter undergoing freeze drying for
36 h. The obtained powders were then heated to 650 ◦C for 120 min in an inert atmosphere.
Finally, the materials were rinsed with distilled water, filtered under vacuum, and dried
at 60 ◦C to collect the SF-MnO/SNC sample. For comparison purposes, the S-MnO/SNC
sample was prepared using the same procedure but excluding NH4F while keeping all
other conditions unchanged. Similarly, the F-MnO/NC sample was synthesized without
(NH4)2SO4, keeping the rest of the synthesis conditions constant. Lastly, the MnO/NC
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sample was obtained by omitting both NH4F and (NH4)2SO4, with all other synthesis
parameters remaining the same.

3.2. Materials Characterization

The XRD patterns were acquired utilizing a Rigaku SmartLab SE diffractometer
(Rigaku, Tokyo, Japan). The transmission electron microscopy (TEM) imagery and energy-
dispersive spectroscopy (EDS) outcomes were derived from a JEOL JEM-F200 microscope
(JEOL, Tokyo, Japan). Nitrogen adsorption-desorption isotherms of the sample were pre-
cisely measured on a Micromeritics ASAP 2460 analyzer (Micromeritics, Norcross, GA,
USA). The Raman spectroscopic analysis was conducted on a Horiba LabRAM HR Evolu-
tion system (Horiba, Kyoto, Japan). For XPS, data were collected via a Thermo Scientific
K-Alpha instrument (Thermo Scientific, Waltham, MA, USA). The electrochemical as-
sessments were systematically performed using a LANHE Battery Test System (LANHE,
Wuhan, China) in conjunction with an electrochemical workstation (Chenhua, Shanghai,
China), specifically the CHI660C model. Additional details pertaining to electrode fabrica-
tion, battery construction, and the execution of electrochemical tests are provided in the
Supporting Information.

4. Conclusions

To summarize, a concise method was employed to successfully synthesize a composite
consisting of S, F co-doped MnO nanoparticles integrated with an S, N co-doped porous
carbon framework. The battery performance assessments affirmed that the SF-MnO/SNC
anode demonstrates an impressive operational lifespan and superior rate capability. No-
tably, even after enduring 400 cycles at a current density of 2.0 A g−1, the SF-MnO/SNC
anode maintained a remarkable capacity of 460 mAh g−1. This exceptional rate perfor-
mance is likely attributed to the synergistic effect of the S, F co-doped MnO nanoparticles
paired with the S, N co-doped porous carbon framework, which significantly mitigates
volume expansion while dramatically enhancing the lithium-ion diffusion rate and conduc-
tivity. This research offers invaluable insights into the design of high-performance metal
oxide-based anode materials for LIBs.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/molecules29184306/s1. Figure S1: XPS spectrum of the F 1s
region for SF-MnO/SNC composite; Figure S2: Nanoparticle size distribution diagram for SF-
MnO/SNC composite; Figure S3: HAADF image of the elemental mapping for SF-MnO/SNC
composite; Figure S4: TEM image of S-MnO/SNC composite; Figure S5: HAADF image of the
elemental mapping and EDS maps of S-MnO/SNC composite; Figure S6: TEM image of F-MnO/NC
composite; Figure S7: HAADF image of the elemental mapping and EDS maps of F-MnO/NC
composite; Figure S8: TEM image, HAADF image of the elemental mapping and EDS maps of
MnO/NC composite; Figure S9: Equivalent circuit; Table S1: EIS parameters for the SF-MnO/SNC,
S-MnO/SNC, F-MnO/NC, and MnO/NC electrodes derived through the fitting of experimental data
to an equivalent circuit model.
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