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Abstract: This study synthesized biochar through a one-pot pyrolysis process using IALG as the raw
material. The physicochemical properties of the resulting biochar (IALG-BC) were characterized and
compared with those of biochar derived from acid-treated lignin with the ash component removed
(A-IALG-BC). This study further investigated the adsorption performances and mechanisms of these
two lignin-based biochars for Pb(II). The results revealed that the high ash content in IALG, primarily
composed of Na, acts as an effective catalyst during pyrolysis, reducing the activation energy and
promoting the development of the pore structure in the resulting biochar (IALG-BC). Moreover, after
pyrolysis, Na-related minerals transformed into particulate matter sized between 80 and 150 nm,
which served as active adsorption sites for the efficient immobilization of Pb(II). Adsorption results
demonstrated that IALG-BC exhibited a significantly superior adsorption performance for Pb(II)
compared to that of A-IALG-BC. The theoretical maximum adsorption capacity of IALG-BC for Pb(II),
derived from the Langmuir model, was determined to be 809.09 mg/g, approximately 40 times that
of A-IALG-BC. Additionally, the adsorption equilibrium for Pb(II) with IALG-BC was reached within
approximately 0.5 h, whereas A-IALG-BC required more than 2 h. These findings demonstrate that
the presence of inorganic mineral components in IALG plays a crucial role in its resource utilization.

Keywords: industrial alkali lignin; pyrolysis; biochar; adsorption; Pb(II)

1. Introduction

Lignin, as the second largest natural polymer in nature after cellulose, has a high
carbon content (30–40 wt.%), abundant surface functional groups, and resistance to bio-
chemical degradation, making it widely applicable in many fields [1]. However, lignin is
a by-product of the papermaking industry, with an annual global production exceeding
50 million tons, leading to severe environmental issues [2,3]. Currently, lignin is mainly
used as a low-value fuel for power generation, with only about 2% being developed into
high-value functional materials such as water reducers, adhesives, rubber, and carbon
fibers [1]. The resource utilization of lignin is primarily constrained by its unique physi-
cal and chemical properties, such as its richness in organic and inorganic impurities and
complex structure [4]. The development of green, efficient technologies for the resource
utilization of lignin is urgent and of significant importance.

Accompanied by the development of socio-economic conditions, the extensive use of
heavy metal products has brought about severe heavy metal pollution [5]. These pollu-
tants can gradually accumulate and intensify through the food chain, ultimately posing
a threat to human health [6]. For example, the intake of lead can adversely affect the
human brain and nervous system, as well as damage the hematopoietic system and cause
irreversible harm to internal organs such as the kidneys and liver [7,8]. Consequently,
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there has been widespread attention paid towards developing targeted technologies to
address heavy metal pollution [9]. Currently, the primary methods for treating heavy
metal-containing wastewater include chemical precipitation, electrochemical treatment,
ion exchange, membrane filtration, phytoremediation, and adsorption [10–12]. Among
these, adsorption is widely promoted due to its simplicity, high removal efficiency, strong
applicability, reusability, and low cost [10,13]. Biochar, which is produced by the pyrolysis
of biomass materials under limited or oxygen-free conditions, has a high carbon content,
well-developed porous structure, and abundant surface functional groups [14]. Extensive
research has demonstrated that biochar exhibits an excellent adsorption performance for
heavy metal ions in water, making it a highly promising adsorbent [9].

Notably, biochar is constrained by its inherent surface charge, pore structure, and active
adsorption sites, which result in an overall inferior heavy metal adsorption performance
compared to other adsorbents like activated carbon, molecular sieves, and MOFs [10,13].
For example, research by Tan et al. found that biochar prepared from apple tree branches
had a theoretical maximum adsorption capacity for Pb(II) of 53.90 mg/g [15]. In contrast,
Zhang et al. reported that activated carbon derived from rape straw had a theoretical
maximum adsorption capacity for Pb(II) of 253.20 mg/g, which is about five times that
of apple tree branch biochar [16]. Studies have shown that functionalized biochar with
metal salts can significantly enhance its heavy metal adsorption performance, garnering
widespread attention [17,18]. Typically, metal salts perform a variety of functions: they
serve as activators to facilitate the evolution of biochar’s pore architecture, offer plentiful
adsorption sites by acting as active centers, and function as modifiers to alter the physico-
chemical attributes of biochar, such as the surface charge and pH [9,19]. For example, Chen
et al. discovered that pomelo peel biochar modified with FeCl3 and Na2CO3 achieved a
theoretical maximum adsorption capacity for Pb(II) of 205.39 mg/g, over two times that
of pristine biochar [17]. While metal salt treatment improves the adsorption performance
of biochar, it also increases production costs and poses secondary environmental issues.
Interestingly, certain biomass sources, being agro-industrial by-products, are naturally rich
in metal minerals and can directly produce high-performance biochar, such as industrial
alkaline lignin [20].

In this study, industrial alkali lignin (IALG), rich in metal minerals, was used as a raw
material to produce biochar (IALG-BC) through direct pyrolysis at 700 ◦C using a one-pot
method. The surface chemical characteristics, pore features, surface functional groups, and
surface morphology of IALG-BC were analyzed, and its effectiveness in immobilizing Pb(II)
in wastewater was examined. Additionally, biochar derived from acid-treated IALG, which
had its ash content removed (acid-treated IALG-based biochar (A-IALG-BC)), was used as a
comparison to elucidate the role of ash (metal minerals) in the preparation and application
process of biochar. This research aims to provide new perspectives and technical support
for the resourceful utilization of industrial alkali lignin.

2. Results and Discussion
2.1. Thermal Behavior and Kinetic Analysis of Lignin

Thermogravimetric analysis (TGA) was utilized to investigate the pyrolysis behavior
of IALG and A-IALG. As illustrated in Figure 1 (TG and DTG curves), the pyrolysis process
of IALG primarily encompasses three stages: the dehydration stage (room temperature to
153.65 ◦C), the main pyrolysis stage of lignin (153.65 to 518.45 ◦C), and the carbonization
stage (518.45 to 800 ◦C). The precursor of IALG, specifically the lignin in the biomass,
possesses a high oxygen content (18–40 wt.%) and an abundance of oxygen-containing
functional groups, which confer relatively good water retention properties onto IALG.
As the pyrolysis temperature escalates, the free water within IALG evaporates, leading
to a mass loss in IALG. With a continued increase in temperature, the lignin undergoes
considerable decomposition. Nevertheless, due to the intricate chemical structure of lignin,
which comprises both less thermally stable side chains and more thermally stable chemical
bonds, the pyrolysis range of lignin is extensive, resulting in a broad and blunt peak on the
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DTG curve [21]. The most significant mass loss occurs during the primary pyrolysis stage
of lignin (up to 35.33 wt.%), with the maximum weight loss rate and maximum constant
rate occurring at −3.26 wt.%/min and 336.47 ◦C, respectively. Following the termination of
lignin pyrolysis, the reaction proceeds to the carbonization stage. In this stage, the carbon
structure derived from lignin undergoes further decomposition, and the pore structure
progressively forms, resulting in relatively minor mass loss. Notably, a distinct narrow
weight loss peak centered at 738.68 ◦C is observed for IALG during this stage, likely
attributable to the decomposition of the minerals present in IALG. Comparatively, the TG
and DTG curves of A-IALG exhibit a similar profile to that of IALG, with the exception of
the weight loss stage near 738 ◦C. This observation further corroborates that the weight loss
peak in IALG is due to the mineral content, which is largely removed in A-IALG post-acid
treatment. Moreover, the initial pyrolysis temperature and the temperature corresponding
to the maximum pyrolysis rate of A-IALG during the main pyrolysis stage are 163.53 ◦C
and 374.63 ◦C, respectively, both of which are significantly higher than those of IALG. This
indicates that the mineral content in IALG facilitates self-catalysis, lowering the pyrolysis
temperature and promoting the decomposition of IALG. Similar findings can be found in
previous studies [22,23].
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Figure 1. Thermal pyrolysis behavior of IALG and A-IALG.

Kinetic parameters, including the activation energy (E) and the pre-exponential factor
(A), can be used to qualitatively characterize the pyrolysis behavior of reactants. These
parameters can be derived from thermogravimetric analysis (TGA) data. To further substan-
tiate the catalytic influence of minerals within IALG on its pyrolysis process, a first-order ki-
netic model was employed to fit the primary pyrolysis processes of IALG and A-IALG, and
the corresponding pyrolysis parameters were calculated according to Equations (1)–(3) [24].
As presented in Table 1, the E of IALG was determined to be 14.27 J/mol, approximately
one-third of that of A-IALG. This indicates that the energy required for the reaction during
the primary pyrolysis stage of IALG is significantly lower. This observation aligns with the
results showing that both the initial pyrolysis temperature and the temperature correspond-
ing to the maximum pyrolysis rate during the primary pyrolysis stage of IALG were lower
than those of A-IALG. These findings suggest that the higher mineral content in IALG can
effectively reduce the energy demand during its reaction process, thereby facilitating its
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extensive decomposition. This conclusion is consistent with the results reported in previous
studies [25].

dx
dt

= A exp
[(

−E
RT

)
(1 − x)

]
(1)

x =
w0 − wt

w0 − wf
(2)

ln
[
− ln(1 − x)

T2 ]= ln[
AR
HE

(
1 − 2RT

E

)]
− E

RT
(3)

where E is the activation energy (kJ/mol); A is the pre-exponential factor (1/min); T is
the temperature (K); t is the time (min); R is a universal gas constant (J/mol K); x is the
conversion of feedstock; w0 is the initial mass of the sample (mg); wt is the mass of the
sample at time (t); and wf is the mass of the sample at the end of pyrolysis.

Table 1. Kinetic parameters of IALG and A-IALG.

E (J/mol) A (1/min) R2

IALG 14.27 5.78 0.9982
A-IALG 38.44 10.39 0.9896

2.2. Physicochemical Properties of Biochar
2.2.1. Porosity Analysis

The N2 adsorption/desorption isotherms of IALG-BC and A-IALG-BC are depicted in
Figure 2. According to the International Union of Pure and Applied Chemistry (IUPAC)
classification, the N2 adsorption/desorption isotherm of IALG-BC corresponds to a hybrid
of type I and type IV, with an H4 type hysteresis loop [26]. This indicates that IALG-BC
features a rich pore structure, predominantly composed of micropores and mesopores.
In contrast, the N2 adsorption/desorption isotherm of A-IALG-BC can be classified as
a hybrid of type III and type IV, with an H3 type hysteresis loop. This pattern suggests
that A-IALG-BC is characterized by the dominant presence of macropores and an uneven
pore structure.
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The pore analysis results, as depicted in Table 2, demonstrate that the specific surface
area of IALG-BC is 106.65 m2/g, which is approximately 50 times greater than that of
A-IALG-BC, measured at 2.81 m2/g. This significant disparity indicates that IALG-BC
exhibits a markedly more developed pore structure. The enhanced porosity of IALG-BC
can be attributed to the abundant minerals present in lignin. Previous studies have docu-
mented that alkali metal salts, such as NaOH, KOH, and Na2CO3, possess unique catalytic
properties and pore-forming capabilities, making them effective activating agents for the
synthesis of porous carbon materials [27,28]. IALG inherently contains a substantial amount
of Na-related minerals (see Section 3), which likely facilitate the formation and growth of
the pore structure in the resulting carbon materials based on activation mechanisms such
as those depicted in Equations (4)–(8):

6NaOH + 2C → 2Na + 3H2 + 2Na2CO3 (4)

Na2CO3 → Na2O + CO2 (5)

CO2 + C → 2CO (6)

Na2CO3 + 2C → 2Na + 3CO (7)

C + Na2O → 2Na + CO (8)

Table 2. Porosity properties of IALG-BC and A-IALG-BC.

Specific Surface
Area (m2/g)

Mesopore
Specific Surface

Area (m2/g)

Total Pore
Volume (cm3/g)

Mesopore Pore
Volume (cm3/g)

IALG-BC 106.65 38.09 0.09 0.02
A-IALG-BC 2.81 0.91 0.01 /

2.2.2. Surface Functional Group Analysis

The FT-IR spectra of IALG-BC and A-IALG-BC, as illustrated in Figure 3, indicate a
diverse array of surface functional groups. Notably, the absorption peak in the range of
3450–3380 cm−1 is attributed to the stretching vibrations of -OH groups [29]. The absorp-
tion peaks observed at 2930 and 2840 cm−1 correspond to the symmetric and asymmetric
stretching vibrations of C-H bonds [29]. The peak at 1700 cm−1 is indicative of the stretching
vibrations of C=O groups, while the absorption peaks located between 1120 and 1020 cm−1

are associated with the stretching vibrations of C-O-C groups [30,31]. In contrast, the FT-IR
spectrum of A-IALG-BC reveals surface functional groups similar to those of IALG-BC,
but with generally more intense peaks. This suggests that A-IALG-BC possesses a greater
abundance of surface functional groups, particularly oxygen-containing functionalities
such as -OH, C=O, and C-O-C groups. Consistent with prior findings, it can be inferred that
the presence of minerals in IALG facilitates deoxygenation reactions during the pyrolysis
process [32]. Additionally, the fingerprint region of A-IALG-BC exhibits numerous absorp-
tion peaks (860, 812, 705, 585, and 510 cm−1), primarily attributed to the stretching and
bending vibrations of C-H bonds within the carbon skeletal structure and the vibrations of
other single-bond surface functional groups [33,34]. These functional groups are notably
absent in IALG-BC, indicating that the substantial mineral content in IALG not only aids in
deoxygenation but also promotes further dehydrogenation in the resulting carbon material.

2.2.3. Surface Morphology Analysis

The SEM images of IALG-BC and A-IALG-BC, as depicted in Figure 4, reveal distinct
morphological differences. The surface of IALG-BC is characterized by its rough texture
and an extensive, well-developed pore structure, corroborating the findings from the
N2 adsorption/desorption isotherm analysis. Closer inspection indicates that the pore
framework of IALG-BC is interspersed with numerous particulate matter, with diameters
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ranging from 80 to 150 nm. Given the relatively high ash content of the precursor material,
it is inferred that these particles predominantly consist of Na-related minerals [35,36].
The distinctive pore architecture of IALG-BC, marked by its rough surface and abundant
mineral particulates, imparts a high capacity for the adsorption and immobilization of
pollutants. In contrast, the surface morphology of A-IALG-BC appears relatively smooth
and lacks a discernible pore structure. This observation can be attributed to the acid
treatment process, which effectively removed a substantial portion of the ash content from
the raw material. Consequently, the processed material exhibits a less developed pore
network compared to IALG-BC.
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2.2.4. Crystalline Mineral Analysis

The crystalline phases of the minerals present in IALG-BC and A-IALG-BC were in-
vestigated using X-ray diffraction (XRD) analysis, with the results depicted in Figure 5. The
XRD patterns reveal that IALG-BC contains a substantial amount of Na-related minerals,
specifically Na2SiO3, Na2CO3, and NaCl, underscoring the significance of Na as a mineral
constituent in IALG-BC [36]. Complementary to the SEM observations, it is apparent that
these Na-related minerals predominantly exist as nanoparticles distributed on the surface
of IALG-BC. Conversely, A-IALG-BC does not exhibit any prominent mineral diffraction
peaks, which is consistent with the removal of ash during the acid treatment process. This
observation aligns with the SEM findings presented in Figure 4. Moreover, the XRD pattern
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of A-IALG-BC displays two broad diffraction peaks around 23◦ and 45◦, corresponding to
the (002) reflection and the superposition of (100) reflections of the graphitic-type lattice,
respectively [37].
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2.3. Adsorption Performance of Industrial Alkali Lignin-Based Biochars
2.3.1. Effect of Pb(II) Initial Concentration

As illustrated in Figure 6, IALG-BC exhibits an exceptional adsorption performance
for Pb(II), with the corresponding adsorption capacity progressively increasing with the
initial concentration of Pb(II). For example, at an initial Pb(II) concentration of 50 mg/L, the
adsorption capacity of IALG-BC is 24.11 mg/g. This capacity escalates to a maximum of
414.98 mg/g when the initial Pb(II) concentration is elevated to 1000 mg/L. This enhanced
adsorption capability can be attributed to the abundance of active adsorption sites on
the surface of IALG-BC. At higher concentrations of Pb(II), the increased mass transfer
driving force improves the interaction between Pb(II) ions and the adsorbent, thereby
promoting the adsorption reaction [38]. In contrast, while the initial Pb(II) concentration
similarly influences A-IALG-BC, its adsorption capacities are markedly lower, ranging from
3.30 to 16.18 mg/g. This significant difference further underscores the role of Na-related
minerals in IALG-BC, which act as highly efficient active adsorption sites for Pb(II), thereby
substantially enhancing its adsorption capacity.

2.3.2. Effect of Contact Time

The adsorption capacities of IALG-BC and A-IALG-BC for Pb(II) as a function of the
reaction time are illustrated in Figure 7. IALG-BC exhibits rapid Pb(II) adsorption within
the initial 0.5 h, during which the adsorption capacity increases sharply, accounting for
98.44% of the total adsorption capacity. As the reaction time extends, the adsorption rate
of Pb(II) by IALG-BC decelerates, showing only minor variations (a range of 1.46 mg/g),
indicating that the system is approaching equilibrium. The short equilibrium time for Pb(II)
adsorption by IALG-BC suggests that the process is predominantly governed by chemical
interactions rather than physical processes such as pore filling [39]. Typically, chemical
adsorption processes are faster, whereas physical adsorption processes tend to be more
time-consuming [40]. Based on prior analyses, it is evident that the Na-related minerals
in IALG-BC serve as active adsorption sites, primarily facilitating Pb(II) uptake through
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chemical mechanisms such as precipitation and ion exchange. During the initial phase of
the reaction, the surface of IALG-BC possesses numerous available active adsorption sites,
which accelerates the adsorption process and leads to a rapid increase in the adsorption
capacity. As the reaction progresses, these active sites are gradually depleted, reducing the
number of available sites and consequently slowing down the adsorption process [20]. In
contrast, the adsorption capacities of A-IALG-BC at various reaction times are consistently
lower than those of IALG-BC, with the adsorption process attaining equilibrium only after
approximately 2 h. This indicates that the removal of ash results in a decreased adsorption
capacity and a slower adsorption rate for the resulting biochar.
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2.3.3. Effect of Ambient Temperature

As depicted in Figure 8, the impacts of the ambient temperature on the adsorption of
Pb(II) by both IALG-BC and A-IALG-BC exhibit a similar pattern, whereby an increase in
temperature enhances the adsorption capacity of the respective biochars. For example, at
an ambient temperature of 15 ◦C, the adsorption capacities of IALG-BC and A-IALG-BC
for Pb(II) are 79.02 mg/g and 4.16 mg/g, respectively. When the temperature is elevated to
45 ◦C, the corresponding adsorption capacities rise to 98.27 mg/g and 15.17 mg/g, respec-
tively. This phenomenon can be attributed to the increased thermal motion of adsorbates
(such as Pb(II)) at higher temperatures, which enhances the likelihood of collisions be-
tween adsorbates and adsorption sites, particularly those that are less accessible at lower
temperatures, thus facilitating the adsorption process [16]. Additionally, some adsorption
reactions are endothermic and require an input of energy; thus, an increase in ambient
temperature can supply the necessary energy to enhance the adsorption efficiency. It is well
documented that the adsorption processes for pollutants by most biochars are endothermic
and energy-consuming [16,17].
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2.3.4. Effect of Solution pH

The pH of the solution exerts a direct influence on the speciation of the adsorbate as
well as on the surface charge and other chemical properties of the adsorbent, consequently
affecting the adsorption process (see Figure 9a). Accordingly, the selected pH range for
investigating the impact of the solution pH on the Pb(II) adsorption by IALG-BC and
A-IALG-BC was 1–5 (see Figure 9b). Generally, as the pH of the solution increases, there
is a gradual enhancement in the adsorption capacities of IALG-BC and A-IALG-BC for
Pb(II), indicating that higher solution pH values facilitate the adsorption reaction. At
lower solution pH values (pH = 1–2), the adsorption performances of both IALG-BC and
A-IALG-BC for Pb(II) are relatively poor. This can be attributed to the protonation of the
biochar surface (Equations (9) and (10)) and the partial degradation of active adsorption
sites (Equations (11) and (12)) under these acidic conditions. The protonated biochar
surface experiences strong electrostatic repulsion with Pb(II), which impedes the contact
between Pb(II) and the adsorption sites. Additionally, the high concentration of H+ ions
in the solution compete vigorously with Pb(II) for adsorption sites. As the solution pH
increases, the biochar surface undergoes deprotonation, accompanied by a decrease in
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the concentration of H+ ions in the solution. This reduction in electrostatic repulsion
between the biochar surface and Pb(II) transitions into electrostatic attraction, substantially
enhancing the likelihood of Pb(II) contacting the active adsorption sites [17]. Consequently,
the adsorption performance of biochar for Pb(II) improves progressively with increasing
solution pH values.

Biochar − COOH + H+ → Biochar − COOH+
2 (9)

Biochar − OH + H+ → Biochar − OH+
2 (10)

Na2CO3 + 2H+ → H2CO3 + 2Na+ (11)

Na2SiO3 + 2H+ → H2SiO3 ↓ +2Na+ (12)
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2.4. Potential Adsorption Mechanism Analysis
2.4.1. Adsorption Isotherm Analysis

The distribution of the adsorbate between the solution phase and the adsorbent
surface during the adsorption process was modeled using adsorption isotherm equations.
Specifically, the Langmuir and Freundlich isotherm models were employed, corresponding
to Equation (13) and Equation (14), respectively:

Qe =
QmKlCe

1 + KlCe
(13)

Qe = K f C1/n
e (14)

In these equations, Qe denotes the equilibrium adsorption capacity (mg/g); Ce repre-
sents the equilibrium concentration post-adsorption (mg/L); Qm is the theoretical maxi-
mum adsorption capacity (mg/g); Kl is the Langmuir adsorption constant (L/mg); Kf is the
Freundlich affinity coefficient (mg(1−n)Ln/g); and n is the Freundlich heterogeneity factor.

The adsorption isotherm models for Pb(II) adsorption by IALG-BC and A-IALG-BC
were fitted, and the results are presented in Figure 10 and Table 3. The correlation coeffi-
cients for the Langmuir model fitting of Pb(II) adsorption by IALG-BC and A-IALG-BC are
0.997 and 0.995, respectively. These values are significantly higher than those obtained from
the Freundlich model (0.961–0.965), indicating that the Langmuir model provides a more
accurate description of the adsorption process. This suggests that the adsorption of Pb(II)
by IALG-BC and A-IALG-BC predominantly follows homogeneous monolayer adsorption.
This conclusion is supported by SEM and XRD analyses (Figures 4 and 5), which reveal that
the Na-related active adsorption sites in IALG-BC are uniformly dispersed on its surface
as nanoparticles. According to the Langmuir model, the theoretical maximum adsorption
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capacity of IALG-BC for Pb(II) is 809.09 mg/g, which is approximately 40 times higher
than that of A-IALG-BC, highlighting the crucial role of Na-related minerals. Furthermore,
the Pb(II) adsorption capacity of IALG-BC exceeds that of most biomass-based adsorbents
and is comparable to some high-cost commercial adsorbents, indicating that IALG-BC has
significant potential as a highly effective adsorbent (see Table 4) [41,42].
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Figure 10. Adsorption isotherm fitting for the adsorption of Pb(II) on IALG-BC and A-IALG-BC.

Table 3. Adsorption isotherm fitting parameters for the adsorption of Pb(II) on IALG-BC and
A-IALG-BC.

Langmuir Model Freundlich Model

Qm (mg/g) Kl (L/mg) R2 Kf
(mg(1−n)Ln/g) n R2

IALG-BC 809.09 0.005 0.997 12.69 1.50 0.961
A-IALG-BC 20.85 0.003 0.995 0.66 2.12 0.965

Table 4. Comparison of the theoretical maximum adsorption capacity of Pb(II) according to Langmuir
model fitting by various biochars.

No. Biochars Adsorption Conditions
Theoretical Maximum
Adsorption Capacity

(mg/g)
Ref.

1 From peanut shells via
pyrolysis at 300 ◦C for 2 h.

Initial concentration in the range of 50–2000 mg/L
at 25 ◦C for 3 h. 210.10 [18]

2 From pomelo fruit peels via
pyrolysis at 500 ◦C for 45 min. At 30 ◦C with solution pH of 5 for 2 h. 92.13 [43]

3 From cotton straw via
pyrolysis at 300 ◦C for 2 h.

Initial concentration in the range of 5–300 mg/L at
25 ◦C with solution pH of 5.5 for 12 h. 102.70 [44]

4 From corn stalks via pyrolysis
at 300 ◦C for 1 h.

Initial concentration in the range of 80–500 mg/L at
30 ◦C with solution pH of 5 for 8 h. 15.66 [45]

5 From corn stalks via pyrolysis
at 500 ◦C for 2 h.

Initial concentration in the range of 100–1000 mg/L
at 25 ◦C with solution pH of 5 for 4 h. 40.98 [39]
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Table 4. Cont.

No. Biochars Adsorption Conditions
Theoretical Maximum
Adsorption Capacity

(mg/g)
Ref.

6 From sewage sludge via
pyrolysis at 700 ◦C for 1 h.

Initial concentration in the range of 5–300 mg/L at
room temperature for 24 h. 7.56 [46]

7
From industrial alkali lignin
via pyrolysis at 700 ◦C for 2 h
(IALG-BC).

Initial concentration in the range of 50–1000 mg/L
at 25 ◦C with solution pH of 5 for 4 h. 809.09 This

work

2.4.2. Adsorption Kinetic Analysis

The distribution of the adsorbate on the adsorbent surface over time during the ad-
sorption process can be effectively described using adsorption kinetics models. Specifically,
the pseudo-first-order and pseudo-second-order models are represented by Equations (15)
and (16), respectively:

dQt

dt
= k1(Qe − Qt) (15)

dQt

dt
= k2(Qe − Qt)

2 (16)

In these equations, t denotes the reaction time (h); Qt represents the adsorption capacity
at time (t) (mg/g); Qe is the equilibrium adsorption capacity (mg/g); k1 is the adsorption
rate constant for the pseudo-first-order model (h−1); and k2 is the adsorption rate constant
for the pseudo-second-order model (g/(mg·h)).

As depicted in Figure 11a and detailed in Table 5, the pseudo-second-order model pro-
vides a superior fit for the adsorption process of Pb(II) by IALG-BC and A-IALG-BC, with
correlation coefficients ranging from 0.989 to 0.991, significantly higher than those obtained
from the pseudo-first-order model (0.906–0.924). Furthermore, the equilibrium adsorption
capacities (Qe) derived from the pseudo-second-order model for IALG-BC and A-IALG-BC
are 92.96 mg/g and 13.00 mg/g, respectively, closely aligning with the experimental equi-
librium adsorption capacities (qe). These results suggest that the adsorption of Pb(II) by
IALG-BC and A-IALG-BC is predominantly governed by chemisorption mechanisms [47].
As previously discussed, a substantial quantity of Na-related nanomineral particles is dis-
tributed on the surface of IALG-BC, enabling the adsorption and immobilization of Pb(II)
through precipitation mechanisms (see Equations (17) and (18)) [35,48]. The SEM image of
IALG-BC following Pb(II) adsorption is shown in Figure 11b. It can be observed that the
nanomineral particles on the IALG-BC surface disappear, replaced by a dense aggregation
of fluffy particles. These particles are likely Pb(II)-related precipitates. Additionally, the rich
surface functional groups present on IALG-BC facilitate further Pb(II) adsorption through
ion exchange, coordination, and other interactions (see Equations (19)–(23)) [35,36].

Na2CO3 + Pb2+ → PbCO3 ↓ +Na+ (17)

Na2SiO3 + Pb2+ → PbSiO3 ↓ +Na+ (18)

Biochar−COOH
−COOH + Pb2+ → Biochar−COO

−COOPb + 2H+ (19)

Biochar−COONa
−COONa + Pb2+ → Biochar−COO

−COOPb + 2Na+ (20)

Biochar−OH
−OH + Pb2+ → Biochar−O

−OPb + 2H+ (21)

Biochar−ONa
−ONa + Pb2+ → Biochar−O

−OPb + 2Na+ (22)

Biochar −
..

C = C + Pb2+ → Biochar − C = C : Pb2+ (23)
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Table 5. Adsorption kinetic fitting parameters for the adsorption of Pb(II) on IALG-BC and A-IALG-BC.

qe
Pseudo-First-Order Model Pseudo-Second-Order Model

k1 (1/h) Qe (mg/g) R2 k2 (g/(mgh)) Qe (mg/g) R2

IALG-BC 92.82 7.08 89.97 0.906 0.15 92.96 0.991
A-IALG-BC 12.95 0.77 10.69 0.924 0.06 13.03 0.989

2.4.3. Thermodynamic Analysis

The thermodynamic parameters of the adsorption process, including the Gibbs free en-
ergy (∆G0), enthalpy (∆H0), and entropy (∆S0), are instrumental in revealing the underlying
mechanisms of the reaction. These parameters can be determined using Equations (24)–(28):

∆G0 = −RT ln Ke (24)

Kw =
Qe

Ce
(25)

Ke = ρKw = ρ
Qe

Ce
(26)

∆G0 = ∆H0 − T∆S0 (27)

ln Ke = −∆H0

RT
+

∆S0

R
(28)

In these equations, Ke represents the dimensionless adsorption equilibrium constant;
R is the universal gas constant (8.314 J/(mol·K)); T denotes the absolute temperature (K);
Qe is the equilibrium adsorption capacity (mg/g); Ce is the equilibrium concentration of
the adsorbate after adsorption (mg/L); and ρ is the density of water (g/cm3).

The thermodynamic parameters for the adsorption of Pb(II) by IALG-BC and A-
IALG-BC, as shown in Table 6, provide critical insights into the underlying adsorption
mechanisms. At different ambient temperatures, the obtained ∆G0 values are consistently
negative, indicating that the adsorption of Pb(II) by both IALG-BC and A-IALG-BC is
a spontaneous process. Moreover, with increasing temperature, the ∆G0 values show a
decreasing trend, suggesting that higher temperatures enhance the spontaneity of the
Pb(II) adsorption by IALG-BC and A-IALG-BC. This observation aligns with findings
reported by Wang et al. regarding the adsorption of heavy metal ions by biochar [49]. The
positive ∆H0 values across all conditions further indicate that the adsorption of Pb(II) by
IALG-BC and A-IALG-BC is an endothermic process, signifying that elevated temperatures
favor the adsorption process, corroborating the analysis shown in Figure 8. Additionally,
the ∆S0 values, which represent the degree of disorder during the reaction, indicate that
the adsorption of Pb(II) by IALG-BC involves a significantly higher degree of disorder
compared to that by A-IALG-BC.
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Table 6. Thermodynamic parameters for the adsorption of Pb(II) on IALG-BC and A-IALG-BC.

∆G0 (kJ/mol) ∆H0 ∆S0

288 K 298 K 308 K 318 K kJ/mol J/(mol K)

IALG-BC −12.77 −15.82 −17.00 −20.81 59.75 251.99
A-IALG-BC −2.11 −3.97 −4.80 −6.08 34.56 128.06

3. Materials and Methods
3.1. Raw Materials and Reagents

IALG, lead chloride (PbCl2), sodium hydroxide (NaOH), and hydrogen chloride
(HCl) were supplied by Sigma-Aldrich. Deionized water, generated via a Milli-Q water
purification system (Millipore, Inc., Bedford, MA, USA), was utilized for the preparation
of all solutions. To regulate the pH of the solution, adjustments were made using 0.1 M
NaOH and HCl. The ash content of IALG is 20.16 wt.%, with sodium being the main
component (14,059 mmol/kg). The ash in IALG was treated using a mixture of nitric acid
and hydrofluoric acid. After multiple washes with deionized water, it was dried to obtain
ash-free lignin (A-IALG).

3.2. Preparation of Biochar

A sample of 50 g of IALG was weighed and placed in a lidded ceramic crucible, which
was then introduced into a muffle furnace. The pyrolysis process was conducted at a
temperature of 700 ◦C for a duration of 2 h. Upon completion of the pyrolysis, the muffle
furnace was allowed to cool naturally to room temperature. The resulting solid residue was
subsequently removed and ground to produce the target biochar, designated as IALG-BC.
Following the same procedure, A-IALG-BC was also prepared.

3.3. Characterization of Samples

An amount of 10 g of IALG was precisely measured using a ceramic crucible and
positioned within a muffle furnace. The sample was subjected to calcination at 600 ◦C
for a duration of 4 h. Upon completion, the mass of the residual solid was determined to
calculate the ash content of the IALG. Subsequently, the IALG was digested with aqua regia
and inductively coupled plasma optical emission spectrometry was employed (720, Agilent,
Inc., Palo Alto, CA, USA) to quantify the Na concentration in the resultant solution, thereby
ascertaining the sodium content within the IALG. Approximately 5 mg of the sample was
weighed and placed into an alumina crucible. The sample was subjected to a controlled
temperature increase from ambient room temperature to 800 ◦C, with a heating rate of
10 ◦C/min. The changes in the sample’s mass as a function of the reaction temperature
were analyzed using a thermogravimetric analyzer (TG209 F3, Netzsch, Inc., Bavaria
Free State, Germany). The specific surface area and pore structure characteristics of the
sample were determined using a nitrogen adsorption/desorption apparatus (Nova 2200e,
Quantachrome Instruments, Boynton Beach, FL, USA). The specific surface area of the
sample was measured using the BET method, utilizing adsorption data within the relative
pressure range of 0.01 to 0.2 (P/P0). The total pore volume was derived from the amount
of nitrogen adsorbed at a relative pressure of approximately 0.99 (P/P0). The mesopore
specific surface area and mesopore volume were obtained by calculating the differences
from the micropore surface area and micropore volume, which were determined through
t-plot analysis. Functional groups present on the sample surface were characterized using
Fourier transform infrared spectroscopy (FT-IR, Nicolet 6700, Thermo Fisher Scientific,
Inc., Waltham, MA, USA). The microstructure of the sample was primarily examined via
scanning electron microscopy at an acceleration voltage of 20 kV (SEM, Inspect F50, FEI,
Thermo Fisher Scientific, Inc., Waltham, MA, USA). The crystalline phases present in the
sample were identified using an X-ray diffractometer under the conditions of nickel-filtered
Cu Kα radiation (λ = 0.15406 nm) at a current of 20 mA and a voltage of 30 kV (XRD,
SmartLAB 3, Rigaku Corporation, Saitama Prefecture, Japan).
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3.4. Pb(II) Adsorption

A quantity of 0.1 g of biochar was added to 50 mL of Pb(II) solution in a wide-mouth
Erlenmeyer flask. The suspension was placed in a constant temperature incubator and
agitated at a speed of 120 r/min. Upon completion of the reaction, the mixture was sep-
arated using a 0.45 µm filter membrane. The concentration of Pb(II) in the filtrate was
determined using an atomic absorption spectrometer (FAAS-M6, Thermo Fisher Scientific,
Inc., Waltham, MA, USA). The initial concentration of Pb(II), reaction time, reaction temper-
ature, and solution pH were set to 50–1000 mg/L, 2–8 h, 15–45 ◦C, and 1–5, respectively.
Each sample was set up in triplicate, and the data used are the average of the three sets
of values.

4. Conclusions

The high ash content in IALG acted as an efficient catalyst, significantly reducing
the activation energy required during the primary pyrolysis stage to 14.27 J/mol, thereby
enhancing the development of the resultant biochar’s porous structure. Moreover, the
abundant minerals in IALG facilitated the deoxygenation and dehydrogenation processes
within the carbon materials, which resulted in the attenuation or disappearance of the char-
acteristic peaks associated with the functional groups. Following pyrolysis, the Na-related
minerals were transformed into particles ranging from 80 to 150 nm in size, including
Na2SiO3, Na2CO3, and NaCl. IALG-BC demonstrated a markedly superior Pb(II) adsorp-
tion performance relative to that of A-IALG-BC. According to the Langmuir model, the
theoretical maximum adsorption capacity of IALG-BC for Pb(II) was 809.09 mg/g, which
was approximately 40 times that of A-IALG-BC. The Na-related minerals present in IALG-
BC functioned as active adsorption sites, playing an essential role in the efficient adsorption
of Pb(II) through precipitation. This study elucidates the potential of industrial alkali lignin
as a cost-effective and efficient adsorbent for the remediation of wastewater containing
heavy metals. Nonetheless, further research is warranted to explore the development of
recovery methods for the spent adsorbents and to establish effective regeneration processes.
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