Analysis and Formation of Polycyclic Aromatic Hydrocarbons in Canned Minced Chicken and Pork during Processing
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Processing of Canned Minced Pork and Chicken
2.3. Basic Composition of Raw, Degassed and Canned Minced Chicken and Pork
2.4. Extraction and Purification of PAHs in Raw, Marinated, Stir-Fried, Degassed and Canned Minced Chicken/Pork
2.5. Analysis of PAHs in Raw, Marinated, Stir-Fried, Degassed and Canned Minced Chicken/Pork by GC–MS/MS
2.6. Method Validation of PAHs in Raw Chicken/Pork
2.7. Determination of PAH Precursors in Raw, Marinated, Stir-Fried, Degassed and Canned Minced Chicken/Pork by GC–MS
2.8. Fatty Acid Composition Analysis in Raw and Canned Minced Chicken/Pork by GC
2.9. Statistical Analysis
2.9.1. Factorial Analysis
2.9.2. PCA
3. Results and Discussion
3.1. Basic Composition of Raw, Degassed and Canned Minced Chicken and Pork
3.2. Analysis of PAHs by GC–MS/MS in Raw, Marinated, Stir-Fried, Degassed and Canned Minced Chicken/Pork
3.3. PAH Content Changes in Canned Minced Chicken and Pork during Processing
3.4. PAH Precursor Content Changes in Canned Minced Chicken and Pork during Processing
3.5. Composition of Fatty Acid in Raw Chicken/Pork and Canned Minced Chicken/Pork
3.6. Two-Way ANOVA Factorial Analysis
3.7. Principal Components Analysis (PCA)
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wenzl, T.; Simon, R.; Anklam, E.; Kleiner, J. Analytical methods for polycyclic aromatic hydrocarbons (PAHs) in food and the environment needed for new food legislation in the European Union. TrAC Trends Anal. Chem. 2006, 25, 716–725. [Google Scholar] [CrossRef]
- Anyakora, C.; Coker, H.; Arbabi, M. Application of polynuclear aromatic hydrocarbons in chemical fingerprinting: The niger delta case study. Iran. J. Environ. Health Sci. Eng. 2011, 8, 75–84. Available online: https://tspace.library.utoronto.ca/bitstream/1807/62383/1/se11009.pdf (accessed on 15 May 2024).
- Badger, G. Pyrolysis of hydrocarbons. Prog. Phys. Org. Chem. 1965, 3, 1–40. Available online: https://books.google.com.tw/books?hl=en&lr=&id=Hq_DCwAAQBAJ&oi=fnd&pg=PA1&ots=A-Zw0pvJ_w&sig=H0sKV9V7KPf8h6fQnB8L7jxTS_M&redir_esc=y#v=onepage &q&f=false (accessed on 15 May 2024).
- Knize, M.G.; Salmon, C.P.; Pais, P.; Felton, J.S. Food heating and the formation of heterocyclic aromatic amine and polycyclic aromatic hydrocarbon mutagens/carcinogens. Adv. Exp. Med. Biol. 1999, 459, 179–193. [Google Scholar] [CrossRef]
- Alexander, J.; Benford, D.; Cockburn, A.; Cravedi, J.; Dogliotti, E.; Di Domenico, A.; Fernández-Cruz, M.L.; Fink-Gremmels, J.; Fürst, P.; Galli, C.; et al. Polycyclic aromatic hydrocarbons in food: Scientific opinion of the panel on contaminants in the food chain. EFSA J. 2008, 6, 724. [Google Scholar] [CrossRef]
- IARC. IARC working group on the evaluation of carcinogenic risks to humans. Some non-heterocyclic polycyclic aromatic hydrocarbons and some related exposures. IARC Monogr. Eval. Carcinog. Risks Hum. 2010, 92, 1–853. Available online: https://pubmed.ncbi.nlm.nih.gov/21141735 (accessed on 20 May 2024).
- Chen, C.F.; Ju, Y.R.; Lim, Y.C.; Hsu, N.H.; Lu, K.T.; Hsieh, S.L.; Dong, C.D.; Chen, C.W. Microplastics and their affiliated PAHs in the sea surface connected to the southwest coast of Taiwan. Chemosphere 2020, 254, 126818. [Google Scholar] [CrossRef]
- Rengarajan, T.; Rajendran, P.; Nandakumar, N.; Lokeshkumar, B.; Rajendran, P.; Nishigaki, I. Exposure to polycyclic aromatic hydrocarbons with special focus on cancer. Asian Pacif. J. Trop. Biomed. 2015, 5, 182–189. [Google Scholar] [CrossRef]
- Siddens, L.K.; Bunde, K.L.; Harper, T.A., Jr.; McQuistan, T.J.; Löhr, C.V.; Bramer, L.M.; Waters, K.M.; Tilton, S.C.; Krueger, S.K.; Williams, D.E. Cytochrome P450 1b1 in polycyclic aromatic hydrocarbon (PAH)-induced skin carcinogenesis: Tumorigenicity of individual PAHs and coal-tar extract, DNA adduction and expression of select genes in the Cyp1b1 knockout mouse. Toxicol. Appl. Pharmacol. 2015, 287, 149–160. [Google Scholar] [CrossRef]
- Edwards, S.C.; Jedrychowski, W.; Butscher, M.; Camann, D.; Kieltyka, A.; Mroz, E.; Flak, E.; Li, Z.; Wang, S.; Rauh, V. Prenatal exposure to airborne polycyclic aromatic hydrocarbons and children’s intelligence at 5 years of age in a prospective cohort study in Poland. Environ. Health Perspect. 2010, 118, 1326–1331. [Google Scholar] [CrossRef]
- Singh, L.; Varshney, J.G.; Agarwal, T. Polycyclic aromatic hydrocarbons’ formation and occurrence in processed food. Food Chem. 2016, 199, 768–781. [Google Scholar] [CrossRef]
- Xu, X.; Liu, X.; Zhang, J.; Liang, L.; Wen, C.; Li, Y.; Shen, M.; Wu, Y.; He, X.; Liu, G.; et al. Formation, migration, derivation, and generation mechanism of polycyclic aromatic hydrocarbons during frying. Food Chem. 2023, 425, 136485. [Google Scholar] [CrossRef]
- Lu, J.; Zhang, Y.; Zhou, H.; Cai, K.; Xu, B. A review of hazards in meat products: Multiple pathways, hazards and mitigation of polycyclic aromatic hydrocarbons. Food Chem. 2024, 445, 138718. [Google Scholar] [CrossRef]
- Kao, T.H.; Chen, S.; Huang, C.W.; Chen, C.J.; Chen, B.H. Occurrence and exposure to polycyclic aromatic hydrocarbons in kindling-free-charcoal grilled meat products in Taiwan. Food Chem. Toxicol. 2014, 71, 149–158. [Google Scholar] [CrossRef]
- Lee, J.S.; Han, J.W.; Jung, M.; Lee, K.W.; Chung, M.S. Effects of thawing and frying methods on the formation of acrylamide and polycyclic aromatic hydrocarbons in chicken meat. Foods 2020, 9, 573. [Google Scholar] [CrossRef]
- Zhu, Y.; Li, X.; Huang, J.; Zhao, C.; Qi, J.; Jin, Q.; Wang, X. Correlations between polycyclic aromatic hydrocarbons and polar components in edible oils during deep frying of peanuts. Food Cont. 2017, 87, 109–116. [Google Scholar] [CrossRef]
- Xin, L.; Hu, M.; Ma, X.; Wu, S.; Yoong, J.H.; Chen, S.; Tarmizi, A.H.A.; Zhang, G. Selection of 12 vegetable oils influences the prevalence of polycyclic aromatic hydrocarbons, fatty acids, tocol homologs and total polar components during deep frying. J. Food Comp. Anal. 2022, 114, 104840. [Google Scholar] [CrossRef]
- Lin, Q.; Zhang, H.; Lv, X.; Xie, R.; Chen, B.H.; Lai, Y.W.; Chen, L.; Teng, H.; Cao, H. A systematic study on the chemical mode of polycyclic aromatic hydrocarbons formation from nutrients (glucose, amino acids, fatty acids) in food. Food Chem. 2024, 446, 138849. [Google Scholar] [CrossRef]
- Ahmad Kamal, N.H.; Selamat, J.; Sanny, M. Simultaneous formation of polycyclic aromatic hydrocarbons (PAHs) and heterocyclic aromatic amines (HCAs) in gas-grilled beef satay at different temperatures. Food Addit. Contam. Part A Chem. Anal. Cont. Expos. Risk Assess. 2018, 35, 848–869. [Google Scholar] [CrossRef]
- Afe, O.H.I.; Saegerman, C.; Kpoclou, Y.E.; Douny, C.; Igout, A.; Mahillon, J.; Anihouvi, V.B.; Hounhouigan, D.J.; Scippo, M.L. Contamination of smoked fish and smoked-dried fish with polycyclic aromatic hydrocarbons and biogenic amines and risk assessment for the Beninese consumers. Food Cont. 2021, 126, 108089. [Google Scholar] [CrossRef]
- Lv, X.; Zhang, H.; Lin, Q.; Xie, R.; Chen, B.H.; Lai, Y.W.; Teng, H.; Chen, L.; Cao, H. Formation mechanism of polycyclic aromatic hydrocarbons in grilled beef and the mitigative effect of flavonoids. eFood 2024, 5, e143. [Google Scholar] [CrossRef]
- Nie, W.; Cai, K.Z.; Li, Y.Z.; Zhang, S.; Wang, Y.; Guo, J.; Chen, C.G.; Xu, B.C. Small Molecular Weight Aldose (d-Glucose) and Basic Amino Acids (l-Lysine, l-Arginine) Increase the Occurrence of PAHs in Grilled Pork Sausages. Molecules 2018, 23, 3377. [Google Scholar] [CrossRef]
- Tsao, W.X.; Chen, B.H.; Kao, T.H. Effect of sterilization conditions on the formation of furan and its derivatives in canned foods with different substrates. J. Food Drug Anal. 2022, 30, 614. [Google Scholar] [CrossRef]
- CNS. Method of Test for Moisture, Crude Fat and Crude Protein Content in Food; Chinese National Standards of the Republic of China: Taipei, Taiwan, 1986. [Google Scholar]
- CNS. Method of Test for Ash Content in Food; Chinese National Standards of the Republic of China: Taipei, Taiwan, 1984. [Google Scholar]
- Lai, Y.W.; Lee, Y.T.; Cao, H.; Zhang, H.L.; Chen, B.H. Extraction of heterocyclic amines and polycyclic aromatic hydrocarbons from pork jerky and the effect of flavoring on formation and inhibition. Food Chem. 2023, 402, 134291. [Google Scholar] [CrossRef]
- AOAC. AOAC Method of Analysis for Fatty Acids (Free) in Crude and Refined Oils, Association of Official Analytical Chemists, 940.28, 15th ed.; Washington DC, USA, 1990; Available online: http://files.foodmate.com/2013/files_2767.html (accessed on 20 May 2024).
- Chou, T.Y.; Lu, Y.F.; Inbaraj, B.S.; Chen, B.H. Camelia oil and soybean-camelia oil blend enhance antioxidant activity and cardiovascular protection in hamsters. Nutrition 2018, 51, 86–94. [Google Scholar] [CrossRef]
- SAS (Statistical Analysis System). SAS® 9.4 Output Delivery System: User’s Guide, 15th ed.; SAS Institute Inc.: Cary, NC, USA, 2019. [Google Scholar]
- TFDA. Taiwan Food and Drug Administration. Analytical Method Validation in Food Chemistry. 2021. Available online: https://www.fda.gov.tw/tc/siteList.aspx?sid=4115 (accessed on 20 May 2024).
- WHO. Polynuclear Aromatic Hydrocarbons in Drinking-Water Background Document for Development of WHO Guidelines for Drinking-Water Quality, WHO/SDE/WSH/03.04/59, World Health Organization, Geneva. 1998. Available online: https://www.who.int/docs/default-source/wash-documents/wash-chemicals/polynuclear-aromatic-hydrocarbons-background-document.pdf (accessed on 20 May 2024).
- Lai, Y.W.; Lee, Y.T.; Inbaraj, B.S.; Chen, B.H. Formation and inhibition of heterocyclic amines and polycyclic aromatic hydrocarbons in ground pork during marinating. Foods 2022, 11, 3080. [Google Scholar] [CrossRef]
- Drabova, L.; Pulkrabova, J.; Kalachova, K.; Tomaniova, M.; Kocourek, V.; Hajslova, J. Polycyclic aromatic hydrocarbons and halogenated persistent organic pollutants in canned fish and seafood products: Smoked versus non-smoked products. Food Addit. Contam. Part A 2013, 30, 515–527. [Google Scholar] [CrossRef]
- El Morsy, F.A.M.; El-Sadaawy, M.M.; Ahdy, H.H.H.; Abdel-Fattah, L.M.; El-Sikaily, A.M.; Khaled, A.; Tayel, F.M.T. Potential human health risks from toxic metals, polycyclic aromatic hydrocarbons, polychlorinated biphenyls, and organochlorine pesticides via canned fish consumption: Estimation of target hazard quotients. J. Environ. Sci. Health Part A 2013, 48, 1470–1478. [Google Scholar] [CrossRef]
- Al-Abdul-Nebi, S.A.; Yesser, A.T.; Al-Taee, M.A. Extraction and estimation of some polynuclear aromatic hydrocarbons in muscles of imported frozen and canned fish species. Basrah J. Agric. Sci. 2013, 26, 98–113. [Google Scholar] [CrossRef]
- Rey-Salgueiro, L.; Martínez-Carballo, E.; García-Falcón, M.S.; Simal-Gándara, J. Survey of polycyclic aromatic hydrocarbons in canned bivalves and investigation of their potential sources. Food Res. Int. 2009, 42, 983–988. [Google Scholar] [CrossRef]
- Kholghy, M.R. The Evolution of Soot Morphology in Laminar Co-Flow Diffusion Flames of the Surrogates for Jet A-1 and a Synthetic Kerosene. Master’s Thesis, University of Toronto, Toronto, ON, Canada, 2012. Available online: https://tspace.library.utoronto.ca/bitstream/1807/33270/9/Kholghy_Mohammad%20Reza_201211_MASc_thesis.pdf (accessed on 15 May 2024).
- EU Commission. Commission regulation 835/2011 of 19 August 2011 amending Regulation (EC) EC no. 1881/2006 as regards maximum levels for polycyclic aromatic hydrocarbons in foodstuffs. Off. J. Eur. Union 2011, L215, 214–218. [Google Scholar]
PAH Compound | Retention Time (min) a | Quantitative Ion Pair | Qualitative Ion Pair | ||
---|---|---|---|---|---|
Precursor Ion > Product Ion | Collision Energy | Precursor Ion > Product Ion | Collision Energy | ||
(m/z) | (eV) | (m/z) | (eV) | ||
Naphthalene (NaP) | 7.90 | 128 > 102 | 20 | 128 > 78 | 25 |
Acenaphthylene (AcPy) | 14.5 | 152 > 151 | 20 | 152 > 150 | 35 |
Acenaphthene (AcP) | 15.6 | 154 > 153 | 20 | 153 > 152 | 20 |
Fluorene (Flu) | 17.6 | 166 > 165 | 20 | 165 > 164 | 25 |
Phenanthrene (Phe) | 21.8 | 178 > 176 | 35 | 178 > 152 | 25 |
Anthracene (Ant) | 22.1 | 178 > 176 | 35 | 178 > 152 | 25 |
Fluoranthene (FL) | 27.9 | 202 > 200 | 40 | 202 > 201 | 25 |
Pyrene (Pyr) | 29.5 | 202 > 200 | 40 | 202 > 201 | 25 |
Benzo [c]fluorene (BcF) | 33.6 | 216 > 215 | 20 | 215 > 213 | 30 |
Triphenylene (IS) | 41.1 | 228 > 226 | 30 | 113 > 112 | 10 |
Benzo [a]anthracene (BaA) | 42.0 | 228 > 226 | 35 | 113 > 112 | 15 |
Chrysene (CHR) | 41.6 | 228 > 226 | 35 | 228 > 227 | 20 |
5-methylchrysene (MCH) | 47.5 | 242 > 241 | 40 | 242 > 239 | 15 |
Benzo [b]fluoranthene (BbF) | 55.8 | 252 > 250 | 40 | 125 > 124 | 15 |
Benzo [j]fluoranthene (BjF) | 55.8 | 252 > 250 | 40 | 125 > 124 | 15 |
Cyclopenta [c,d]pyrene (CcdP) | 58.3 | 226 > 224 | 45 | 113 > 112 | 15 |
Benzo [a]pyrene (BaP) | 61.2 | 252 > 250 | 20 | 125 > 124 | 40 |
Indeno [1,2,3-cd]pyrene (IP) | 70.8 | 276 > 274 | 45 | 137 > 136 | 15 |
Dibenzo [a,h]anthracene (DBahA) | 71.0 | 278 > 276 | 40 | 276 > 274 | 45 |
Benzo [ghi]perylene (BghiP) | 71.6 | 276 > 274 | 45 | 138 > 137 | 15 |
Dibenzo [a,l]pyrene (DBalP) | 74.9 | 302 > 300 | 40 | 150 > 149 | 20 |
Dibenzo [a,e]pyrene (DBaeP) | 75.9 | 302 > 300 | 40 | 150 > 149 | 20 |
Dibenzo [a,i]pyrene (DBaiP) | 76.5 | 302 > 300 | 40 | 150 > 149 | 20 |
Dibenzo [a,h]pyrene (DBahP) | 76.8 | 302 > 300 | 40 | 150 > 149 | 20 |
Raw | Marinated | Stir-Fried (95 °C/10 min) | Degassed (85 °C/15 min) | Sterilized (115 °C/60 min) | Sterilized (125 °C/25 min) | |
---|---|---|---|---|---|---|
Chicken | ||||||
AcPy | 2.12 ± 0.23 g | 2.66 ± 0.24 defg | 2.37 ± 0.08 fg | 3.12 ± 0.57 bcde | 3.72 ± 0.44 ab | 3.27 ± 0.46 bcd |
AcP | 1.54 ± 0.06 e | 1.77 ± 0.17 cde | 1.74 ± 0.06 de | 2.04 ± 0.29 bcd | 2.34 ± 0.34 ab | 2.25 ± 0.13 abc |
Pyr | 14.27 ± 0.05 c | 14.32 ± 0.03 c | 15.06 ± 1.07 ab | 14.28 ± 0.06 c | 14.61 ± 0.50 bc | 15.33 ± 0.67 a |
Total | 17.93 ± 0.24 e | 18.76 ± 0.42 cde | 19.17 ± 1.08 cde | 19.45 ± 0.92 bcd | 20.68 ± 1.16 ab | 20.85 ± 0.16 a |
Pork | ||||||
AcPy | 2.50 ± 0.49 efg | 2.56 ± 0.44 defg | 2.96 ± 0.24 cdef | 3.51 ± 0.37 abc | 3.75 ± 0.27 ab | 4.10 ± 0.42 a |
AcP | 1.70 ± 0.33 de | 1.81 ± 0.41 cde | 2.07 ± 0.19 bcd | 2.32 ± 0.25 ab | 2.60 ± 0.23 a | 2.73 ± 0.39 a |
Pyr | 14.18 ± 0.07 c | 14.75 ± 0.45 abc | 14.41 ± 0.18 bc | 14.14 ± 0.06 c | 14.64 ± 0.13 abc | 14.22 ± 0.09 c |
Total | 18.38 ± 0.90 de | 19.13 ± 1.30 cde | 19.45 ± 0.56 bcd | 19.96 ± 0.66 abc | 21.00 ± 0.61 a | 21.04 ± 0.88 a |
Raw | Marinated | Stir-Fried (95 °C/10 min) | Degassed (85 °C/15 min) | Sterilized (115 °C/60 min) | Sterilized (125 °C/25 min) | |
---|---|---|---|---|---|---|
Chicken | ||||||
4DCH | nd | nd | nd | nd | nd | nd |
2CH | nd | 12.60 ± 4.89 d | 25.92 ± 1.08 c | 39.55 ± 1.90 b | 38.21 ± 5.94 b | 49.09 ± 11.80 a |
CH | nd | nd | nd | nd | nd | nd |
BAL | nd | 17.72 ± 1.91 h | 82.67 ± 5.46 ef | 73.04 ± 6.20 f | 175.80 ± 10.39 c | 205.79 ± 17.24 b |
TTD | nd | nd | 3.44 ± 0.15 de | 3.71 ± 0.10 cd | 3.92 ± 0.15 c | 3.95 ± 0.11 c |
Total | nd | 30.32 ± 6.53 f | 112.03 ± 6.25 d | 116.30 ± 4.24 cd | 217.94 ± 4.61 b | 258.83 ± 14.88 a |
Pork | ||||||
4DCH | nd | nd | nd | nd | nd | nd |
2CH | nd | 7.54 ± 1.00 de | 25.22 ± 4.12 c | 24.47 ± 1.54 c | 24.69 ± 1.67 c | 27.24 ± 0.50 c |
CH | nd | nd | nd | nd | nd | nd |
BAL | 7.14 ± 1.06 hi | 39.11 ± 4.03 g | 95.56 ± 11.56 de | 103.30 ± 12.36 d | 223.80 ± 8.06 a | 234.37 ± 8.88 a |
TTD | 3.68 ± 0.29 cd | 3.06 ± 0.05 e | 3.25 ± 0.08 e | 3.80 ± 0.08 cd | 8.43 ± 0.58 a | 7.85 ± 0.31 b |
Total | 10.82 ± 1.34 g | 49.70 ± 4.93 e | 124.03 ± 15.37 cd | 131.57 ± 11.99 c | 256.92 ± 9.24 a | 269.46 ± 8.40 a |
Fatty Acids | Chicken | Pork | ||||
---|---|---|---|---|---|---|
Raw | Sterilization | Raw | Sterilization | |||
105 °C/60 min | 125 °C/25 min | 105 °C/60 min | 125 °C/25 min | |||
Saturated fatty acid | ||||||
14:0 | nd c | nd | nd | 0.12 | 0.15 | 0.13 |
16:0 | 0.27 | 0.34 | 0.27 | 2.44 | 2.97 | 2.56 |
18:0 | 0.08 | 0.14 | 0.1 | 1.28 | 1.52 | 1.34 |
Total | 0.35 | 0.48 | 0.37 | 3.84 | 4.64 | 4.03 |
trans fatty acid | nd | nd | nd | nd | nd | nd |
cis-MUFA a | ||||||
9c-16:1 | nd | nd | nd | 0.2 | 0.22 | 0.21 |
9c-18:1 | 0.48 | 0.58 | 0.49 | 4.2 | 4.92 | 4.25 |
11c-18:1 | nd | nd | nd | 0.25 | 0.29 | 0.25 |
11c-20:1 | nd | nd | nd | 0.08 | 0.1 | 0.08 |
Total | 0.48 | 0.58 | 0.49 | 4.73 | 5.53 | 4.79 |
cis-PUFA b | ||||||
18:3 ω3 (ALA) | nd | 0.06 | 0.05 | 0.08 | 0.14 | 0.11 |
18:2 ω6 | 0.3 | 0.6 | 0.54 | 1.51 | 2.25 | 1.87 |
20:2 ω6 | nd | nd | nd | 0.06 | 0.07 | 0.06 |
20:4 ω6 | nd | nd | nd | 0.06 | 0.06 | 0.05 |
Total | 0.3 | 0.66 | 0.59 | 1.71 | 2.52 | 2.09 |
Total fatty acid | 1.13 | 1.72 | 1.45 | 10.28 | 12.69 | 10.91 |
Factor | DF | SS | MS | F-Value | p-Value |
---|---|---|---|---|---|
Sterilization condition | 1 | 0.035 | 0.035 | 0.05 | 0.82 |
Meat type | 1 | 0.189 | 0.189 | 0.30 | 0.60 |
Sterilization condition × Meat type | 1 | 0.012 | 0.012 | 0.02 | 0.89 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Inbaraj, B.S.; Lai, Y.-W.; Chen, B.-H. Analysis and Formation of Polycyclic Aromatic Hydrocarbons in Canned Minced Chicken and Pork during Processing. Molecules 2024, 29, 4372. https://doi.org/10.3390/molecules29184372
Inbaraj BS, Lai Y-W, Chen B-H. Analysis and Formation of Polycyclic Aromatic Hydrocarbons in Canned Minced Chicken and Pork during Processing. Molecules. 2024; 29(18):4372. https://doi.org/10.3390/molecules29184372
Chicago/Turabian StyleInbaraj, Baskaran Stephen, Yu-Wen Lai, and Bing-Huei Chen. 2024. "Analysis and Formation of Polycyclic Aromatic Hydrocarbons in Canned Minced Chicken and Pork during Processing" Molecules 29, no. 18: 4372. https://doi.org/10.3390/molecules29184372
APA StyleInbaraj, B. S., Lai, Y. -W., & Chen, B. -H. (2024). Analysis and Formation of Polycyclic Aromatic Hydrocarbons in Canned Minced Chicken and Pork during Processing. Molecules, 29(18), 4372. https://doi.org/10.3390/molecules29184372