A Bis(Acridino)-Crown Ether for Recognizing Oligoamines in Spermine Biosynthesis
Abstract
:1. Introduction
2. Results and Discussion
2.1. Molecular Design
2.2. Synthesis of the New Host Molecule
2.3. In Silico Structure Optimization of Crown Ether—Oligoamine Complexes
2.4. Spectroscopic Studies on Molecular Recognition with Oligoamines
3. Materials and Methods
3.1. Chemicals, Preparative Methods, and Characterization of Compounds
3.2. Molecular Modeling and Structure Optimization
3.3. Spectroscopic Studies on Molecular Recognition
3.4. Synthesis of Compounds
3.4.1. Synthesis and Optimized Workup for 9-Chloro-4,5-dimethoxyacridine (12)
3.4.2. 4,4′,5,5′-Tetramethoxy-9,9′-biacridine (14)
3.4.3. [9,9′-Biacridine]-4,4′,5,5′-tetraol (15)
3.4.4. 27-Chloro-6,9,12,15,18-pentaoxa-25-azatetracyclo[21.3.1.05,26.019,24]heptacosa 1,3,5(26),19,21,23(27),24-heptaene (17)
3.4.5. 27-{6,9,12,15,18-Pentaoxa-25-azatetracyclo[21.3.1.05,26.019,24]heptacosa-1(27),2,4,19,21,23,25-heptaen-27-yl}-6,9,12,15,18-pentaoxa-25-azatetracyclo[21.3.1.05,26.019,24]heptacosa-1,3,5(26),19,21,23(27),24-heptaene (10)
Preaparation from [9,9′-Biacridine]-4,4′,5,5′-tetraol (15)
Preaparation from 27-Chloro-6,9,12,15,18-pentaoxa-25-azatetracyclo[21.3.1.05,26.019,24]heptacosa 1,3,5(26),19,21,23(27),24-heptaene (17)
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Santos, M.H.S. Biogenic Amines: Their Importance in Foods. Int. J. Food Microbiol. 1996, 29, 213–231. [Google Scholar] [CrossRef]
- Givanoudi, S.; Heyndrickx, M.; Depuydt, T.; Khorshid, M.; Robbens, J.; Wagner, P. A Review on Bio- and Chemosensors for the Detection of Biogenic Amines in Food Safety Applications: The Status in 2022. Sensors 2023, 23, 613. [Google Scholar] [CrossRef] [PubMed]
- Davídek, J. (Ed.) Natural Toxic Compounds of Foods; CRC Press: Boca Raton, FL, USA, 2018; p. 4933. ISBN 9781351074933. [Google Scholar]
- Schuber, F. Influence of Polyamines on Membrane Functions. Biochem. J. 1989, 260, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Agostinelli, E.; Arancia, G.; Vedova, L.D.; Belli, F.; Marra, M.; Salvi, M.; Toninello, A. The Biological Functions of Polyamine Oxidation Products by Amine Oxidases: Perspectives of Clinical Applications. Amino Acids 2004, 27, 347–358. [Google Scholar] [CrossRef]
- Ma, W.; Chen, K.; Li, Y.; Hao, N.; Wang, X.; Ouyang, P. Advances in Cadaverine Bacterial Production and Its Applications. Engineering 2017, 3, 308–317. [Google Scholar] [CrossRef]
- Pegg, A.E. The Function of Spermine. IUBMB Life 2014, 66, 8–18. [Google Scholar] [CrossRef]
- Pegg, A.E. Functions of Polyamines in Mammals. J. Biol. Chem. 2016, 291, 14904–14912. [Google Scholar] [CrossRef]
- Peng, Q.; Wong, C.Y.-P.; Cheuk, I.W.; Teoh, J.Y.-C.; Chiu, P.K.-F.; Ng, C.-F. The Emerging Clinical Role of Spermine in Prostate Cancer. Int. J. Mol. Sci. 2021, 22, 4382. [Google Scholar] [CrossRef]
- Proctor, M.S.; Fletcher, H.V.; Shukla, J.B.; Rennert, O.M. Elevated Spermidine And Spermine Levels In The Blood Of Psoriasis Patients. J. Investig. Dermatol. 1975, 65, 409–411. [Google Scholar] [CrossRef]
- Saiki, S.; Sasazawa, Y.; Fujimaki, M.; Kamagata, K.; Kaga, N.; Taka, H.; Li, Y.; Souma, S.; Hatano, T.; Imamichi, Y.; et al. A Metabolic Profile of Polyamines in Parkinson Disease: A Promising Biomarker. Ann. Neurol. 2019, 86, 251–263. [Google Scholar] [CrossRef]
- Han, W.; Li, H.; Chen, B. Research Progress and Potential Applications of Spermidine in Ocular Diseases. Pharmaceutics 2022, 14, 1500. [Google Scholar] [CrossRef] [PubMed]
- Thomas, T.; Thomas, T.J. Polyamine Metabolism and Cancer. J. Cell. Mol. Med. 2003, 7, 113–126. [Google Scholar] [CrossRef]
- Palmer, A.J.; Wallace, H.M. The Polyamine Transport System as a Target for Anticancer Drug Development. Amino Acids 2010, 38, 415–422. [Google Scholar] [CrossRef] [PubMed]
- Vanhoutte, R.; Kahler, J.P.; Martin, S.; van Veen, S.; Verhelst, S.H.L. Clickable Polyamine Derivatives as Chemical Probes for the Polyamine Transport System. ChemBioChem 2018, 19, 907–911. [Google Scholar] [CrossRef] [PubMed]
- Ni, Y.-Q.; Liu, Y.-S. New Insights into the Roles and Mechanisms of Spermidine in Aging and Age-Related Diseases. Aging Dis. 2021, 12, 1948–1963. [Google Scholar] [CrossRef]
- Al-Habsi, M.; Chamoto, K.; Matsumoto, K.; Nomura, N.; Zhang, B.; Sugiura, Y.; Sonomura, K.; Maharani, A.; Nakajima, Y.; Wu, Y.; et al. Spermidine Activates Mitochondrial Trifunctional Protein and Improves Antitumor Immunity in Mice. Science 2022, 378, eabj3510. [Google Scholar] [CrossRef]
- Tao, X.; Liu, J.; Diaz-Perez, Z.; Foley, J.R.; Nwafor, A.; Stewart, T.M.; Casero, R.A.; Zhai, R.G. Reduction of Spermine Synthase Enhances Autophagy to Suppress Tau Accumulation. Cell Death Dis. 2024, 15, 333. [Google Scholar] [CrossRef]
- Tiburcio, A.F.; Alcázar, R. Potential Applications of Polyamines in Agriculture and Plant Biotechnology. Methods Mol. Biol. 2018, 1694, 489–508. [Google Scholar] [CrossRef]
- Issaq, H.J. Capillary Electrophoresis of Natural Products-II. Electrophoresis 1999, 20, 3190–3202. [Google Scholar] [CrossRef]
- Oguri, S. Electromigration Methods for Amino Acids, Biogenic Amines and Aromatic Amines. J. Chromatogr. B Biomed. Sci. Appl. 2000, 747, 1–19. [Google Scholar] [CrossRef]
- Chiu, T.; Lin, Y.; Huang, Y.; Chang, H. Analysis of Biologically Active Amines by CE. Electrophoresis 2006, 27, 4792–4807. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Zhang, Y.; Zhou, Y.; Li, G.; Yang, W.; Feng, X. A Review of Pretreatment and Analytical Methods of Biogenic Amines in Food and Biological Samples since 2010. J. Chromatogr. A 2019, 1605, 360361. [Google Scholar] [CrossRef]
- Chiu, P.K.-F.; Fung, Y.-H.; Teoh, J.Y.-C.; Chan, C.-H.; Lo, K.-L.; Li, K.-M.; Tse, R.T.-H.; Leung, C.-H.; Wong, Y.-P.; Roobol, M.J.; et al. Urine Spermine and Multivariable Spermine Risk Score Predict High-Grade Prostate Cancer. Prostate Cancer Prostatic Dis. 2021, 24, 542–548. [Google Scholar] [CrossRef]
- Krämer, J.; Kang, R.; Grimm, L.M.; De Cola, L.; Picchetti, P.; Biedermann, F. Molecular Probes, Chemosensors, and Nanosensors for Optical Detection of Biorelevant Molecules and Ions in Aqueous Media and Biofluids. Chem. Rev. 2022, 122, 3459–3636. [Google Scholar] [CrossRef]
- He, X.; Ding, F.; Sun, X.; Zheng, Y.; Xu, W.; Ye, L.; Chen, H.; Shen, J. Reversible Chemosensor for Bioimaging and Biosensing of Zn(II) and HpH in Cells, Larval Zebrafish, and Plants with Dual-Channel Fluorescence Signals. Inorg. Chem. 2021, 60, 5563–5572. [Google Scholar] [CrossRef] [PubMed]
- Martínez-Máñez, R.; Sancenón, F. Fluorogenic and Chromogenic Chemosensors and Reagents for Anions. Chem. Rev. 2003, 103, 4419–4476. [Google Scholar] [CrossRef] [PubMed]
- Martínez-Máñez, R.; Sancenón, F. Chemodosimeters and 3D Inorganic Functionalised Hosts for the Fluoro-Chromogenic Sensing of Anions. Coord. Chem. Rev. 2006, 250, 3081–3093. [Google Scholar] [CrossRef]
- Wu, D.; Sedgwick, A.C.; Gunnlaugsson, T.; Akkaya, E.U.; Yoon, J.; James, T.D. Fluorescent Chemosensors: The Past, Present and Future. Chem. Soc. Rev. 2017, 46, 7105–7123. [Google Scholar] [CrossRef]
- Tanima, D.; Imamura, Y.; Kawabata, T.; Tsubaki, K. Development of Highly Sensitive and Selective Molecules for Detection of Spermidine and Spermine. Org. Biomol. Chem. 2009, 7, 4689–4694. [Google Scholar] [CrossRef]
- Lee, B.; Scopelliti, R.; Severin, K. A Molecular Probe for the Optical Detection of Biogenic Amines. Chem. Commun. 2011, 47, 9639–9641. [Google Scholar] [CrossRef]
- Nakamura, M.; Sanji, T.; Tanaka, M. Fluorometric Sensing of Biogenic Amines with Aggregation-Induced Emission-Active Tetraphenylethenes. Chem. Eur. J. 2011, 17, 5344–5349. [Google Scholar] [CrossRef] [PubMed]
- Barros, M.; Ceballos, S.; Arroyo, P.; Sáez, J.A.; Parra, M.; Gil, S.; Costero, A.M.; Gaviña, P. Spermine and Spermidine Detection through Restricted Intramolecular Rotations in a Tetraphenylethylene Derivative. Chemosensors 2021, 10, 8. [Google Scholar] [CrossRef]
- Köstereli, Z.; Severin, K. Fluorescence Sensing of Spermine with a Frustrated Amphiphile. Chem. Commun. 2012, 48, 5841–5843. [Google Scholar] [CrossRef]
- Satrijo, A.; Swager, T.M. Anthryl-Doped Conjugated Polyelectrolytes as Aggregation-Based Sensors for Nonquenching Multicationic Analytes. J. Am. Chem. Soc. 2007, 129, 16020–16028. [Google Scholar] [CrossRef] [PubMed]
- Chow, C.-F.; Lam, M.H.W.; Wong, W.-Y. Design and Synthesis of Heterobimetallic Ru(II)–Ln(III) Complexes as Chemodosimetric Ensembles for the Detection of Biogenic Amine Odorants. Anal. Chem. 2013, 85, 8246–8253. [Google Scholar] [CrossRef]
- Khan, S.A.; Misra, T.K. Novel Gluconate Stabilized Gold Nanoparticles as a Colorimetric Sensor for Quantitative Evaluation of Spermine. Eng. Asp. 2022, 648, 129146. [Google Scholar] [CrossRef]
- Rawat, K.A.; Bhamore, J.R.; Singhal, R.K.; Kailasa, S.K. Microwave Assisted Synthesis of Tyrosine Protected Gold Nanoparticles for Dual (Colorimetric and Fluorimetric) Detection of Spermine and Spermidine in Biological Samples. Biosens. Bioelectron. 2017, 88, 71–77. [Google Scholar] [CrossRef]
- Fletcher, J.T.; Bruck, B.S. Spermine Detection via Metal-Mediated Ethynylarene ‘Turn-on’ Fluorescence Signaling. Sens. Actuators. B Chem. 2015, 207, 843–848. [Google Scholar] [CrossRef] [PubMed]
- Lu, B.; Wang, L.; Ran, X.; Tang, H.; Cao, D. Recent Advances in Fluorescent Methods for Polyamine Detection and the Polyamine Suppressing Strategy in Tumor Treatment. Biosensors 2022, 12, 633. [Google Scholar] [CrossRef]
- Maynor, M.S.; Nelson, T.L.; O’Sulliva, C.; Lavigne, J.J. A Food Freshness Sensor Using the Multistate Response from Analyte-Induced Aggregation of a Cross-Reactive Poly (Thiophene). Org. Lett. 2007, 9, 3217–3220. [Google Scholar] [CrossRef]
- Singh, P.; Mittal, L.S.; Bhargava, G.; Kumar, S. Ionic Self-Assembled Platform of Perylenediimide–Sodium Dodecylsulfate for Detection of Spermine in Clinical Samples. Chem. Asian J. 2017, 12, 890–899. [Google Scholar] [CrossRef] [PubMed]
- Buschmann, H.-J.; Schollmeyer, E.; Mutihac, L. The Complexation of the Ammonium Ion by 18-Crown-6 in Different Solvents and by Noncyclic Ligands, Crown Ethers and Cryptands in Methanol. Supramol. Sci. 1998, 5, 139–142. [Google Scholar] [CrossRef]
- Buschmann, H.-J.; Mutihac, L.; Mutihac, R. Physicochemical Parameters of the Transport of Amines and Amino Acids through Liquid Membranes by Macrocyclic Ligands. Sep. Sci. Technol. 1999, 34, 331–341. [Google Scholar] [CrossRef]
- Newcomb, M.; Timko, J.M.; Walba, D.M.; Cram, D.J. Host-Guest Complexation. 3. Organization of Pyridyl Binding Sites. J. Am. Chem. Soc. 1977, 99, 6392–6398. [Google Scholar] [CrossRef]
- Saaid, M.; Saad, B.; Rahman, I.A.; Ali, A.S.M.; Saleh, M.I. Extraction of Biogenic Amines Using Sorbent Materials Containing Immobilized Crown Ethers. Talanta 2010, 80, 1183–1190. [Google Scholar] [CrossRef]
- Udvarhelyi, P.M.; Sunter, D.C.; Watkins, J.C. Direct Separation of Amino Acid Enantiomers Using a Chiral Crown Ether Stationary Phase. J. Chromatogr. A 1990, 519, 69–74. [Google Scholar] [CrossRef]
- Kovács, E.; Deme, J.; Turczel, G.; Nagy, T.; Farkas, V.; Trif, L.; Kéki, S.; Huszthy, P.; Tuba, R. Synthesis and Supramolecular Assembly of Fluorinated Biogenic Amine Recognition Host Polymers. Polym. Chem. 2019, 10, 5626–5634. [Google Scholar] [CrossRef]
- Vezse, P.; Benda, B.; Fekete, A.; Golcs, Á.; Tóth, T.; Huszthy, P. Covalently Immobilizable Tris(Pyridino)-Crown Ether for Separation of Amines Based on Their Degree of Substitution. Molecules 2022, 27, 2838. [Google Scholar] [CrossRef]
- Mao, L.; Liu, Y.; Yang, S.; Li, Y.; Zhang, X.; Wei, Y. Recent Advances and Progress of Fluorescent Bio-/Chemosensors Based on Aggregation-Induced Emission Molecules. Dye. Pigment. 2019, 162, 611–623. [Google Scholar] [CrossRef]
- Huszthy, P.; Köntös, Z.; Vermes, B.; Pintér, Á. Synthesis of Novel Fluorescent Acridono- and Thioacridono-18-Crown-6 Ligands. Tetrahedron 2001, 57, 4967–4975. [Google Scholar] [CrossRef]
- Golcs, Á.; Ádám, B.Á.; Vezse, P.; Huszthy, P.; Tóth, T. Synthesis and Spectrophotometric Studies of 9-Substituted-4,5-dimethoxyacridine Multifunctionalizable Fluorescent Dyes and Their Macrocyclic Derivatives. Eur. J. Org. Chem. 2021, 2021, 2485–2497. [Google Scholar] [CrossRef]
- Németh, T.; Tóth, T.; Balogh, G.T.; Huszthy, P. Synthesis and Fluorescence Spectroscopic Studies of Novel 9-phenylacridino-18-crown-6 Ether Type Sensor Molecules. Period. Polytech. Chem. Eng. 2017, 61, 249–257. [Google Scholar] [CrossRef]
- Huszthy, P.; Vermes, B.; Báthori, N.; Czugler, M. Synthesis and X-Ray Crystallographic Studies of Novel Proton-Ionizable Nitro- and Halogen-Substituted Acridono-18-Crown-6 Chromo- and Fluorogenic Ionophores. Tetrahedron 2003, 59, 9371–9377. [Google Scholar] [CrossRef]
- Boyer, G.; Lormier, T.; Galy, J.-P.; Llamas-Saiz, A.L.; Foces- Foces, C.; Fierros, M.; Elguero, J.; Virgili, A. X-ray Crystallography at 170 K of Racemic 2,2′-Dimethoxy-9,9′-biacridine and 1H NMR Study of 2,2′-Diacetoxy-9,9′-biacridine. Molecules 1999, 4, 104–121. [Google Scholar] [CrossRef]
- Thordarson, P. Determining association constants from titration experiments in supramolecular chemistry. Chem. Soc. Rev. 2011, 40, 1305–1323. [Google Scholar] [CrossRef]
- Van de Weert, M.; Stella, L. Fluorescence quenching and ligand binding: A critical discussion of a popular methodology. J. Mol. Struct. 2011, 998, 144–150. [Google Scholar] [CrossRef]
- Ulatowski, F.; Dabrowa, K.; Bałakier, T.; Jurczak, J. Recognizing the limited applicability of Job plots in studying host–guest interactions in supramolecular chemistry. J. Org. Chem. 2016, 81, 1746–1756. [Google Scholar] [CrossRef]
Amine Guest 1 | logK1 2 | logK2 3 | Binding Cooperativity Effects 4 |
---|---|---|---|
n-butylamine (18) | 2.1 ± 0.2 | <<2.0 | non-cooperative |
Putrescine (1) | 2.6 ± 0.2 | <<2.0 | non-cooperative |
N,N′-bis(2-aminoethyl) -1,3-propanediamine (19) | 3.7 ± 0.2 | 3.0 ± 0.2 | non-cooperative |
Norspermidine (5) | 5.1 ± 0.1 | 4.5 ± 0.1 | non-cooperative |
Spermine (4) | 5.3 ± 0.1 | 4.4 ± 0.1 | negative cooperativity (α = 0.6) |
Spermidine (3) | 5.5 ± 0.1 | 4.8 ± 0.1 | non-cooperative |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kisfaludi, P.; Spátay, S.; Krekó, M.; Vezse, P.; Tóth, T.; Huszthy, P.; Golcs, Á. A Bis(Acridino)-Crown Ether for Recognizing Oligoamines in Spermine Biosynthesis. Molecules 2024, 29, 4390. https://doi.org/10.3390/molecules29184390
Kisfaludi P, Spátay S, Krekó M, Vezse P, Tóth T, Huszthy P, Golcs Á. A Bis(Acridino)-Crown Ether for Recognizing Oligoamines in Spermine Biosynthesis. Molecules. 2024; 29(18):4390. https://doi.org/10.3390/molecules29184390
Chicago/Turabian StyleKisfaludi, Péter, Sára Spátay, Marcell Krekó, Panna Vezse, Tünde Tóth, Péter Huszthy, and Ádám Golcs. 2024. "A Bis(Acridino)-Crown Ether for Recognizing Oligoamines in Spermine Biosynthesis" Molecules 29, no. 18: 4390. https://doi.org/10.3390/molecules29184390
APA StyleKisfaludi, P., Spátay, S., Krekó, M., Vezse, P., Tóth, T., Huszthy, P., & Golcs, Á. (2024). A Bis(Acridino)-Crown Ether for Recognizing Oligoamines in Spermine Biosynthesis. Molecules, 29(18), 4390. https://doi.org/10.3390/molecules29184390