Preparation and Photocatalytic Properties of Al2O3–SiO2–TiO2 Porous Composite Semiconductor Ceramics
Abstract
:1. Introduction
2. Results and Discussion
2.1. Effect of Al2O3 Content on Ceramic Performance and Structure
2.2. Effect of SiO2 Content on Ceramic Performance and Structure
2.3. Photocatalytic Properties of Al2O3–SiO2–TiO2 Porous Ceramics
3. Materials and Methods
3.1. Experimental Materials
3.2. Preparation of Porous Compound Semiconductor Ceramics
3.3. Characterization
3.4. Visible Light Photodegradation Experimental Process
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Rafique, M.; Hajra, S.; Irshad, M.; Usman, M.; Imran, M.; Assiri, M.A.; Ashraf, W.M. Hydrogen production using TiO2-based photocatalysts: A comprehensive review. ACS Omega 2023, 8, 25640–25648. [Google Scholar] [CrossRef] [PubMed]
- Madkhali, N.; Prasad, C.; Malkappa, K.; Choi, H.Y.; Govinda, V.; Bahadur, I.; Abumousa, R. Recent update on photocatalytic degradation of pollutants in waste water using TiO2-based heterostructured materials. Results Eng. 2023, 17, 100920. [Google Scholar] [CrossRef]
- Haghighi, P.; Haghighat, F. TiO2-based photocatalytic oxidation process for indoor air VOCs removal: A comprehensive review. Build. Environ. 2024, 249, 111108. [Google Scholar] [CrossRef]
- Chen, D.; Cheng, Y.; Zhou, N.; Chen, P.; Wang, Y.; Li, K.; Huo, S.; Cheng, P.; Peng, P.; Zhang, R. Photocatalytic degradation of organic pollutants using TiO2-based photocatalysts: A Review. J. Clean. Prod. 2020, 268, 121725. [Google Scholar] [CrossRef]
- Sari, Y.; Gareso, P.L.; Armynah, B.; Tahir, D. A review of TiO2 photocatalyst for organic degradation and sustainable hydrogen energy production. Int. J. Hydrogen Energy 2024, 55, 984–996. [Google Scholar] [CrossRef]
- Li, D.; Song, H.; Meng, X.; Shen, T.; Sun, J.; Han, W.; Wang, X. Effects of particle size on the structure and photocatalytic performance by alkali-treated TiO2. Nanomaterials 2020, 10, 546. [Google Scholar] [CrossRef]
- Mamaghani, A.H.; Haghighat, F.; Lee, C.-S. Role of titanium dioxide (TiO2) structural design/morphology in photocatalytic air purification. Appl. Catal. B Environ. 2020, 269, 118735. [Google Scholar] [CrossRef]
- Yan, H.; Wang, R.; Liu, R.; Xu, T.; Sun, J.; Liu, L.; Wang, J. Recyclable and reusable direct Z-scheme heterojunction CeO2/TiO2 nanotube arrays for photocatalytic water disinfection. Appl. Catal. B Environ. 2021, 291, 120096. [Google Scholar] [CrossRef]
- Sevastaki, M.; Suchea, M.P.; Kenanakis, G. 3D printed fully recycled TiO2-polystyrene nanocomposite photocatalysts for use against drug residues. Nanomaterials 2020, 10, 2144. [Google Scholar] [CrossRef]
- Wang, P.; Yu, C.; Huang, J.; Jiang, Z.; Jiang, X.; Xiang, S.; Cai, D. Fabrication of TiO2-enriched MXene microfibers to give efficient and recyclable photocatalysts for sustainable wastewater treatment. J. Environ. Chem. Eng. 2024, 12, 112123. [Google Scholar] [CrossRef]
- Tolosana-Moranchel, A.; Pecharromán, C.; Faraldos, M.; Bahamonde, A. Strong effect of light scattering by distribution of TiO2 particle aggregates on photocatalytic efficiency in aqueous suspensions. Chem. Eng. J. 2021, 403, 126186. [Google Scholar] [CrossRef]
- Suhan, M.B.K.; Al-Mamun, M.R.; Farzana, N.; Aishee, S.M.; Islam, M.S.; Marwani, H.M.; Hasan, M.M.; Asiri, A.M.; Rahman, M.M.; Islam, A. Sustainable pollutant removal and wastewater remediation using TiO2-based nanocomposites: A critical review. Nano-Struct. Nano-Objects 2023, 36, 101050. [Google Scholar] [CrossRef]
- He, X.; Wang, M.; Li, L. Characterization and photocatalytic properties of porous ZrO2/Al2O3 ceramic bead supported BiOI catalyst. Ceram. Int. 2024, 50, 12529–12538. [Google Scholar] [CrossRef]
- Chen, Y.; Wang, N.; Ola, O.; Xia, Y.; Zhu, Y. Porous ceramics: Light in weight but heavy in energy and environment technologies. Mater. Sci. Eng. R Rep. 2021, 143, 100589. [Google Scholar] [CrossRef]
- Peck, D.; Zappi, M.; Gang, D.; Guillory, J.; Hernandez, R.; Buchireddy, P. Review of porous ceramics for hot gas cleanup of biomass syngas using catalytic ceramic filters to produce green hydrogen/fuels/chemicals. Energies 2023, 16, 2334. [Google Scholar] [CrossRef]
- Yang, F.; Zhao, S.; Sun, W.; Li, K.; Chen, J.; Fei, Z.; Yang, Z. Fibrous porous mullite ceramics modified by mullite whiskers for thermal insulation and sound absorption. J. Eur. Ceram. Soc. 2023, 43, 521–529. [Google Scholar] [CrossRef]
- Liao, M.; Guo, C.; Guo, W.; Hu, T.; Qin, H.; Gao, P.; Xiao, H. Hydrogen production in microreactor using porous SiC ceramic with a pore-in-pore hierarchical structure as catalyst support. Int. J. Hydrogen Energy 2020, 45, 20922–20932. [Google Scholar] [CrossRef]
- Padmanabhan, N.T.; Thomas, N.; Louis, J.; Mathew, D.T.; Ganguly, P.; John, H.; Pillai, S.C. Graphene coupled TiO2 photocatalysts for environmental applications: A review. Chemosphere 2021, 271, 129506. [Google Scholar] [CrossRef]
- Chen, J.; Qiu, F.; Xu, W.; Cao, S.; Zhu, H. Recent progress in enhancing photocatalytic efficiency of TiO2-based materials. Appl. Catal. A Gen. 2015, 495, 131–140. [Google Scholar] [CrossRef]
- Mandal, S.; Adhikari, S.; Pu, S.; Wang, X.; Kim, D.-H.; Patel, R.K. Interactive Fe2O3/porous SiO2 nanospheres for photocatalytic degradation of organic pollutants: Kinetic and mechanistic approach. Chemosphere 2019, 234, 596–607. [Google Scholar] [CrossRef]
- Zhang, N.; Qi, M.Y.; Yuan, L.; Fu, X.; Tang, Z.R.; Gong, J.; Xu, Y.J. Broadband light harvesting and unidirectional electron flow for efficient electron accumulation for hydrogen generation. Angew. Chem. 2019, 131, 10108–10112. [Google Scholar] [CrossRef]
- Yang, K.; Zhong, S.; Tang, S.; Zhou, X.; Wang, R.; Ma, K.; Song, L.; Yue, H.; Liang, B. Fabrication of SiO2/Al2O3 composite-coated TiO2 by pulsed chemical vapor deposition and its applications. Ind. Eng. Chem. Res. 2022, 61, 12590–12599. [Google Scholar] [CrossRef]
- Li, K.; Zhang, S.; Tan, Q.; Wu, X.; Li, Y.; Li, Q.; Fan, J.; Lv, K. Insulator in photocatalysis: Essential roles and activation strategies. Chem. Eng. J. 2021, 426, 130772. [Google Scholar] [CrossRef]
- Bouslama, M.; Amamra, M.; Jia, Z.; Ben Amar, M.; Chhor, K.; Brinza, O.; Abderrabba, M.; Vignes, J.-L.; Kanaev, A. Nanoparticulate TiO2–Al2O3 photocatalytic media: Effect of particle size and polymorphism on photocatalytic activity. ACS Catal. 2012, 2, 1884–1892. [Google Scholar] [CrossRef]
- Magnone, E.; Kim, M.K.; Lee, H.J.; Park, J.H. Facile synthesis of TiO2-supported Al2O3 ceramic hollow fiber substrates with extremely high photocatalytic activity and reusability. Ceram. Int. 2021, 47, 7764–7775. [Google Scholar] [CrossRef]
- Nadimi, M.; Dehghanian, C.; Etemadmoghadam, A. Influence of SiO2 nanoparticles incorporating into ceramic coatings generated by PEO on Aluminium alloy: Morphology, adhesion, corrosion, and wear resistance. Mater. Today Commun. 2022, 31, 103587. [Google Scholar] [CrossRef]
- Mazinani, B.; Masrom, A.K.; Beitollahi, A.; Luque, R. Photocatalytic activity, surface area and phase modification of mesoporous SiO2–TiO2 prepared by a one-step hydrothermal procedure. Ceram. Int. 2014, 40, 11525–11532. [Google Scholar] [CrossRef]
- Wang, J.; Sun, S.; Ding, H.; Chen, W.; Liang, Y. Preparation of a composite photocatalyst with enhanced photocatalytic activity: Smaller TiO2 carried on SiO2 microsphere. Appl. Surf. Sci. 2019, 493, 146–156. [Google Scholar] [CrossRef]
- Soylu, A.M.; Polat, M.; Erdogan, D.A.; Say, Z.; Yıldırım, C.; Birer, Ö.; Ozensoy, E. TiO2–Al2O3 binary mixed oxide surfaces for photocatalytic NOx abatement. Appl. Surf. Sci. 2014, 318, 142–149. [Google Scholar] [CrossRef]
- Yang, J.; Ferreira, J. Inhibitory effect of the Al2O3–SiO2 mixed additives on the anatase–rutile phase transformation. Mater. Lett. 1998, 36, 320–324. [Google Scholar] [CrossRef]
- Yamaguchi, O.; Mukaida, Y. Formation and transformation of TiO2 (anatase) solid solution in the system TiO2—Al2O3. J. Am. Ceram. Soc. 1989, 72, 330–333. [Google Scholar] [CrossRef]
- Feltrin, J.; De Noni Jr, A.; Hotza, D.; Frade, J. Design guidelines for titania-silica-alumina ceramics with tuned anatase to rutile transformation. Ceram. Int. 2019, 45, 5179–5188. [Google Scholar] [CrossRef]
- Dejang, N.; Watcharapasorn, A.; Wirojupatump, S.; Niranatlumpong, P.; Jiansirisomboon, S. Fabrication and properties of plasma-sprayed Al2O3/TiO2 composite coatings: A role of nano-sized TiO2 addition. Surf. Coat. Technol. 2010, 204, 1651–1657. [Google Scholar] [CrossRef]
- Arıer, U.O.A.; Tepehan, F.Z. Influence of Al2O3: TiO2 ratio on the structural and optical properties of TiO2–Al2O3 nano-composite films produced by sol gel method. Compos. Part B Eng. 2014, 58, 147–151. [Google Scholar] [CrossRef]
- Wang, D.; Huang, L.; Sun, H.; Li, S.; Wang, G.; Zhao, R.; Zhou, S.; Sun, X. Enhanced photogenic self-cleaning of superhydrophilic Al2O3@ GO-TiO2 ceramic membranes for efficient separation of oil-in-water emulsions. Chem. Eng. J. 2024, 486, 150211. [Google Scholar] [CrossRef]
- Ismail, A.A.; Abdelfattah, I.; Atitar, M.F.; Robben, L.; Bouzid, H.; Al-Sayari, S.; Bahnemann, D. Photocatalytic degradation of imazapyr using mesoporous Al2O3–TiO2 nanocomposites. Sep. Purif. Technol. 2015, 145, 147–153. [Google Scholar] [CrossRef]
- Kim, J.-Y.; Kang, S.H.; Kim, H.S.; Sung, Y.-E. Preparation of highly ordered mesoporous Al2O3/TiO2 and its application in dye-sensitized solar cells. Langmuir 2010, 26, 2864–2870. [Google Scholar] [CrossRef]
- Aguado, J.; Van Grieken, R.; López-Muñoz, M.-J.; Marugán, J. A comprehensive study of the synthesis, characterization and activity of TiO2 and mixed TiO2/SiO2 photocatalysts. Appl. Catal. A Gen. 2006, 312, 202–212. [Google Scholar] [CrossRef]
- Okada, K.; Yamamoto, N.; Kameshima, Y.; Yasumori, A.; MacKenzie, K.J. Effect of silica additive on the anatase-to-rutile phase transition. J. Am. Ceram. Soc. 2001, 84, 1591–1596. [Google Scholar] [CrossRef]
- Hirano, M.; Ota, K.; Iwata, H. Direct formation of anatase (TiO2)/silica (SiO2) composite nanoparticles with high phase stability of 1300 °C from acidic solution by hydrolysis under hydrothermal condition. Chem. Mater. 2004, 16, 3725–3732. [Google Scholar] [CrossRef]
- Shi, H.; Zeng, D.; Li, J.; Wang, W. A melting-like process and the local structures during the anatase-to-rutile transition. Mater. Charact. 2018, 146, 237–242. [Google Scholar] [CrossRef]
- Kang, C.; Jing, L.; Guo, T.; Cui, H.; Zhou, J.; Fu, H. Mesoporous SiO2-modified nanocrystalline TiO2 with high anatase thermal stability and large surface area as efficient photocatalyst. J. Phys. Chem. C 2009, 113, 1006–1013. [Google Scholar] [CrossRef]
- Reidy, D.; Holmes, J.; Morris, M. The critical size mechanism for the anatase to rutile transformation in TiO2 and doped-TiO2. J. Eur. Ceram. Soc. 2006, 26, 1527–1534. [Google Scholar] [CrossRef]
- Kwon, O.-S.; Hong, S.-H.; Lee, J.-H.; Chung, U.-J.; Kim, D.-Y.; Hwang, N. Microstructural evolution during sintering of TiO2/SiO2-doped alumina: Mechanism of anisotropic abnormal grain growth. Acta Mater. 2002, 50, 4865–4872. [Google Scholar] [CrossRef]
- Yan, T.; Bai, J.; Kong, L.; Bai, Z.; Li, W.; Xu, J. Effect of SiO2/Al2O3 on fusion behavior of coal ash at high temperature. Fuel 2017, 193, 275–283. [Google Scholar] [CrossRef]
- Zhang, B.; Tong, Z.; Pang, Y.; Xu, H.; Li, X.; Ji, H. Design and electrospun closed cell structured SiO2 nanocomposite fiber by hollow SiO2/TiO2 spheres for thermal insulation. Compos. Sci. Technol. 2022, 218, 109152. [Google Scholar] [CrossRef]
- Dong, F.; Xiong, T.; Sun, Y.; Lu, L.; Zhang, Y.; Zhang, H.; Huang, H.; Zhou, Y.; Wu, Z. Exploring the photocatalysis mechanism on insulators. Appl. Catal. B Environ. 2017, 219, 450–458. [Google Scholar] [CrossRef]
- Kumar, S.G.; Rao, K.K. Zinc oxide based photocatalysis: Tailoring surface-bulk structure and related interfacial charge carrier dynamics for better environmental applications. Rsc Adv. 2015, 5, 3306–3351. [Google Scholar] [CrossRef]
- Zhang, H.; Banfield, J.F. Structural characteristics and mechanical and thermodynamic properties of nanocrystalline TiO2. Chem. Rev. 2014, 114, 9613–9644. [Google Scholar] [CrossRef]
- Wu, N.; Wang, J.; Tafen, D.N.; Wang, H.; Zheng, J.-G.; Lewis, J.P.; Liu, X.; Leonard, S.S.; Manivannan, A. Shape-enhanced photocatalytic activity of single-crystalline anatase TiO2 (101) nanobelts. J. Am. Chem. Soc. 2010, 132, 6679–6685. [Google Scholar] [CrossRef]
- Su, R.; Bechstein, R.; Sø, L.; Vang, R.T.; Sillassen, M.; Esbjörnsson, B.R.; Palmqvist, A.; Besenbacher, F. How the anatase-to-rutile ratio influences the photoreactivity of TiO2. J. Phys. Chem. C 2011, 115, 24287–24292. [Google Scholar] [CrossRef]
- Abazović, N.D.; Čomor, M.I.; Dramićanin, M.D.; Jovanović, D.J.; Ahrenkiel, S.P.; Nedeljković, J.M. Photoluminescence of anatase and rutile TiO2 particles. J. Phys. Chem. B 2006, 110, 25366–25370. [Google Scholar] [CrossRef] [PubMed]
- Rostamzadeh, D.; Sadeghi, S. Ni doped zinc oxide nanoparticles supported bentonite clay for photocatalytic degradation of anionic and cationic synthetic dyes in water treatment. J. Photochem. Photobiol. A Chem. 2022, 431, 113947. [Google Scholar] [CrossRef]
- Junnarkar, M.V.; Sawant, P.V.; Parekar, M.A.; Kardile, A.V.; Thorat, A.B.; Joshi, R.P.; Mene, R.U. Silver-blend hydroxyapatite bio-ceramics for enhanced photocatalytic degradation of methylene blue. Acad. Mater. Sci. 2024, 1. [Google Scholar] [CrossRef]
- Cervantes-Diaz, K.B.; Drobek, M.; Julbe, A.; Cambedouzou, J. SiC Foams for the Photocatalytic Degradation of Methylene Blue under Visible Light Irradiation. Materials 2023, 16, 1328. [Google Scholar] [CrossRef]
- Yerli-Soylu, N.; Akturk, A.; Kabak, Ö.; Erol-Taygun, M.; Karbancioglu-Guler, F.; Küçükbayrak, S. TiO2 nanocomposite ceramics doped with silver nanoparticles for the photocatalytic degradation of methylene blue and antibacterial activity against Escherichia coli. Eng. Sci. Technol. Int. J. 2022, 35, 101175. [Google Scholar] [CrossRef]
- Özcan, M.; Birol, B.; Kaya, F. Investigation of photocatalytic properties of TiO2 nanoparticle coating on fly ash and red mud based porous ceramic substrate. Ceram. Int. 2021, 47, 24270–24280. [Google Scholar] [CrossRef]
- Salimi, H.; Fattah-Alhosseini, A.; Karbasi, M.; Nikoomanzari, E. Development of WO3-incorporated porous ceramic coating: A key role of WO3 nanoparticle concentration on methylene blue photodegradation upon visible light illumination. Ceram. Int. 2023, 49, 32181–32192. [Google Scholar] [CrossRef]
- Camacho-González, M.A.; Lijanova, I.V.; Reyes-Miranda, J.; Sarmiento-Bustos, E.; Quezada-Cruz, M.; Vera-Serna, P.; Barrón-Meza, M.Á.; Garrido-Hernández, A. High Photocatalytic Efficiency of Al2O3-TiO2 Coatings on 304 Stainless Steel for Methylene Blue and Wastewater Degradation. Catalysts 2023, 13, 1351. [Google Scholar] [CrossRef]
- Tichapondwa, S.M.; Newman, J.; Kubheka, O. Effect of TiO2 phase on the photocatalytic degradation of methylene blue dye. Phys. Chem. Earth Parts A/B/C 2020, 118, 102900. [Google Scholar] [CrossRef]
- Joseph, C.G.; Taufiq-Yap, Y.H.; Letshmanan, E.; Vijayan, V. Heterogeneous Photocatalytic Chlorination of Methylene Blue Using a Newly Synthesized TiO2-SiO2 Photocatalyst. Catalysts 2022, 12, 156. [Google Scholar] [CrossRef]
- Scanlon, D.O.; Dunnill, C.W.; Buckeridge, J.; Shevlin, S.A.; Logsdail, A.J.; Woodley, S.M.; Catlow, C.R.A.; Powell, M.J.; Palgrave, R.G.; Parkin, I.P. Band alignment of rutile and anatase TiO2. Nat. Mater. 2013, 12, 798–801. [Google Scholar] [CrossRef] [PubMed]
- Hara, Y.; Nicol, M. Raman spectra and the structure of rutile at high pressures. Phys. Status Solidi 1979, 94, 317–322. [Google Scholar] [CrossRef]
- Nilchi, A.; Janitabar-Darzi, S.; Mahjoub, A.; Rasouli-Garmarodi, S. New TiO2/SiO2 nanocomposites—Phase transformations and photocatalytic studies. Colloids Surf. A Physicochem. Eng. Asp. 2010, 361, 25–30. [Google Scholar] [CrossRef]
- He, C.; Tian, B.; Zhang, J. Thermally stable SiO2-doped mesoporous anatase TiO2 with large surface area and excellent photocatalytic activity. J. Colloid Interface Sci. 2010, 344, 382–389. [Google Scholar] [CrossRef]
- Wang, Z.; Lin, Z.; Shen, S.; Zhong, W.; Cao, S. Advances in designing heterojunction photocatalytic materials. Chin. J. Catal. 2021, 42, 710–730. [Google Scholar] [CrossRef]
Photocatalysts | Catalyst Dosage | MB Initial Concentration | Light Source | Irradiation Time | Photocatalyst Efficiency | Rate Constant | Ref. |
---|---|---|---|---|---|---|---|
Ag-doped hydroxyapatite bio-ceramics | 1 g/L | 10 mg/L | Vis (624 w) | 70 min | 97% | 6.83 × 10−2 | [54] |
SiC foam | 20 g/L | 1.5 × 10−5 mol/L | Vis (150 w) | 480 min | 88% | - | [55] |
Ag NPs-doped TiO2 nanocomposite film | 0.2 g/L | 10 mg/L | UV (8 w) | 100 min | 94.6% | 2.86 × 10−2 | [56] |
TiO2-deposited porous substrate | - | 5 mg /L | UV (300 w) | 240 min | 50% | - | [57] |
WO3-coated porous ceramics | - | 10 mg/L | Vis (100 w) | 6 h | 83% | 5.1 × 10−3 | [58] |
Al2O3-TiO2 Coatings | - | 6 mg /L | Vis (4 w) | 5 h | 97.43% | - | [59] |
P25 TiO2 powder | 0.5 g/L | 10 mg /L | UV | 100 min | 81.4% | - | [60] |
TiO2-SiO2 powder | 0.4 g/L | 6 mg /L | Vis (9 w) | 60 min | 68% | - | [61] |
Al2O3–SiO2–TiO2 porous ceramics | 15 g/L | 10 mg/L | Vis (18 w) | 120 min | 91.5% | 2.09 × 10−2 | This work |
Test Group | Titanium Oxide (wt.%) | Aluminum Oxide (wt.%) | Silicon Oxide (wt.%) | Corn Starch (wt.%) |
---|---|---|---|---|
A1 | 40 | 60 | 0 | 10 |
A2 | 45 | 55 | 0 | 10 |
A3 | 50 | 50 | 0 | 10 |
A4 | 55 | 45 | 0 | 10 |
A5 | 60 | 40 | 0 | 10 |
B1 | 40 | 60 | 0 | 10 |
B2 | 40 | 55 | 5 | 10 |
B3 | 40 | 50 | 10 | 10 |
B4 | 40 | 45 | 15 | 10 |
B5 | 40 | 40 | 20 | 10 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hua, K.; Wu, Z.; Chen, W.; Xi, X.; Chen, X.; Yang, S.; Gao, P.; Zheng, Y. Preparation and Photocatalytic Properties of Al2O3–SiO2–TiO2 Porous Composite Semiconductor Ceramics. Molecules 2024, 29, 4391. https://doi.org/10.3390/molecules29184391
Hua K, Wu Z, Chen W, Xi X, Chen X, Yang S, Gao P, Zheng Y. Preparation and Photocatalytic Properties of Al2O3–SiO2–TiO2 Porous Composite Semiconductor Ceramics. Molecules. 2024; 29(18):4391. https://doi.org/10.3390/molecules29184391
Chicago/Turabian StyleHua, Kaihui, Zhijing Wu, Weijie Chen, Xiuan Xi, Xiaobing Chen, Shuyan Yang, Pinhai Gao, and Yu Zheng. 2024. "Preparation and Photocatalytic Properties of Al2O3–SiO2–TiO2 Porous Composite Semiconductor Ceramics" Molecules 29, no. 18: 4391. https://doi.org/10.3390/molecules29184391
APA StyleHua, K., Wu, Z., Chen, W., Xi, X., Chen, X., Yang, S., Gao, P., & Zheng, Y. (2024). Preparation and Photocatalytic Properties of Al2O3–SiO2–TiO2 Porous Composite Semiconductor Ceramics. Molecules, 29(18), 4391. https://doi.org/10.3390/molecules29184391